1 SUPPORTING INFORMATION FOR PUBLICATION

Structural Identification of Monounsaturated Branched Chain Fatty Acid Methyl Esters by Combination of Electron Ionization and Covalent Adduct Chemical Ionization Tandem Mass Spectrometry

5 Zhen Wang^{†,‡}, Dong Hao Wang^{†,‡}, Hui Gyu Park^{*,‡}, Herbert J. Tobias[‡], Kumar S. D.

6 Kothapalli^{*,‡}, and J. Thomas Brenna^{*,†,‡}

7

- ⁸ [†]Department of Food Science, Cornell University, Ithaca, New York 14853, USA
- ⁹ [‡]Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition,
- 10 The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA

11

- 12 The Supporting Information contains the following:
- 13 **Table S1.** Precursor ions and collision energy applied for MS/MS analysis of tested FAME.

Figure S1. EI-MS/MS spectra of isomeric 17:0 and isomeric 19:0 FAME. (A) *n*-17:0; (B) *iso* 17:0; (C) *anteiso*-17:0; (D) *n*-19:0; (E) *iso*-19:0; (F) *anteiso*-19:0.

16 **Figure S2.** CI-MS/MS spectra at collision energies 3V and 18V of isomeric 17:0 FAME

fragmented from [MH]⁺ at *m/z* 285. (A) *n*-17:0 (3V); (B) *iso*-17:0 (3V); (C) *anteiso*-17:0 (3V);
(D) *n*-17:0 (18V); (E) *iso*-17:0 (18V); (F) *anteiso*-17:0 (18V).

Figure S3. CI-MS/MS spectra at collision energies 3V, 6V and 18V of isomeric 17:1 FAME fragmented from $[MH]^+$ at *m/z* 283. (A) *n*-6*Z*-17:1 (3V); (B) *iso*-6*Z*-17:1 (3V); (C) *anteiso*-6*Z*-17:1 (3V); (D) *n*-6*Z*-17:1 (6V); (E) *iso*-6*Z*-17:1 (6V); (F) *anteiso*-6*Z*-17:1 (6V); (G) *n*-6*Z*-17:1 (18V); (H) *iso*-6*Z*-17:1 (18V); (I) *anteiso*-6*Z*-17:1 (18V).

Figure S4. *m/z* 141 is present in EI-MS/MS spectra of MUFAME and monocyclopropane
FAME (A) Elaidic acid 9*E*-18:1; (B) Oleic acid 9*Z*-18:1; (C) *Cis*-vaccenic acid 11*Z*-18:1; (D)
7,8-cyclopropane-17:0; (E) 9,10-cyclopropane-19:0.

- 26
- 27 *Corresponding authors
- 28 <tbrenna@utexas.edu>, v. 512-495-5249;
- 29 <kkothapalli@utexas.edu>, v. 512-495-5950;
- 30 <hi.park@austin.utexas.edu>, v.607-280-7234.

	FAME	ME Molecular Mass eiso- and (<i>m/z</i>)	EI-MS/MS		CI-MS/MS	
	(<i>n</i> -, iso- and anteiso-)		Precursor Ion [M] ⁺ (<i>m/z</i>)	Collision energy (V)	Precursor Ion [M+54] ⁺ (<i>m/z</i>)	Collision energy (V)
	15:1	254	254	3	308	6
	16:1	268	268	3	322	6
	17:1	282	282	3	336	6
	18:1	296	296	3	350	6
	19:1	310	310	3	364	6
	20:1	324	324	3	378	6

Table S1. Precursor ions and collision energy applied for MS/MS analysis of tested FAME.

32

Figure S1. EI-MS/MS spectra of isomeric 17:0 and isomeric 19:0 FAME. (A) *n*-17:0; (B) *iso* 17:0; (C) *anteiso*-17:0; (D) *n*-19:0; (E) *iso*-19:0; (F) *anteiso*-19:0. [M-43]⁺ is the only diagnostic

17:0; (C) anteiso-17:0; (D) n-19:0; (E) iso-19:0; (F) anteiso-19:0. [M-43]⁺ is the only diagr
 ion of iso-SBCFA; while both [M-57]⁺ and [M-29]⁺ are diagnostic ions of anteiso-SBCFA,

among which $[M-57]^+$ is the most prominent.

Figure S2. CI-MS/MS spectra at collision energies 3V and 18V of isomeric 17:0 FAME
fragmented from [MH]⁺ at *m/z* 285. (A) *n*-17:0 (3V); (B) *iso*-17:0 (3V); (C) *anteiso*-17:0 (3V);
(D) *n*-17:0 (18V); (E) *iso*-17:0 (18V); (F) *anteiso*-17:0 (18V). Compared to collision energy at
6V presented in Figure 9, CI-MS/MS at 3V yield similar but lower abundance of characteristic
ions for assigning branched ends of isomeric 17:0. 18V is too high to generate useful
characteristic ions as 3V and 6V.

Figure S3. CI-MS/MS spectra at collision energies 3V, 6V and 18V of isomeric 17:1 FAME fragmented from $[MH]^+$ at *m/z* 283. (A) *n*-6*Z*-17:1 (3V); (B) *iso*-6*Z*-17:1 (3V); (C) *anteiso*-6*Z*-17:1 (3V); (D) *n*-6*Z*-17:1 (6V); (E) *iso*-6*Z*-17:1 (6V); (F) *anteiso*-6*Z*-17:1 (6V); (G) *n*-6*Z*-17:1 (18V); (H) *iso*-6*Z*-17:1 (18V); (I) *anteiso*-6*Z*-17:1 (18V). Isomeric 17:1 share the most abundant ions $[MH-32]^+$ and $[MH-50]^+$ at *m/z* 251 and 233 when collision energy is 3V or 6V. After careful inspection, no unique ions are found to distinguish isomeric 17:1 at either 3V, 6V or 18V.

- **Figure S4.** *m/z* 141 is present in EI-MS/MS spectra of MUFAME and monocyclopropane
- 64 FAME (A) Elaidic acid 9*E*-18:1; (B) Oleic acid 9*Z*-18:1; (C) *Cis*-vaccenic acid 11*Z*-18:1; (D)

65 7,8-cyclopropane-17:0; (E) 9,10-cyclopropane-19:0.