Supplementary Information

Switching the ligand specificity of the biosensor XylS from *meta* to *para*-toluic acid through directed evolution exploiting a dual selection system

Yuki Ogawa¹, Kento Ueno¹, Yohei Katsuyama^{1,2} and Yasuo Ohnishi^{1,2}

¹Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan ²Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

Supplementary Figure 1. Sensitivity of WT XylS and two XylS mutants to various aromatic compounds. *E. coli* strains harboring pCDFlacXylS (WT, 4X-5, or 6X-1) and pCOLAPmmCherry were cultivated for 10 h in the presence of each aromatic compound (100 μ M). The fluorescence intensity of each culture was measured and normalized by the OD₆₀₀ value of the culture.

Supplementary Figure 2. The induction levels of WT XylS and all XylS mutants in the absence of any external ligand. *E. coli* strains harboring pCDFlacXylS variants and pCOLA*Pm*mCherry were cultivated for 10 h. The fluorescence intensity of each culture was measured in triplicate and normalized by the OD₆₀₀ value of each culture. The induction levels of the following XylSs, which showed large experimental errors in the first measurement in triplicate, were measured in more than nine biological replicates; WT, 4X-5, 6X-1, N7S, I205V, N7S-I205V, N7S-T74A-I205V, RPN, RPS, N7R, N7R-T74P, and N7R-I205S.

Supplementary Figure 3. *m*-Toluic acid and *p*-toluic acid sensitivity of WT XylS and XylS mutants with N7S replacement (XylS-N7S, 4X-5, and 6X-1). *E. coli* strains harboring pCDFlacXylS (WT, XylS-N7S, 4X-5, or 6X-1) and pCOLAPmmCherry were cultivated for 10 h in the presence of each ligand (0, 1, 3, 10, 30, and 100 μ M). The fluorescence intensity of each culture was measured and normalized by the OD₆₀₀ value of the culture. The following is supplementary discussion mainly on the N7S mutation.

The induction level of XylS-N7S in the absence of any ligand was higher than that of WT XylS, indicting that N7S mutation is responsible for increasing the basal activity. Interestingly, even a low concentration of *m*-toluic acid provoked a distinct increase of induction level, showing that N7S mutation conferred hyper-sensitivity to a low concentration of *m*-toluic acid. XylS-N7S also showed a higer sensitivity to *p*-toluic acid than WT XylS, although a high concentration of *p*-toluic acid was requierd for the distinct induction unlike the hyper-sensitivity to *m*-toluic acid. Because neither *m*-toluic acid nor *p*-toluic acid decreased the increased basal activity of XylS-N7S, neither compound acted as an antagonist toward XylS-N7S. Note that *ortho*-substituted toluene derivatives, such as *o*-xylene and *o*-chlorotoluene, act as antagonists toward TodS, the sensor kinase of a two-component regulatory system in *Pseudomonas putida*, which autophospholylates and induces the signal transduction system to activate transcription of the target genes of its cognate response regulator TodT when it binds to agonistic compounds represented by toluen.¹

Valla's group also studied the induction level of XylS-N7S by measuring the level of ampicillin resistance of a XylS-N7S-producing strain that carries *bla* under the control of *Pm* promoter.² In their study, XylS-N7S showed almost the same basal activity, i.e., the same induction level (ampicillin resistance, up to approximately 35 μ g/ml) as WT XylS in the absence of *m*-toluic acid, while it showed about 1.5-times higher induction level (up to approximately 900 μ g/ml) than WT XylS (up to approximately 600 μ g/ml) in the presence of *m*-toluic acid (1 mM). This result is apparently inconsistent with our result, especially in regard to the basal activity of XylS-N7S; in our experiment, XylS-N7S showed a higher basal activity and higher induction levels only in the presence of low concentrations of *m*-toluic acid (1, 3, and 10 μ M) compared with WT-XylS. However, the inconsistency may be explained by the differences of *E. coli* strains and assay systems between the two experiments.

4X-5 having the N7S and I205V mutations showed a higher basal activity than XylS-N7S. In addition, 4X-5 showed increased *p*-toluic acid sensitivity compared with XylS-N7S. In contrast, *m*-toluic acid sensitivity was not so different between 4X-5 and XylS-N7S. From these results, we assume that I205V accounts for the higher sensitivity of 4X-5 to *p*-toluic acid. 6X-1 having the N7S, T74A, K83E, I205V, and N227D mutations showed a similar basal activity to 4X-5, but showed greatly increased *p*-toluic acid sensitivity in the presense of more than 3 μ M *p*-toluic acid compared with XylS-N7S. In the presense of more than 10 μ M *m*-toluic acid, 6X-1 also showed considerably increased *m*-toluic acid sensitivity compared with XylS-N7S and 4X-5. From these results, we assume that any of the three newly introduced mutations (T74A, K83E, and N227D) plays an important role for further increasing *p*-toluic acid sensitivity of 6X-1. Our assumptions described above were examined by the following experiment shown in Figure 5.

Busch, A., Lacal, J., Martos, A., Ramos, J. L., and Krell, T. (2007) Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals. *Proc. Natl. Acad. Sci. U. S. A. 104*, 13774–13779.
Vee Aune, T. E., Bakke, I., Drabløs, F., Lale, R., Brautaset, T., and Valla, S. (2010) Directed evolution of the transcription factor XylS for development of improved expression systems. *Microb. Biotechnol. 3*, 38–47.

Supplementary Figure 4. Sensitivity of WT XylS and XylS-N7R-T74P to various aromatic compounds. *E. coli* strains harboring pCDFlacXylS (WT or N7R-T74P) and pCOLAPmmCherry were cultivated for 10 h in the presence of each aromatic compound (100 μ M). The fluorescence intensity of each culture was measured and normalized by the OD₆₀₀ value of the culture.

Supplementary Figure 5. Model of XylS (a) based on its homology with the structure of the N-terminal domain of AraC (b) (PDB ID: 2AAC).

Supplementary Figure 6. Model of XylS (a) based on its homology with the structure of the N-terminal domain of CuxR (b) (PDB ID: 5NLA).

Plasmid	Relevant characteristic	
pCDFlac-XylS	<i>Sm</i> ^{<i>r</i>} ; pCDFlac-1 derivative encoding <i>xylS</i>	
pCOLAPmmCherry	<i>Km</i> ^{<i>r</i>} ; pCOLADuet-1 derivative encoding <i>Pm</i> and	
	mCherry	
pUKN009	<i>cat, bla, Km^r</i> ; pUKN008 derivative encoding <i>Pm</i>	
pCDFlac-XylS-T74A	<i>Sm^r</i> ; pCDFlac-XylS derivative encoding <i>xylS</i> -T74A	
pCDFlac-XylS-K83E	<i>Sm</i> ^{<i>r</i>} ; pCDFlac-XylS derivative encoding <i>xylS</i> -K83E	
pCDFlac-XylS-I205V	<i>Sm</i> ^{<i>r</i>} ; pCDFlac-XylS derivative encoding <i>xylS</i> -I205V	
pCDFlac-XylS-N227D	<i>Sm</i> ^{<i>r</i>} ; pCDFlac-XylS derivative encoding <i>xylS</i> -N227D	
pCDFlac-XylS-T74A-	<i>Sm</i> ^{<i>r</i>} ; pCDFlac-XylS derivative encoding <i>xylS</i> -T74A-	
I205V	I205V	
pCDFlac-XylS-N7S-	<i>Sm</i> ^{<i>r</i>} ; pCDFlac-XylS derivative encoding <i>xylS</i> -N7S-T74A	
T74A		
pCDFlac-XylS-N7S-	<i>Sm</i> ^{<i>r</i>} ; pCDFlac-XylS derivative encoding <i>xylS</i> -N7S-T74A-	
T74A-I205V	I205V	
pCDFlac-XylS-N7R	<i>Sm</i> ^{<i>r</i>} ; pCDFlac-XylS derivative encoding <i>xylS</i> -N7R	
pCDFlac-XylS-T74P	<i>Sm</i> ^r ; pCDFlac-XylS derivative encoding <i>xylS</i> -T74P	
pCDFlac-XylS-I205S	<i>Sm</i> ^r ; pCDFlac-XylS derivative encoding <i>xylS</i> -I205S	
pCDFlac-XylS-N7R-	<i>Sm</i> ^{<i>r</i>} ; pCDFlac-XylS derivative encoding <i>xylS</i> -N7R-T74P	
Т72Р		
pCDFlac-XylS-N7R-	<i>Sm</i> ^{<i>r</i>} ; pCDFlac-XylS derivative encoding <i>xylS</i> -N7R-I205S	
I205S		
pCDFlac-XylS-T74P-	<i>Sm</i> ^r ; pCDFlac-XylS derivative encoding <i>xylS</i> -T74P-	
I205S	12058	

Table S1. Plasmids used in this study.

Table S2. Primers used in this study.

No	Primer	Sequence (5' to 3')	Use
		(Bold letters indicate mutation sites.)	
1	pCDFlac-	CATATGGCAGATCTCAATTG	Amplification of CDF ori and
	F	GATATCGG	streptomycin resistance gene.
2	pCDFlac-	TCTAGAGCGGTTCAGTAGAA	Amplification of CDF ori and
	R	AAGATC	streptomycin resistance gene.
3	Plac-F	TTCTACTGAACCGCTCTAGA	Amplification of <i>lac</i>
		GCGCAACGCAATTAATGTGA	promoter.
		GTT	
4	Plac-R	CAATTGAGATCTGCCATATG	Amplification of <i>lac</i>
		TGTTTCCTGTGTGAAATTGT	promoter.
5	xylS-F	AA <u>CATATG</u> GATTTTTGCCTG	Cloning of <i>xylS</i> .
		CTGAA	Underline, NdeI site.
6	xylS-R	TT <u>CTCGAG</u> TCATGCAACTTC	Cloning of <i>xylS</i> .
		TTTTTTACACTG	Underline, XhoI site.
7	CAT-F	AA <u>GCTAGC</u> ATGGAGAAAAA	Cloning of <i>cat</i> gene.
		AATCACTGGATATACC	Underline, NheI site.
8	CAT-R	TT <u>AAGCTT</u> ACGCCCCGCCCT	Cloning of <i>cat</i> gene.
		GCCACT	Underline, HindIII site.
9	pASKCA	CCGCGCCCCGACACCATCGA	Amplification of cat, bla and
	Т-	ATGGCCAGA	tetR.
	F(COLA)		
10	pASKCA	ACCATCACGGAAAAAGGTTA	Amplification of <i>cat</i> , <i>bla</i> and
	T-	TGCTGC	tetR.
	R(COLA)		
11	pCOLA-F	TTTTTCCGTGATGGTACGAC	Amplification of COLA ori
		CCTGCCCTGAACCGA	and kanamycin resistance
			gene

12	pCOLA-R	GGTGTCGGGGGGCGCGGGGCAT GACTAACA	Amplification of COLA <i>ori</i> and kanamycin resistance gene
13	P _{Pm} -1	GGGATAAGTCCAGCCTTGCA AGAAGCGGATACAGGAGTG CAAAAAATGGCTATCTCTAG AAAGGCCTACC	Synthesis of P _{Pm} .
14	P _{Pm} -2	TGACTCCATTATTATTGTTTC TGTTGCATAAAGCCTAAGGG GTAGGCCTTTCTAGAGATAG CCAT	Synthesis of P _{Pm} .
15	P _{Pm} -3	GTGTCCGGTTTGATAGGGAT AAGTCCAGCCTTGCA	Synthesis of P _{Pm} .
16	P _{Pm} -4	<u>CATATG</u> TTCATGACTCCATT ATTATTGTTTCTGTT	Synthesis of P _{Pm} . Underline, NdeI site.
17	P _{Pm} -F	AATTTCAGGTGGCACGTGTC CGGTTTGATAGGGAT	Amplification of P _{Pm} .
18	P _{Pm} -R	ATGTTGAATACTCATATGTT CATGACTCCATTATT	Amplification of P _{Pm} .
19	pUKN008 -F	ATGAGTATTCAACATTTCCG TGTC	Amplification of pUKN008 to exchange the promoter region of ampicillin resistance gene.
20	pUKN008 -R	GTGCCACCTGAAATTGTAAG	Amplification of pUKN008 to exchange the promoter region of ampicillin resistance gene.
21	P _{Pm} -F-2	GCATTAGGTGTCCGGTTTGA TAGGGATA	$\begin{array}{llllllllllllllllllllllllllllllllllll$
22	P _{Pm} -R-2	GCCCATGGGTTCATGACTCC ATTATTAT	$\begin{array}{llllllllllllllllllllllllllllllllllll$
23	pCOLAP m-F	CATGAACCCATGGGCAGCAG CCATCAC	Amplification of the DNAfragmentharboringkanamycinresistancegene

			andCOLAoriforconstructionofpCOLAPmmcherry-1.
24	pCOLAP m-R	CCGGACACCTAATGCAGGAG TCGCATA	Amplification of the DNA fragment harboring kanamycin resistance gene and COLA <i>ori</i> for construction of pCOLAPmmherry-1.
25	pCOLAP mmCherry -1-F	CATGAACAGGGCAGCAGCC ATCACCAT	Insertion of A to recover missing A in P_{Pm} of pCOLAPmmCherry
26	pCOLAP mmCherry -1-R	GCTGCCCTGTTCATGACTCC ATTATTA	Insertion of A to recover missing A in P_{Pm} of pCOLAPmmCherry.
27	sqPCR-F	CCAGGCTTTACACTTTATGC	For semi-quantitative PCR to estimate the amount of pCDFlac-1 and pCDFlacXylS and sequence analysis of XylS.
28	sqPCR-R	CTTCGGCTTCCCCTGGAGAG	For semi-quantitative PCR to estimate the amount of pCDFlac-1 and pCDFlacXylS.
29	epp-xylS- F-1	ATTTCACACAGGAAACACAT	Introduction of random mutations into <i>xylS</i> by error-prone PCR.
30	epp-xyls- R-1	GTTTCTTTACCAGACTCGAG	Introduction of random mutations into <i>xylS</i> by error-prone PCR.
31	pCDFlac- F-1	CGCTGCTGCGAAATTTGAAC	Amplification of linear pCDFlac-1.

32	pCDFlac- R-1	ATGTGTTTCCTGTGTGAAAT	Amplification of linear pCDFlac-1.
33	epp-xyls- F-2	TGTGAGCGGATAACAATTTC ACACAGG	Introduction of random mutations into <i>xylS</i> by error-prone PCR.
34	epp-xyls- R-2	GCGGTTTCTTTACCAGACTC	Introduction of random mutations into <i>xylS</i> by error-prone PCR.
35	pCDFlac- F-2	GAACGCCAGCACATGGACTC	Amplification of linear pCDFlac-1.
36	pCDFlac- R-2	ATGTGTTTCCTGTGTGAAAT TGTTATCCGC	Amplification of linear pCDFlac-1.
37	seq-xyls-R	TGCTCAGCGGTGGCAGCAGC	Sequence analysis of <i>xylS</i> .
38	xyls- T74A-F	CTGGAAGCCTGTTATCATCT GCAAAT	Site-directed mutagenesis of <i>xylS</i> to introduce T74A.
39	xyls- T74A-R	ATAACA GGC TTCCAGACCCG GACTAAT	Site-directed mutagenesis of <i>xylS</i> to introduce T74A.
40	xyls- K83E-F	ATTCTG GAA GGTCATTGTCT GTGGCGT	Site-directed mutagenesis of <i>xylS</i> to introduce K83E.
41	xyls- K83E-R	ATGACC TTC CAGAATAATTT GCAGATG	Site-directed mutagenesis of <i>xylS</i> to introduce K83E.
42	xyls- I205V-F	CGTGAA GTC TTTAGCAAAGG TAACCCG	Site-directed mutagenesis of <i>xylS</i> to introduce I205V.
43	xyls- I205V-R	GCTAAA GAC TTCACGGCTAA CATTGCT	Site-directed mutagenesis of <i>xylS</i> to introduce I205V.
44	xyls- N227D-F	AAACGC GAC ATTAGCCTGG AACGTCTG	Site-directed mutagenesis of <i>xylS</i> to introduce N227D.
45	xyls- N227D-R	GCTAAT GTC GCGTTTCAGGT TCTCTTC	Site-directed mutagenesis of <i>xylS</i> to introduce N227D.
46	xyls-N7- satmut-F	GATTTTTGCCTGCTGNNTGA AAAAAGCCAGATTTTTGT	Codonrandomizationmutagenesis of xylS at N7.

47	xyls-N7-	TTCCAGACCCGGACTAATAA	Codon randomization
	satmut-R		mutagenesis of <i>xylS</i> at N7.
48	xyls-T74-	AGTCCGGGTCTGGAANNTTG	Codon randomization
	satmut-F	TTATCATCTGCAAATTAT	mutagenesis of <i>xylS</i> at T74.
49	xyls-T74-	TTCACGGCTAACATTGCTAC	Codon randomization
	satmut-R		mutagenesis of <i>xylS</i> at T74.
50	xyls-I205-	AATGTTAGCCGTGAANNTTT	Codon randomization
	satmut-F	TAGCAAAGGTAACCCGAG	mutagenesis of <i>xylS</i> at I205.
51	xyls-I205-	CAGCAGGCAAAAATCCATAT	Codon randomization
	satmut-R		mutagenesis of <i>xylS</i> at I205.
52	xyls-N7R-	CTGCTGCGTGAAAAAAGCC	Site-directed mutagenesis of
	F	AGATTTTT	<i>xylS</i> to introduce N7R.
53	xyls-N7R-	TTTTTCACGCAGCAGGCAAA	Site-directed mutagenesis of
	R	AATCCAT	<i>xylS</i> to introduce N7R.
54	xyls-	CTGGAACCTTGTTATCATCT	Site-directed mutagenesis of
	T74P-F	GCAAATT	<i>xylS</i> to introduce T74P.
55	xyls-	ATAACAAGGTTCCAGACCCG	Site-directed mutagenesis of
	T74P-R	GACTAAT	<i>xylS</i> to introduce T74P.
56	xyls-	CGTGAAAGTTTTAGCAAAGG	Site-directed mutagenesis of
	I205S-F	TAACCCG	<i>xylS</i> to introduce I205S.
57	xyls-	GCTAAAACTTTCACGGCTAA	Site-directed mutagenesis of
	I205S-R	CATTGC	<i>xylS</i> to introduce I205S.