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Sl Text

Supplementary Results

Cross-seeding Reactions between K3 and pP2m. We performed a series of cross-seeding
experiments between K3 and f2m monitored with a fluorimeter (Fig. S1). The addition of K3 fibril
seeds into the K3 or f2m monomers eliminated the lag time, as previously reported.! The addition
of B2m fibrils also eliminated the lag time from the spontaneous amyloid formation of B2m or K3
monomers. Elongation kinetics (i.e. the growth rate and maximum values of ThT) depended on the
monomer species. CD spectra showed that the secondary structures of amyloid fibrils were also
dependent on monomer species. Thus, although K3 or intact B2m seed fibrils may cross-react with
B2m or K3 monomers, respectively, seeds cannot define the overall structures of amyloid fibrils.
B2m* 3 and K3 fibrils* appear to have distinct 3D structures, even if P2m amyloid fibrils

accommodate K3 amyloid structures.

Supplementary Discussion

Separation of R: into Intrinsic and Excess Components. Since a convex smooth R pattern
against the sequence is expected for a random coil, as observed for K2, K5, K7, and K9 (Fig. S4),
the R; profile for K3 at low concentrations of urea with significant deviations from a convex pattern
suggested that these deviated residues contributed to residual structures (Fig. S4B). It is assumed
that the observed R values (R2,0bs) comprise two terms, R2 intin and R2 excess:

R2,0bs = R2,intrin T R2 excess (eq. S1),

where R2intwin and R2excess indicate an intrinsic contribution from a random coil and an excess
contribution from residual structures with slow chain motion, respectively. There is a semi-

empirical equation for the calculation of R2 intrin;
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Rz, intrin(?) = Ra residue X)=1€Xp (%) + Ry 55 Xik=1€XP (— %) (eq. S2),
where R residue and Ra,ss are contributions per residue for residues in the random coil state and
linked by a disulfide bond, respectively. A is the persistent length in the number of residues. Rz excess
indicates the contribution of a residual structure and is assumed to bring an additional contribution
with a Gaussian shape to the Rz inin pattern.® In the present study, since the samples were relatively
short peptides, the Gaussian assumption was not appropriate for the analysis. Thus, we manually
adjusted the parameters R2 residue, R2,5s, and A to reproduce R» obs for mobile residues (Fig.S4, solid
lines, and see Table S1 for the obtained parameter set). We then subtracted Rz intin from R obs. The
remainder was considered to be R excess.

Almost nothing remained for non-amyloidogenic peptides (K2, K5, K7, and K9) at any
concentrations of urea. On the other hand, K3 showed significant remaining contributions at low
urea concentrations (i.e.1 and 2 M urea, Fig. S4B, solid lines), representing hydrophobic clusters

at low urea concentrations.
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Table S1. Parameters used for obtaining an intrinsic contribution according to eq. 3.

[urea] Value
A Any 2.5 (residues)
R2 intrin 0M 0.25~0.28 57!
IM 0.26 5!
2M 0.27 57!
4 M 0.29~0.32 5!
&M 0.35~0.41 5!
Rass §M 3.05s!
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Figure S1. Cross-seeding experiments between K3 and p2m monitored by a microplate
reader. (A-D) Real-time observations of seed-dependent amyloid formation followed by ThT
fluorescence at 485 nm. The seeds obtained by fibrillation of 25 uM K3 enhanced the subsequent
fibrillation of 25 uM K3 (A) and 25 puM B2m (B). The seeds obtained by the fibrillation of 25 uM
B2m enhanced subsequent fibrillation in 25 pM B2m (C) and 25 puM K3 (D). CD spectra were
categorized into two types: one similar to that of K3 fibrils with a minimum at 215 nm (E) and the

other similar to that of f2m fibrils with a minimum at 217 nm (F).
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Figure S2. Interaction between K3 and native f2m monitored by PRE measurements at pH
7.0. (A) Kinetics of K3 amyloid formation in the presence of various concentrations of f2m. (B)
Profiles of PRE effects for the assigned residues of native 32m at various concentrations of MTSL-

labeled K3. The locations of B-strands A-G in the native structure are indicated.
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Figure S3. 'H-15N HSQC spectra of isolated proteolytic fragments: (A) K2, (B) K5 and K9,
(C) K7, (D) K3, and (E) K3-7. Spectra were obtained in the absence of urea for non-amyloidogenic
peptides (K2, K5, K7, and K9) and in 8 M urea for amyloidogenic peptides (K3 and K3-7).

Assigned residues are indicated in the spectra.
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Figure S4. Comparison of "H-'SN HSQC spectra of 50 pM 'SN-labelled K3 in the presence
(red) and absence (black) of a proteolytic mixture of non-labeled 32m at 75 pM. The

spectrum without proteolytic fragments (black) was taken from Fig. 2.
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Figure S5. Residue-dependent R: values for proteolytic fragments of f2m. (A-E) R> values

for K2 (A), K3 (B), K5 (C), K7 (D), and K9 (E) measured in the presence of various

concentrations of urea. The contributions of the R2 inuin (solid lines) and R» excess (dotted lines for

K3) terms are indicated.
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Figure S6. The Ka value calculated from PRE measurement. Intensity decays (circle) and

theoretical curves (line) of residue R3, K19, G43, S57, and K94 were plotted using the K4 value of

115 uM. The amplitude of signal decay against residue number was shown (lower panel). The K4

value was calculated by global fitting of the signal decay data assuming one-to-one binding model.
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Figure S7. Comparison of various residue-dependent propensities of f2m. (A) The PRE profile
at 200 uM K3-MTSL shown in Fig. 3C (same as Figure 6A). (B) Profile of the aggregation

propensity calculated by TANGO.® (C, D) Profile of the intrinsically disordered regions predicted
by IUPred’ (C) and PONDRS® (D).
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