Supporting Information (SI)

Synergy of a Metallic NiCo Dimer Anchored on a C₂N–Graphene Matrix Promotes the Electrochemical CO₂ Reduction Reaction

Qingliang Huang,¹ Haimei Liu,¹ Wei An*, Yuanqiang Wang, Yonghao Feng, Yong Men

College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Songjiang District, Shanghai 201620, China

¹ These authors contributed equally to this work.

*E-mail: weian@sues.edu.cn

Number of pages : 9

Number of figures : 5

Number of tables : 2

S1. Computational Details

Gibbs free energy of reaction for CO₂ RR elementary steps involving $(H^+ + e^-)$ pair transfer was calculated using computational hydrogen electrode (CHE) model by Nørskov et al.¹, defined as $\Delta G_n(U)$ = ΔG_n (U=0) + neU, where n is the number of (H⁺ + e⁻) pairs transferred in CO₂ RR, e is the unit charge and U is the electrode potential versus the reversible hydrogen electrode (RHE). At U=0 V, ΔG_n $= \Delta E_n - T\Delta S + \Delta ZPE + \Delta E_{sol} + \Delta G_{pH}$, where ΔE_n is DFT-calculated reaction energy in vacuum, T ΔS is the entropy contributions to the reaction at T=298K, Δ ZPE is zero-point energy (ZPE) correction based on the calculated vibrational frequencies, ΔE_{sol} represents the correction of H₂O solvation effect at the water-solid interface, and ΔG_{PH} represents the correction of the free energy due to the variations in H⁺ concentration, defined as $G_{pH} = -kT \ln[H^+] = kT \ln 10 \times pH$, and the value of pH was set to 0 for strong acidic medium in this work and therefore, the calculated limiting potentials (UL) were referenced to the RHE. Implicit model was used for treating H₂O solvation effect, where ΔE_{sol} was accounted for depending on OH-containing species and their binding situations²: *R-OH bound to M directly/indirectly through hydroxyl is stabilized by approximately 0.5eV/0.25eV, respectively, and those containing no hydroxyl (e.g., *CO, *CHO, *CH₂O, *CH₃O, CH_x) were stabilized approximately by 0.1eV. The free energy of gaseous molecules (CO₂, CO, H₂, CH₂O, and CH₄) was calculated under the standard pressure of 1 bar, while the free energy of liquid-phase molecules (H₂O, HCOOH, and CH₃OH) was calculated as an ideal gas using their corresponding vapor fugacity (f) at μ (liguid)= μ (vapor)², and accordingly, a correction of chemical potential (μ) for liguid products $\Delta \mu = RT^* \ln (f)$ is added as -0.09eV, -0.22eV, and -0.07eV for H₂O(l), HCOOH(l), and CH₃OH(l), respectively. The limiting potential (UL) is obtained from the maximum free energy change (ΔG_{max}) among all elementary steps along the lowest-energy pathway by using the relation of $U_L = -\Delta G_{max}/e$.

S2. Zero-point Energy (ZPE) and Entropy Corrections (TS)

The entropies of the gaseous molecules were taken from the NIST Chemistry WebBook³ and the zero-point energy (ZPE) was calculated according to:

$$E_{ZPE} = \sum_{i=1}^{3N} \frac{h\nu_i}{2}$$

The entropy change for adsorbed intermediates was calculated within the harmonic approximation:

$$\Delta S_{ads}(0 \to T, P^0) = S_{vib} = \sum_{i=1}^{3N} \left[\frac{N_A h v_i}{T(e^{h v_i / k_B T} - 1)} - R \ln(1 - e^{-h v_i / k_B T}) \right]$$

Where v_i is DFT-calculated normal-mode frequency for species of 3N degree of freedom (*N*=number of atoms) adsorbed on M@Cu(211) SACs, *N*_A is the Avogadro's constant(6.022×10^{23} mol⁻¹), *h* is the Planck's constant (6.626×10^{-34} J s), and *k*_B is the Boltzmann constant (1.38×10^{-23} JK⁻¹), *R* is the ideal gas constant (8.314 J K ⁻¹ mol ⁻¹), and *T* is the system temperature, and T=298.15K in this work.

Table S1. Binding energy (BE, in eV) of Ni₂, Co₂ and NiCo dimers on $p(2 \times 2)$ C₂N graphene in (I) asymmetric and (II) symmetric bonding configuration (a) one pair of dimer (b) four pairs of dimers.

(a)								
Configuration		Ni2 [*]	Co2*	(NiCo)**				
(I)		-8.55	-8.33	-8.47				
(II)		-8.20	-8.06	-8.27				
$^{*}BE = EM_{2}@C_{2}N - EC_{2}N - 2^{*}EM$								
$^{**}BE = ENiCo@C_2N - EC_2N - ENi - ECo$								
(b)								
Configuration	4Ni2*	4Co2	* 4(NiCo	o)** 2Co2+2Ni2***				
(I)	-8.96	-8.63	-8.98	-8.90				
(II)	-8.29	-8.20	-8.30	5 -8.19				
$BE = [E_{4M_2}@C_{2N} - E_{C_2N} - 8*E_M]/4$								
$^{**}BE = [E4(NiCo)@C_2N - EC_2N - 4*ENi - 4*ECo]/4$								
$^{***}BE = [E[2Co_2+2Ni_2]@C_2N - EC_2N - 4*ENi - 4*ECo]/4$								

Table S2. Binding energy (in eV) of *CO₂, *CO, *HCOOH, *CH₂O, and *CH₃OH on Ni₂@C₂N,

Co2@C2N and NiCo@C2N calculated using their corresponding gas-phase energy as the reference.

Metal	*CO ₂	*CO	*HCOOH	*CH ₂ O	*CH ₃ OH
Ni ₂	-0.29	-2.38	-0.44	-1.41	-0.30
Co ₂	-0.84	-2.92	-0.89	-1.75	-0.56
NiCo	-0.51	-2.57	-0.68	-1.43	-0.39

I-0.00eV

II- 0.35eV

(b) Co₂@C₂N

Figure S1. Optimized structure and isosurface of charge density difference $(\Delta \rho)$ for (a)Ni₂@C₂N and (b) Co₂@C₂N which have two distinct M-M arrangements with pyridinic N atoms (I and II). Both top and side views are displayed. Yellow: charge accumulation; Cyan: charge depletion. Isosurface level=0.004 e/Bohr³. $\Delta \rho = \rho_{(\text{slab}+\text{ads})} - \rho_{(\text{slab})} - \rho_{(\text{ads})}$.

Figure S2. The snapshot of geometric structure of $p(4 \times 4)$ Ni₂@C₂N during AIMD simulations at 500 K.

Figure S3. GGA+U calculated electronic band structure along side with geometric structure. (a) $Ni_2@C_2N$, (b) $4Ni_2@C_2N$, (c) $Co_2@C_2N$, (d) $4Co_2@C_2N$, (e) $NiCo@C_2N$, (f) $4NiCo@C_2N$. Black: spin-up electrons; Red: spin-down electrons. Here, (a) and (b) contain zero magnetic moment, (e) and (f) contain nearly zero magnetic moment.

Figure S4. Complete CO₂ RR pathways via *OCHO and *COOH intermediates towards CH₄ and CH₃OH formation on (a)Ni₂@C₂N, (b)Co₂@C₂N and (c)NiCo@C₂N. The numbers besides arrow and in parenthesis represent Gibbs free energy change and position (in eV), respectively. The numbers in colored italics represent the likely free energy barriers.

Figure S5. Partial density of states (PDOS) of *3d*-orbitals of Ni₂, Co₂ and NiCo@C₂N (**II**): (a) monomer (b) dimer. Total density of states (TDOS) of Ni₂, Co₂ and NiCo@C₂N: (c) Asymmetric **I** configurations (c) Symmetric **II** configurations. The Fermi level is set to zero in black dashed line.

References

- 1. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. *J. Phys. Chem. B* **2004**, *108*, 17886-17892.
- 2. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K., How Copper Catalyzes the Electroreduction of Carbon Dioxide into Hydrocarbon Fuels. *Energy Environ. Sci.* **2010**, *3*, 1311-1315.
- 3. https://webbook.nist.gov/chemistry/.