# **Supporting information**

Integrated Metabolomics and Network Pharmacology Strategy-Driven Active Traditional Chinese Medicine Ingredients Discovery for the Alleviation of Cisplatin Nephrotoxicity

Lei Xu †,‡, #, Yuxin Zhang§, #, Pei Zhang†, ∥, <sup>⊥</sup>, Xiaomin Dai†, Yiqiao Gao†, Yingtong Lv†, Siyuan Qin†, Fengguo Xu† \*

Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State
Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
\$uzhou Dushuhu Public Hospital, Dushuhu Public Hospital Affiliated to Soochow University,
Suzhou 215000, China

SNanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China;

|| Gunma University Initiative for Advanced Research (GIAR), Gunma University, Gunma, Japan

<sup>⊥</sup> Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden

# These authors contributed equally.

Corresponding Author

\* Fengguo Xu, Tel.: +86 25 8327 1021. Email addresses: fengguoxu@gmail.com

## Table of contents

| 1. | Me    | ethods                          | S3  |
|----|-------|---------------------------------|-----|
|    | 1.1.  | Preliminary experiment scheme   | S3  |
|    | 1.2.  | Untargeted metabolomic analysis | S4  |
| 2. | Fig   | gures                           | S7  |
|    | Figur | re S1                           | S7  |
|    | Figur | re S2                           | S8  |
|    | Figur | re S3                           | S9  |
|    | Figur | re S4                           | S10 |
|    | Figur | re S5                           | S11 |
|    | Figur | re S6                           | S12 |
|    | Figur | re S7                           | S13 |
|    | Figur | re S8                           | S14 |
|    | Figur | re S9                           | S15 |
|    | Figur | re S10                          | S16 |
| 3. | Tab   | bles                            | S17 |
|    | Table | e S1                            | S17 |
|    | Table | e S2                            | S19 |
|    | Table | e S3                            | S20 |
|    | Table | e S4                            | S22 |
|    | Table | e S5                            | S23 |
|    | Table | e S6                            | S25 |
| 4. | Ref   | ference                         | S26 |

#### 1. Methods

#### *1.1.* Preliminary experiment scheme

All animal experiments were performed in accordance with the institutional guidelines for the care and use of laboratory animals by the National Research Council of the National Academies and all experimental protocols were approved by the Animal Ethics Committee of China Pharmaceutical University.

Prior to initiation of main experiment, two pilot experiments were conducted to explore the manner, dosage and action duration of kaempferol on renal tissues. All male Sprague-Dawley rats (SPF grade, 140 to160 g body weight, 6 weeks of age) in animal experiments were purchased from Sino–British SIPPR/BK Lab Animal Ltd. (Shanghai, China) and fed with a standard commercial diet while kept in a light- and temperature-controlled condition (12/12 h light/dark, 22–25 °C, 45–55% humidity). After one-week adaptation, rats were randomly divided into differently groups.

In the first pilot study, kaempferol at three different doses i.e. 2, 10 and 50 mg/kg was selected to explore suitable dose by intraperitoneal injection for 11 consecutive days based on previous kaempferol and its analogues research literature<sup>1,2,3</sup>. On 4th day, animals were administered with a single tail vein injection of cisplatin (5 mg/kg dissolved in normal saline). Blood samples were collected through retro-orbital plexus at day1,4,8,9,10 and 11 and serum was separated for the estimation of serum specific renal injury indicators (BUN and Scr). The result showed just a protective trend on rats but no statistically significant differences (Supplementary Figure S5). It was speculated that the number of animal only four per group were influenced by individual differences or the manner, dosage and action duration of kaempferol and even the dosage of cisplatin not the most suitable. In the second pilot study, kaempferol was administered by gavage at 50 and 100 mg/kg for 14 consecutive day. On 7th day, 8 mg/kg cisplatin was selected for animal administration by tail vein a single injection. Blood samples were collected at day1,4,7,8,10,12,13 and 14. From this pilot study, it was observed that serum levels of BUN and Scr were just showing

statistically significant differences between cisplatin, kaempferol at 50 mg/kg administered group of rats (Supplementary Figure S6B&C&D&E). Histopathological findings of kidneys from the rats treated with vehicle revealed the same result (Supplementary Figure S6A). It was speculated that the dosage of kaempferol and cisplatin not the best. Even though, we knew BUN and Scr indicators would begin to recover at 6th days after cisplatin administration according to the two pilot experiments.

#### *1.2.* Untargeted metabolomic analysis

#### 1.2.1. Sample Preparation for Metabolomic Analysis.

For kidney, the medulla part and cortex part were separated. Approximately 30 mg of tissue was firstly placed into pre-cooled 2 mL homogenization tubes containing 8 ceramic beads and homogenized in a 10:1 ratio of methanol to tissue for three times (6.5 m/s for 30 s), with 60 s intervals between homogenization steps respectively. After two centrifugations (14000 rpm, 4 °C, 10 min), the supernatant was obtained and named as kidney medulla or cortex tissue homogenate. For LC-MS analysis, 100µL acetonitrile was added to a 20µL aliquot of kidney tissue homogenate. The solution was mixed thoroughly and centrifuged twice (14000 rpm, 4 °C, 10 min), and the supernatant was removed for LC-MS analysis. For GC-MS analysis, 100µL methanol was added to a 10µL aliquot of the kidney homogenate. After mixed thoroughly and centrifuged twice like before, 80µL second supernatant was transferred to corresponding brown glass vial and oximated with 25µL O-methoxyamine hydrochloride (10 mg/mL in pyridine) at 1200 rpm at 37 °C for 90 min. And then, the mixture was vacuum dried at 50 °C for 2 h (Labconco CentriVap®, Kansas, MO, USA). Later, 120 µL MSTFA /ethyl acetate (1:1, v/v) was added to the dried extracts and kept at 1200 rpm at 37 °C for 2 h with trimethylsilylation. Finally, the mixture was prepared for GC-MS analysis.

For serum, orbital venous blood was rest before centrifugation for 1.5 h and the supernatant was serum. For LC-MS analysis, 120 $\mu$ L acetonitrile was added to a 20 $\mu$ L aliquot of serum and the following steps are consistent with the kidney tissue homogenate. At last, take the supernatant for

LC-MS analysis. For GC-MS analysis,  $100\mu$ L methanol was added to a  $10\mu$ L aliquot of serum and the following steps are consistent with the kidney tissue homogenate. Finally, the mixture was removed for GC-MS analysis.

#### 1.2.2 Liquid Chromatography-Mass Spectrometry (LC-MS) Metabolomic Analysis.

LC-MS analysis was operated on Shimadzu Prominence series ultra-fast liquid chromatography (UFLC) system coupled with ion trap/time-of-flight hybrid mass spectrometry (IT-TOF/MS) (Shimadzu Inc., Japan). Phenomenex Kinetex C18 ( $100 \times 2.1 \text{ mm}$ ,  $2.6\mu\text{m}$ ) (Phenomenex, Torrance, CA, USA) was used for chromatographic separation. The column temperature was kept at 40 °C. The mobile phase was composed of 0.1% formic acid in water (A) and acetonitrile (B). The gradient elution was programmed as follows: linear gradient from 5% B to 95% B for 20min, maintained with 95% B for 3 min, and returned to 5% B for 7 min. The injection volume was 5µL and the flow rate was 0.4 mL/min. Electrospray ionization (ESI) was employed.

#### 1.2.3. Gas Chromatography-Mass Spectrometry (GC-MS) Metabolomic Analysis.

GC-MS analysis was operated on Shimadzu GCMSQP2010 Ultra (Ultra GC-Q/MS; Shimadzu Inc., Japan) in equipment with a fused silica capillary column (Rtx-5MS; 30m×0.25mm, 0.25µm, Restek, USA). Helium was used as the carrier gas at a constant flow rate of 1 mL/min. The programmed oven temperature was started at 70 °C for 2 min, then increase to 320 °C at the rate of 10 °C/min for 25 min and finally maintained at 320 °C for 2 min. The temperatures of the injector and ion source were held at 250and 200 °C, respectively. Electron impact mode with the energy of 70 eV for the ionization and full scan mode with the mass to charge ratio (m/z) from 45 to 600 for data acquisition were programmed. The injection volume was 1µL, and the split ratio was 20:1 for both kidney and serum. GCMS Solution software (Shimadzu Inc., Japan) was employed for

auto-acquisition of total ion chromatograms (TICs) and fragmentation patterns.

#### 1.2.4. Data Preprocessing and Statistical Analysis

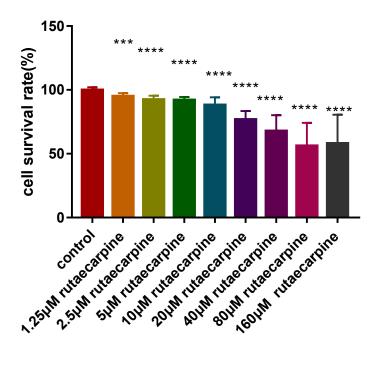
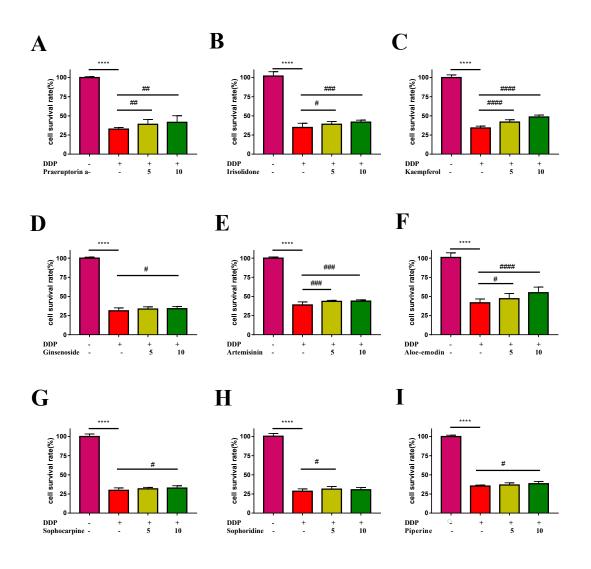
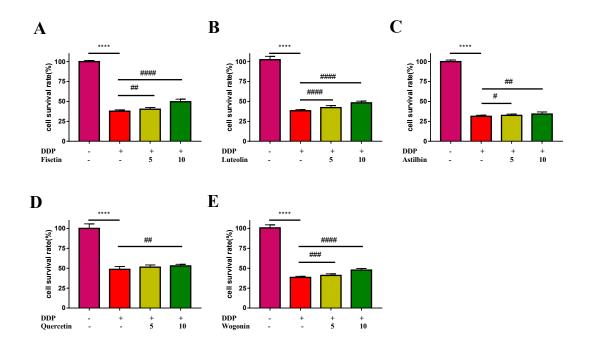
Data extraction was performed by Profiling Solution Software (Shimadzu Inc., Kyoto, Japan). After the data pretreatment<sup>4</sup>, a matrix containing grouping information, sample names, retention times and normalized peak intensities were obtained. Mass spectrometry total useful signal (MSTUS) method was used for the normalization of signal intensities. OPLS-DA was performed by SIMCA-P software. Features (a feature here was defined as a unique pair of RT and m/z record) were treated as differential if the following conditions were met. First, variable importance in the projection (VIP) value should be greater than 1.0 in OPLS-DA constructed between control and each experimental group. Second, confidence intervals on VIP column plot should be positive. Third, adjusted p value of Wilcoxon Mann-Whitney Test and stricter false discovery rate (FDR) correction based on Benjamini-Hochberg method (MeV, Version 4.6.1, http://www.tm4.org/) should be lower than 0.05. After the feature screening process, those differential features were prepared for metabolite identification.

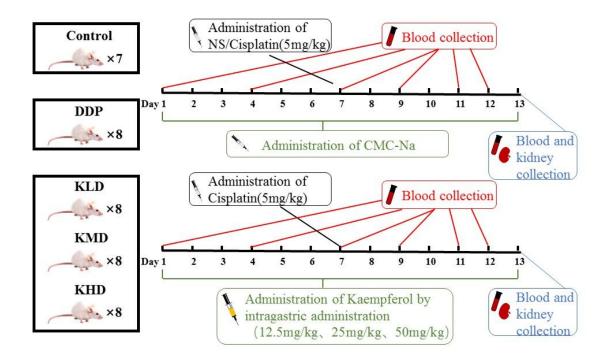
#### 1.2.5. Metabolite Identification.

For GC-MS analysis, the preliminary identification of metabolites was based on NIST 11 (National Institute of Standards and Technology). Peaks with similarity of more than 80% were assigned for compound names and were further confirmed by comparing with the reference standards available in our lab. In the case of metabolites detected by LC-MS, they were first identified by referring to existing literature and online databases such as HMDB (http://www.hmdb.ca/), METLIN (http:// metlin.scripps.edu/), and Lipid MAPS (http://www.lipidmaps.org/). LC-MS-measured mass signals matched small molecules present in the databases if their exact masses were within 30 ppm (ppm < 30). Then, those metabolites were

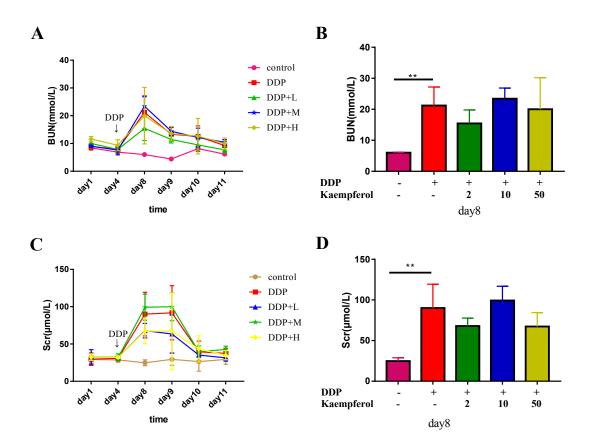
further confirmed by comparing with the standards available in our lab.

### 2. Figures

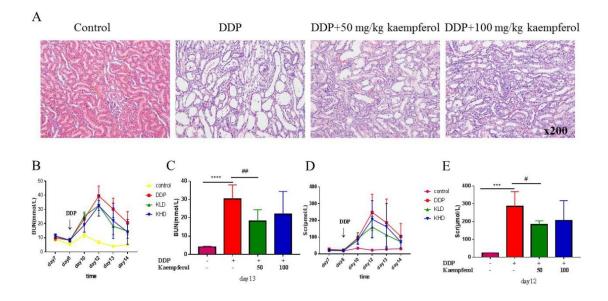






Figure S1 Effect of rutaecarpin on cell viability by CCK8 assay. \*\*\*p < 0.001, \*\*\*\*p < 0.001 compared to the control.

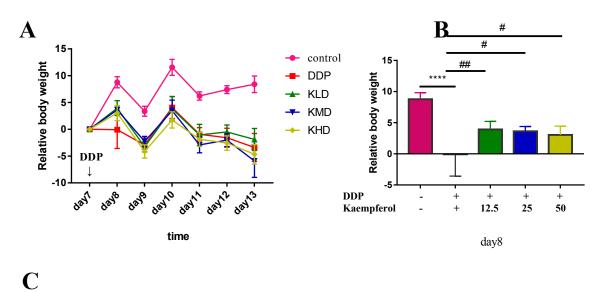


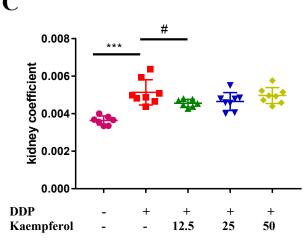

**Figure S2** Effect of first discovered monomers on cell viability with or without cisplatin treatment. Data represent the mean  $\pm$  SEM for 3 independent experiments. \*p<0.05, \*\*p<0.01, \*\*\*p < 0.001, \*\*\*\* p < 0.001 compared to the control. # p<0.05, ## p<0.01, #### p < 0.01, #### p < 0.001 compared to cisplatin-treated group. DDP, cisplatin. The concentration units of DDP and kaempferol both are micromole ( $\mu$ M).




**Figure S3** Effect of reported monomers on cell viability with or without cisplatin treatment. Data represent the mean  $\pm$  SEM for 3 independent experiments. \*p<0.05, \*\*p<0.01, \*\*\*p < 0.001, \*\*\*\* p < 0.001 compared to the control. # p<0.05, ## p<0.01, ###p < 0.001, #### p < 0.0001 compared to cisplatin-treated group. DDP, cisplatin. The concentration units of DDP and kaempferol both are micromole ( $\mu$ M).

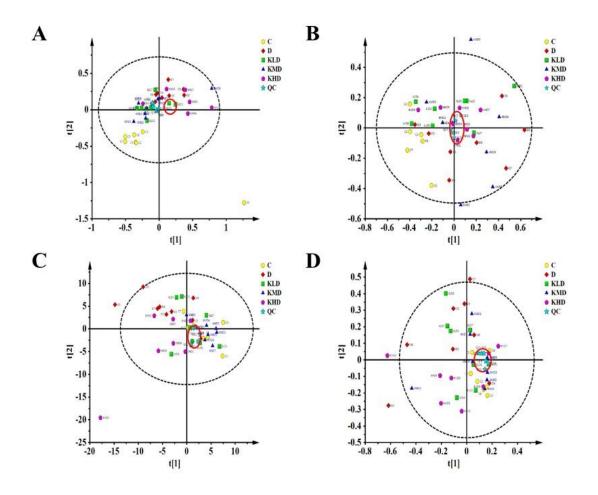



**Figure S4** Animal experiment scheme. Control, vehicle control group; DDP, cisplatin treated group; KLD, cisplatin with low-dose kaempferol group; KMD, cisplatin with middle-dose kaempferol; KHD, cisplatin with high-dose kaempferol; NS, normal saline.

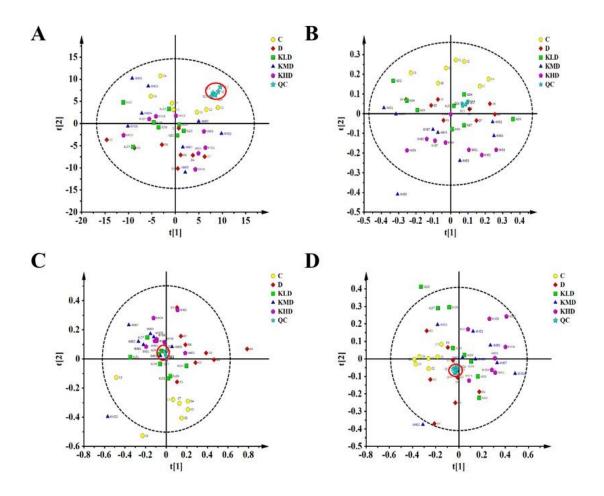



**Figure S5** Biochemical assay. (A) BUN trend since cisplatin treat and (B) BUN peak (B); (C) Scr trend since cisplatin treat and (D) Scr peak. Results of Scr and BUN index show that treatment of kaempferol have the alleviating trend for renal function in cisplatin nephropathy, but no significant difference. Data represent the mean ± SEM for 4 rats. \*p<0.05, \*\*p<0.01, \*\*\*\* p < 0.001 compared to control. # p<0.05, ## p<0.01, ###p < 0.001, #### p < 0.0001 compared to control group; DDP, cisplatin treated group; DDP+L, cisplatin with 2 mg/kg kaempferol group; DDP+M, cisplatin with 10 mg/kg kaempferol; DDP+H, cisplatin with 50 mg/kg kaempferol.

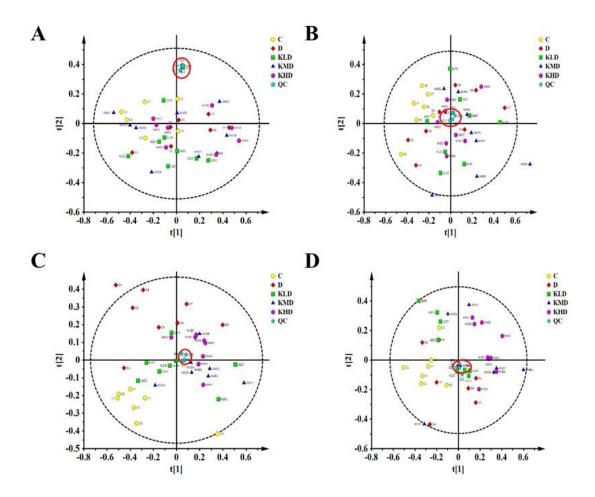



**Figure S6** Renal protective and anti-apoptotic effects of kaempferol in DDP-induced acute kidney injury by pathological changes and biochemical assay. (A) Representative images of H&E staining (x200). (B) BUN trend since cisplatin treat and (C) BUN peak; (D) Scr trend since cisplatin treat and (E) Scr peak. Results of Scr and BUN index Indicator show that treatment of kaempferol restored renal function in cisplatin nephropathy with 50 mg/kg kaempferol. (E) MDA and (F) SOD for oxidative stress assay. Results of MDA and SOD indicate kaempferol anti-oxidation caused by cisplatin. Data represent the mean  $\pm$  SEM for 8-9 rats. \*\*p < 0.01, \*\*\*\*p < 0.0001 compared to control. #p < 0.05, ##p < 0.01 compared to model group. Control, vehicle control group; DDP, cisplatin treated group; KLD, cisplatin with 50 mg/kg kaempferol group; KHD, cisplatin with 100 mg/kg kaempferol.






**Figure S7** General condition. (A) relative body weight trend (B) body weight loss in the second day after cisplatin administration; (C) kidney coefficient. Results of relative body weight and kidney coefficient show that treatment of kaempferol restored renal function in cisplatin


nephropathy. Results of MDA and SOD indicate kaempferol anti-oxidation caused by cisplatin. Data represent the mean  $\pm$  SEM for 7–8 rats. \*\*p < 0.01, \*\*\*\*p < 0.0001 compared to control. #p < 0.05, ##p < 0.01 compared to model group. Control, vehicle control group; DDP, cisplatin treated group; KLD, cisplatin with 12.5 mg/kg kaempferol group; KMD, cisplatin with 25 mg/kg kaempferol; KHD, cisplatin with 50 mg/kg kaempferol.



**Figure S8** PCA plots detected by GC-MS. (A) serum collected at the day 12. (B) serum collected at day 13. (C) medulla collected at day 13. (D) cortex collected at day 13. C, vehicle control group; D, cisplatin treated group; KLD, cisplatin with 12.5 mg/kg kaempferol group; KMD, cisplatin with 25 mg/kg kaempferol; KHD, cisplatin with 50 mg/kg kaempferol; QC, quality control. Red ellipse, QC samples.



**Figure S9** PCA plots detected by LC-MS ESI (+). (A) serum collected at the day 12. (B) serum collected at day 13. (C) medulla collected at day 13. (D) cortex collected at day 13. C, vehicle control group; D, cisplatin treated group; KLD, cisplatin with 12.5 mg/kg kaempferol group; KMD, cisplatin with 25 mg/kg kaempferol; KHD, cisplatin with 50 mg/kg kaempferol; QC, quality control. Red ellipse, QC samples.



**Figure S10** PCA plots detected by LC-MS ESI (-). (A) serum collected at the day 12. (B) serum collected at day 13. (C) medulla collected at day 13. (D) cortex collected at day 13. C, vehicle control group; D, cisplatin treated group; KLD, cisplatin with 12.5 mg/kg kaempferol group; KMD, cisplatin with 25 mg/kg kaempferol; KHD, cisplatin with 50 mg/kg kaempferol; QC, quality control. Red ellipse, QC samples.

### 3. Tables

**Table S1** Collection of differential metabolites involved in different metabolism pathways duringcisplatin-induced renal injury from literature and our previous research.

|                        |                  | Energy        | Other metabolism     |
|------------------------|------------------|---------------|----------------------|
| Amino acids metabolism | Lipid metabolism | metabolism    | pathways             |
| Asparagine             | LPC (14:0)       | Glucose       | Ascorbic acid        |
| Glycine                | LPC (15:0)       | Malic acid    | Elaidic acid         |
| Ornithine              | LPC (16:1)       | Fumaric acid  | Ascorbate 2-sulfate  |
| Tryptophan             | LPC (20:1)       | Pyruvic acid  | Acetate              |
| Glutamine              | LPC (20:2)       | Citrate       | Acetoacetate         |
| Alanine                | LPC (20:3)       | cis-Aconitate | 2-oxoglutarate       |
| Glutamic acid          | LPE (20:2)       | Succinic acid | Dimethylamine        |
| Isoleucine             | LPE (20:5)       | fucose        | Allantoin            |
| Leucine                | LPE (22:6 )      | mannose       | Hippurate            |
| Lysine                 | Phosphate        |               | 1-Methylnicotinamide |
| Phenylalanine          | Steari           | c acid        | 2-Oxoglutarate       |
| Proline                | Acetylcarnitine  |               | Trimethylamine       |

| Serine                 | Cholic acid        | Pipecolate              |
|------------------------|--------------------|-------------------------|
| Threonine              | DG (37:1)          | 3-Indoxyl sulfate       |
| Tyrosine               | LPC (18:1)         | Guanidoacetate          |
| Valine                 | LPC (20:4)         | choline dehydrogenase   |
| Pyroglutamic acid      | LPC (20:5)         | betaine                 |
| Methionine             | PA (22:4)          | Glutathione             |
| 3-Methylhistidine      | PE (38:5)          | 3-indoxyl sulfate       |
| Arginine               | Carnitine          | 3-ydroxyphenylacetate   |
| 3-ethylcrotonylglycine | DG (31:0)          | agmatine                |
| histidine              | DG (33:0)          | spermidine              |
| cysteine               | DG (38:2)          | sorbitol (glucitol)     |
| glycylproline          | FFA C22:6          | glucosamine             |
| citrulline             | Indoleacrylic acid | 1,5-anhydroglucitol     |
| gamma-                 |                    |                         |
| glutamylphenylalanine  | Linoleyl carnitine | monoethanolamine        |
| cysteine               | LPE (18:2)         | riboflavin (Vitamin B2) |
| glycylproline          | LPE (22:4)         | 2'-deoxyinosine         |
|                        |                    |                         |

|                       |                                   | 5-methyltetrahydrofolate |
|-----------------------|-----------------------------------|--------------------------|
| citrulline            | PI (20:4)                         | (5MeTHF)                 |
| gamma-                |                                   | nicotinamide adenine     |
| glutamylphenylalanine | glutamylphenylalanine Cholesterol |                          |
|                       | Ethanolamine                      | phosphate (NADP +)       |
|                       | LPE (20:4)                        | Methylamine              |
|                       |                                   | Trigonelline ( N-        |
|                       | LPE (20:4)                        | methylnicotinate )       |
|                       | Linoleic acid                     | fumarate                 |
|                       | LPC (18:0)                        | homocysteine             |
|                       |                                   | asymmetric               |
|                       | Ceramide(d18:1/16:0)              | dimethylarginine         |
|                       | Cholesterol sulfate               | putrescine               |
|                       | FFA C22:4                         | cadaverine               |
|                       | FFA C22:5                         | Creatinine               |
|                       | Glycocholic acid                  | Creatine                 |
|                       | LPC (18:2)                        | Cytidine                 |

| LPC (18:3)           | Urea             |
|----------------------|------------------|
| LPC (22:5)           | Uric acid        |
| LPE (16:0)           | Uracil           |
| LPE (18:1)           | Uridine          |
| Palmitoylcarnitine   | Inosine          |
| Phosphoric acid      | Hypoxanthine     |
| Sphingosine          | Xanthine         |
| Stearoylcarnitine    | Xanthurenic acid |
| 3-HBT                | Adenine          |
| ТМАО                 | Adenosine        |
| myo-inositol         |                  |
| 3-hydroxybutyra      | te (BHBA)        |
| 3-hydroxy-3-met      | hylglutarate     |
| glycerol             |                  |
| Glycerphosphocholine |                  |
| LPE (18:0)           |                  |
|                      |                  |

|          | 7 0     | 0            |         |          |         |
|----------|---------|--------------|---------|----------|---------|
| Source   | Targets | Source       | Targets | Source   | Targets |
| PGKB     | MTHFR   | GAD database | СҮВА    | TTD      | TP53    |
| database |         |              |         | database |         |
|          | FOXP3   |              | AGTR1   |          |         |
|          | CCDC22  |              | APOE    |          |         |
|          | XRCC1   |              | COMT    |          |         |
|          | SLC22A2 |              | TNF-α   |          |         |
|          | ERCC1   |              | IL10    |          |         |
|          | LARP1B  |              |         |          |         |
|          | SLC19A1 |              |         |          |         |
|          | ACE     |              |         |          |         |
|          | G6PD    |              |         |          |         |
|          | ABCB1   |              |         |          |         |
|          | ABCG2   |              |         |          |         |
|          | CYP2D6  |              |         |          |         |
|          | CYP3A4  |              |         |          |         |
|          |         | I            |         |          |         |

**Table S2** Kidney damage targets collection from disease-related database.

| CYP3A5 |  |
|--------|--|
| DPYD   |  |
| EPO    |  |
| ABCC2  |  |

| No. | Molecule name       | Targets | OB    | DL   |
|-----|---------------------|---------|-------|------|
| 1   | quercetin           | ABCG2、  | 46.43 | 0.28 |
|     |                     | CYP3A4、 |       |      |
|     |                     | TNF-α   |       |      |
| 2   | resveratrol         | ABCG2、  | 19.07 | 0.11 |
|     |                     | ABCB1、  |       |      |
|     |                     | TNF-α   |       |      |
| 3   | ginkgolide a        | ABCB1、  | 13.82 | 0.74 |
|     |                     | CYP3A4、 |       |      |
|     |                     | ABCC2   |       |      |
| 4   | (-)-epicatechin     | ABCG2、  | 28.93 | 0.24 |
|     |                     | COMT    |       |      |
|     |                     | TNF-α   |       |      |
| 5   | (-)-                | COMT、   | 55.09 | 0.77 |
|     | epigallocatechin-3- | TNF-α   |       |      |
|     | gallate             |         |       |      |
| 6   | piperine            | ABCB1、  | 42.52 | 0.23 |
|     |                     | TNF-α   |       |      |

**Table S3** Herb ingredients collection and their ADME parameters from TCMSP database

| 7  | daidzein            | CYP3A4、 | 19.44 | 0.19 |
|----|---------------------|---------|-------|------|
|    |                     | TNF-α   |       |      |
| 8  | rutaecarpine        | CYP3A4、 | 40.3  | 0.6  |
|    |                     | TNF-α   |       |      |
| 9  | artemisinin         | ABCB1、  | 49.88 | 0.31 |
|    |                     | CYP3A4  |       |      |
| 10 | ginsenoside rf      | CYP3A4、 | 17.74 | 0.24 |
|    |                     | TNF-α   |       |      |
| 11 | kaempferol          | CYP3A4  | 41.88 | 0.24 |
|    |                     | TNF-α   |       |      |
| 12 | alpha-humulene      | TNF-α   | 22.98 | 0.06 |
| 13 | dl-praeruptorin a   | TNF-α   | 46.46 | 0.53 |
| 14 | atractylenolide iii | TNF-α   | 68.11 | 0.17 |
| 15 | bilobetin           | TNF-α   | 7.27  | 0.63 |
| 16 | emodin              | TNF-α   | 24.4  | 0.24 |
| 17 | tanshinone iia      | CYP3A4  | 49.89 | 0.4  |
| 18 | eugenol             | ABCC2   | 56.24 | 0.04 |
| 19 | fisetin             | TNF-α   | 52.6  | 0.24 |

| 20 | bergaptol    | CYP3A4 | 24.22 | 0.12 |
|----|--------------|--------|-------|------|
| 21 | glycyrrhizin | TNF-α  | 9.06  | 0.11 |
| 22 | puerarin     | TNF-α  | 24.03 | 0.69 |
| 23 | hyperforin   | CYP3A4 | 44.03 | 0.6  |
| 24 | sophocarpine | TNF-α  | 64.26 | 0.25 |
| 25 | sophoridine  | TNF-α  | 60.07 | 0.25 |
| 26 | wogonin      | TNF-α  | 30.68 | 0.23 |
| 27 | zingerone    | TNF-α  | 25.23 | 0.05 |
| 28 | genipin      | ABCC2  | 26.06 | 0.1  |
| 29 | caffeic acid | TNF-α  | 25.76 | 0.05 |
| 30 | matrine      | TNF-α  | 63.77 | 0.25 |
| 31 | capsaicin    | ABCB1  | 10.31 | 0.2  |
| 32 | triptolide   | TNF-α  | 51.29 | 0.68 |
| 33 | rutin        | TNF-α  | 3.2   | 0.68 |
| 34 | aloe-emodin  | TNF-α  | 83.38 | 0.24 |
| 35 | astilbin     | TNF-α  | 36.46 | 0.74 |
| 36 | luteolin     | TNF-α  | 36.16 | 0.25 |

| 37 | citral           | TNF-α  | 22.52 | 0.02 |
|----|------------------|--------|-------|------|
| 38 | limonin          | CYP3A4 | 21.3  | 0.57 |
| 39 | solamargine      | TNF-α  | 31.36 | 0.06 |
| 40 | apigenin         | TNF-α  | 23.06 | 0.21 |
| 41 | genistein        | TNF-α  | 17.93 | 0.21 |
| 42 | ginsenoside rh2  | TNF-α  | 36.32 | 0.56 |
| 43 | corilagin        | TNF-α  | 3.01  | 0.44 |
| 44 | aucubin          | TNF-α  | 4.17  | 0.33 |
| 45 | paeonol          | TNF-α  | 28.79 | 0.04 |
| 46 | paeoniflorin     | TNF-α  | 53.87 | 0.79 |
| 47 | morin            | ABCB1  | 46.23 | 0.27 |
| 48 | diosgenin        | ABCC2  | 80.88 | 0.81 |
| 49 | demethoxycurcumi | ABCB1  | 4.37  | 0.33 |
|    | n                |        |       |      |
| 50 | coumestrol       | CYP3A4 | 32.49 | 0.34 |
| 51 | coumarin         | CYP3A4 | 29.17 | 0.04 |
| 52 | ursolic acid     | TNF-α  | 16.77 | 0.75 |

| 53 | yakuchinone b    | TNF-α  | 9.13  | 0.26 |
|----|------------------|--------|-------|------|
| 54 | yakuchinone a    | TNF-α  | 8.2   | 0.25 |
| 55 | myricetin        | TNF-α  | 13.75 | 0.31 |
| 56 | isovitexin       | TNF-α  | 31.29 | 0.72 |
| 57 | cryptotanshinone | TNF-α  | 52.34 | 0.4  |
| 58 | naringin         | TNF-α  | 6.92  | 0.78 |
| 59 | irisolidone      | TNF-α  | 37.78 | 0.3  |
| 60 | quercitrin       | CYP3A4 | 4.04  | 0.74 |

Table S4 Improved metabolites detected by GC-MS. Sday12 means that serum collected at the peak day of BUN and Scr; Sday13 means that serum collected at terminal point day of animal experiment. M means medulla. C means cortex. ↑, up-regulated metabolites; ↓, down-regulated metabolites. DDP means cisplatin treated group; K&DDP means kaempferol combined with cisplatin treated groups

| No. | Metabolite     | VIP    | Similarity | Ion<br>m/z | Ion RT | DDP          | K&DDP      | Sample |
|-----|----------------|--------|------------|------------|--------|--------------|------------|--------|
|     | 3-             |        |            |            |        |              |            |        |
| 1   | Hydroxybutyric | 11.437 | 88         | 191.058    | 8.03   | ↑            | Remission  | Sday12 |
|     | acid           |        |            |            |        |              |            |        |
| 2   | Butanoic acid  | 1.0857 | 89         | 148.102    | 8.032  | Ť            | Remission  | Sday12 |
| 3   | Urea           | 1.4807 | 90         | 147.104    | 9.31   | ſ            | Remission  | Sday12 |
| 4   | Propanoic acid | 2.7952 | 94         | 75.0457    | 6.352  | 1            | Remission  | Sday13 |
| 5   | Valine         | 2.4618 | 94         | 144.162    | 8.936  | $\downarrow$ | Remission  | Sday13 |
| 6   | Urea           | 9.4354 | 90         | 147.103    | 9.284  | *            | No         | Sday13 |
| 0   | Ulea           | 7.4374 | 90         | 147.105    | 9.204  | Ţ            | difference | Suay15 |
| 7   | Serine         | 1.0653 | 91         | 57.0521    | 9.574  | 1            | Remission  | C J 12 |
| /   | Serifie        | 1.0055 | 91         | 57.0521    | 9.374  | Ļ            | trend      | Sday13 |
| 8   | Threonine      | 2.5312 | 84         | 130.104    | 10.14  | Ļ            | No         | Sday13 |
|     |                |        |            |            |        |              | difference |        |

| 9  | Valine        | 1.1604 | 96 | 220.082 | 8.927 | Ļ            | Remission          | М |
|----|---------------|--------|----|---------|-------|--------------|--------------------|---|
| 10 | Urea          | 1.6777 | 90 | 100.021 | 9.238 | Ţ            | Remission          | М |
| 11 | Arabitol      | 1.3975 | 90 | 129.097 | 15.76 | $\downarrow$ | Remission          | М |
| 12 | Tyrosine      | 2.1248 | 91 | 217.08  | 18.22 | Ţ            | No<br>difference   | М |
| 13 | Serine        | 2.1889 | 91 | 73.05   | 11.13 | Ļ            | Remission          | С |
| 14 | Valine        | 2.077  | 95 | 218.098 | 8.927 | Ļ            | Remission          | С |
| 15 | Urea          | 2.0264 | 90 | 171.1   | 9.222 | Ţ            | Remission          | С |
| 16 | Leucine       | 1.4063 | 94 | 232.12  | 9.792 | Ļ            | Remission          | С |
| 17 | Pyrimidine    | 2.3142 | 80 | 245.047 | 10.82 | Ţ            | Remission          | С |
| 18 | Threonine     | 2.0395 | 86 | 291.161 | 11.52 | $\downarrow$ | Remission          | С |
| 19 | Aspartic acid | 3.6831 | 86 | 232.099 | 13.31 | Ļ            | Remission          | С |
| 20 | Phenylalanine | 1.0033 | 93 | 219.088 | 14.7  | $\downarrow$ | Remission          | С |
| 21 | Asparagine    | 1.5384 | 90 | 132.119 | 15.22 | Ţ            | Aggravatio<br>n    | С |
| 22 | Alanine       | 8.6395 | 93 | 116.106 | 7.067 | Ļ            | Remission<br>trend | С |

| 23 | Norvaline        | 1.0272 | 87 | 117.057 | 8.966 | Ļ | No<br>difference   | С |
|----|------------------|--------|----|---------|-------|---|--------------------|---|
| 24 | Isoleucine       | 1.7697 | 89 | 219.099 | 10.14 | Ļ | No<br>difference   | С |
| 25 | Butanedioic acid | 1.3835 | 80 | 149.097 | 12.89 | Ļ | Remission<br>trend | С |
| 26 | Proline          | 3.5611 | 86 | 156.128 | 13.36 | Ļ | No<br>difference   | С |

Table S5 Improved metabolites detected by LC-MS ESI (+). Sday12 means that serum collected at the peak day of BUN and Scr; Sday13 means that serum collected at terminal point day of animal experiment. M means medulla. C means cortex. ↑, up-regulated metabolites; ↓, down-regulated metabolites. DDP means cisplatin treated group; K&DDP means kaempferol combined with cisplatin treated groups

| No. | Metabolite         | VIP     | Ion m/z  | Ion RT | DDP          | K&DDP       | Sample |
|-----|--------------------|---------|----------|--------|--------------|-------------|--------|
| 1   | Acetylcarnitine    | 1.96895 | 204.1212 | 0.65   | Ļ            | Aggravation | Sday12 |
| 2   | Propionylcarnitine | 1.14903 | 218.1354 | 0.666  | Ļ            | Remission   | Sday12 |
|     |                    |         |          |        |              | trend       |        |
| 3   | Phenylalanine      | 1.39198 | 166.0857 | 1.171  | Ť            | Remission   | Sday12 |
| 4   | Tryptophan         | 1.48657 | 206.0951 | 1.31   | Ļ            | Remission   | Sday12 |
| 5   | Indoleacrylic acid | 2.00748 | 188.0699 | 2.068  | Ļ            | Remission   | Sday12 |
| 6   | Glycocholic acid   | 1.18438 | 466.3124 | 8.826  | $\downarrow$ | Remission   | Sday12 |
| 7   | LPC (14:0)         | 1.35656 | 468.3091 | 11.711 | Ļ            | Remission   | Sday12 |
| 8   | Sphingosine        | 1.07221 | 300.2876 | 12.133 | $\downarrow$ | Remission   | Sday12 |
| 9   | LPC (15:0)         | 1.14361 | 482.3216 | 12.469 | Ť            | Remission   | Sday12 |
| 10  | LPC (18:2)         | 1.39893 | 521.3392 | 12.47  | $\downarrow$ | Remission   | Sday12 |
| 11  | LPC (22:6)         | 1.38973 | 568.3343 | 12.761 | $\downarrow$ | Remission   | Sday12 |
| 12  | LPC (18:3)         | 1.38077 | 508.3358 | 12.924 | Ļ            | Remission   | Sday12 |

| 13 | LPC (20:3)         | 1.70276 | 546.3469 | 13.055 | ↑            | Remission     | Sday12 |
|----|--------------------|---------|----------|--------|--------------|---------------|--------|
|    |                    |         |          |        |              | trend         |        |
| 14 | LPC (18:1)         | 1.86086 | 522.3522 | 13.377 | $\downarrow$ | No difference | Sday12 |
| 15 | LPE (18:1)         | 2.08529 | 480.3426 | 13.672 | $\downarrow$ | Remission     | Sday12 |
|    |                    |         |          |        |              | trend         |        |
| 16 | LPC (20:2)         | 1.83328 | 548.3671 | 14.075 | Ţ            | No difference | Sday12 |
| 17 | LPC (20:1)         | 1.46303 | 550.384  | 15.089 | Ļ            | No difference | Sday12 |
| 18 | LPE (22:0)         | 1.61471 | 538.3842 | 15.601 | ↓            | No difference | Sday12 |
| 19 | Valine             | 2.19164 | 118.0859 | 0.599  | ↓            | Remission     | Sday13 |
| 20 | Carnitine          | 2.30563 | 162.1116 | 0.645  | Ļ            | No difference | Sday13 |
| 21 | Acetylcarnitine    | 3.51462 | 204.1219 | 0.655  | ↓            | No difference | Sday13 |
| 22 | Propionylcarnitine | 1.69713 | 218.1369 | 0.669  | Ļ            | Remission     | Sday13 |
|    |                    |         |          |        |              | trend         |        |
| 23 | Tryptophan         | 2.74518 | 205.0953 | 1.993  | Ļ            | Remission     | Sday13 |
| 24 | Indoleacrylic acid | 1.81717 | 188.0703 | 2.012  | ↓            | Remission     | Sday13 |
| 25 | LPC (16:1)         | 4.10658 | 494.3223 | 12.087 | ↓            | No difference | Sday13 |
| 26 | LPC (18:2)         | 1.16989 | 521.3409 | 12.379 | $\downarrow$ | Remission     | Sday13 |

| 27 | LPC (20:3)           | 2.54433 | 546.353  | 13.208 | Ļ            | Remission     | Sday13 |
|----|----------------------|---------|----------|--------|--------------|---------------|--------|
| 28 | LPE (18:1)           | 1.18343 | 480.3414 | 13.592 | Ť            | Remission     | Sday13 |
| 29 | LPC (18:0)           | 1.0682  | 524.3103 | 13.719 | $\downarrow$ | Aggravation   | Sday13 |
| 30 | LPC (20:2)           | 1.70769 | 548.3688 | 14.004 | $\downarrow$ | No difference | Sday13 |
| 31 | Glycerphosphocholine | 1.12609 | 258.8975 | 0.534  | Ť            | Remission     | Μ      |
| 32 | Carnitine            | 1.28956 | 162.1105 | 0.58   | Ļ            | Aggravation   | Μ      |
| 33 | Acetylcarnitine      | 1.51863 | 204.1202 | 0.613  | Ļ            | No difference | Μ      |
| 34 | Phenylalanine        | 2.313   | 166.0857 | 1.168  | Ļ            | Remission     | Μ      |
| 35 | Tryptophan           | 1.78831 | 205.0949 | 2.013  | Ļ            | Remission     | Μ      |
| 36 | Indoleacrylic acid   | 1.1116  | 188.0696 | 2.06   | Ļ            | Remission     | М      |
| 37 | Sphingosine          | 2.40023 | 300.2874 | 12.103 | ſ            | Remission     | Μ      |
|    |                      |         |          |        |              | trend         |        |
| 38 | LPC (20:4)           | 2.12954 | 544.337  | 12.523 | Ť            | Remission     | Μ      |
| 39 | LPC (18:1)           | 1.23775 | 522.3524 | 13.358 | Ŷ            | Remission     | М      |
| 40 | PE(P-16:0e/0:0)      | 1.76501 | 438.2959 | 13.546 | Ť            | Remission     | М      |
| 41 | LPC (15:0)           | 1.34531 | 482.3564 | 13.576 | Ţ            | Remission     | М      |

| 42 | LPE (18:1)       | 1.09215 | 480.3402 | 13.646 | 1            | Remission     | М |
|----|------------------|---------|----------|--------|--------------|---------------|---|
|    |                  |         |          |        |              | trend         |   |
| 43 | LPE (18:0)       | 1.64008 | 482.3216 | 14.644 | Ţ            | No difference | М |
| 44 | Glycocholic acid | 2.14555 | 466.327  | 15.118 | 1            | Remission     | М |
| 45 | Acetylcarnitine  | 3.36135 | 204.121  | 0.619  | $\downarrow$ | Remission     | С |
| 46 | Phenylalanine    | 1.8194  | 166.0848 | 0.678  | 1            | Remission     | С |
| 47 | Glycocholic acid | 1.45893 | 466.3141 | 8.773  | 1            | Aggravation   | С |
| 48 | Sphingosine      | 2.52457 | 300.2886 | 12.053 | 1            | Remission     | С |
|    |                  |         |          |        |              | trend         |   |

Table S6 Improved metabolites detected by LC-MS ESI (-). Sday12 means that serum collected at the peak day of BUN and Scr; Sday13 means that serum collected at terminal point day of animal experiment. M means medulla. C means cortex. DDP, cisplatin administration; K&DDP, kaempferol combined with cisplatin administration. ↑, up-regulated metabolites; ↓, down-regulated metabolites.

| No. | Metabolite       | VIP     | Ion m/z  | Ion RT | DDP          | K&DDP         | Sample |
|-----|------------------|---------|----------|--------|--------------|---------------|--------|
| 1   | Taurocholic acid | 2.15529 | 514.2785 | 8.022  | 1            | Remission     | Sday12 |
| 2   | LPC (16:1)       | 2.99995 | 538.3082 | 12.173 | Ļ            | No difference | Sday12 |
| 3   | LPE (20:2)       | 1.0808  | 504.3038 | 12.462 | Ļ            | Remission     | Sday12 |
| 4   | LPC (15:0)       | 1.75004 | 526.3086 | 12.463 | Ļ            | Remission     | Sday12 |
| 5   | LPC (18:2)       | 2.84596 | 564.3229 | 12.464 | Ļ            | Remission     | Sday12 |
| 6   | LPC (22:6)       | 1.7154  | 612.3216 | 12.755 | Ļ            | Remission     | Sday12 |
| 7   | LPC (16:0)       | 2.56364 | 540.3235 | 12.93  | Ļ            | No difference | Sday12 |
| 8   | LPC (20:3)       | 2.1452  | 590.3378 | 13.283 | $\downarrow$ | Remission     | Sday12 |
| 9   | LPC (18:1)       | 3.2421  | 566.338  | 13.627 | $\downarrow$ | Remission     | Sday12 |
| 10  | LPC (22:5)       | 2.21522 | 568.3541 | 14.473 | $\downarrow$ | No difference | Sday12 |
| 11  | FFA C22:6        | 1.65863 | 327.2296 | 16.893 | $\downarrow$ | No difference | Sday12 |
| 12  | Glycocholic Acid | 3.57049 | 464.2984 | 8.728  | ¢            | Remission     | Sday13 |

| 13 | Taurocholic acid    | 3.56295 | 514.2806 | 7.982  | Ť | No difference | Sday13 |
|----|---------------------|---------|----------|--------|---|---------------|--------|
| 14 | LPC (16:1)          | 4.27169 | 538.3106 | 12.08  | Ļ | Remission     | Sday13 |
|    |                     |         |          |        |   | trend         |        |
| 15 | LPC (18:2)          | 2.85274 | 564.3255 | 12.37  | ↓ | Remission     | Sday13 |
| 16 | LPE (20:5)          | 2.78801 | 544.2654 | 12.423 | ↓ | Aggravation   | Sday13 |
| 17 | LPC (20:2)          | 1.36597 | 592.3566 | 13.997 | ↓ | No difference | Sday13 |
| 18 | LPC (20:1)          | 1.27425 | 594.3723 | 15.026 | Ļ | Remission     | Sday13 |
|    |                     |         |          |        |   | trend         |        |
| 19 | 12-Oxo-20-          | 1.78075 | 381.1719 | 18.423 | ſ | No difference | Sday13 |
|    | trihydroxy-         |         |          |        |   |               |        |
|    | leukotriene B4      |         |          |        |   |               |        |
| 20 | Xanthine            | 2.10127 | 218.1023 | 0.666  | Ļ | Remission     | М      |
| 21 | Xanthurenic acid    | 1.37152 | 250.0368 | 0.653  | ↓ | Remission     | М      |
| 22 | Ascorbate 2-sulfate | 3.2644  | 254.98   | 0.635  | Ţ | No difference | М      |
| 23 | Glycocholic acid    | 2.25082 | 464.2971 | 8.798  | Ţ | Remission     | М      |
| 24 | LPE (20:5)          | 1.24043 | 544.2635 | 12.416 | Ļ | No difference | М      |
| 25 | PI (20:4)           | 2.8105  | 619.2806 | 12.432 | Ļ | Remission     | М      |
|    |                     |         |          |        |   | trend         |        |

S40

| 26 | LPC (20:4)          | 1.48924 | 588.3234 | 12.517 | Ţ | Remission     | М |
|----|---------------------|---------|----------|--------|---|---------------|---|
| 27 | LPE (22:4)          | 1.71906 | 528.3054 | 13.564 | 1 | Remission     | Μ |
| 28 | Cholesterol sulfate | 2.57553 | 465.2993 | 22.286 | Ļ | No difference | Μ |
| 29 | Xanthine            | 1.51887 | 368.073  | 0.636  | Ļ | Remission     | С |
| 30 | Ascorbate-2-        | 1.9067  | 306.0552 | 0.641  | ↑ | Remission     | С |
|    | sulfate             |         |          |        |   |               |   |
| 31 | Glycocholic acid    | 2.57762 | 464.2979 | 8.766  | ↓ | Remission     | С |
| 32 | LPE (20:5)          | 1.38509 | 544.2652 | 12.404 | Ļ | Aggravation   | С |
| 33 | LPC (22:5)          | 1.02522 | 568.3556 | 14.437 | Ļ | Aggravation   | С |
| 34 | LPE (20:4)          | 2.81304 | 500.2743 | 12.41  | Ļ | No difference | С |
| 35 | PI (20:4)           | 1.92445 | 619.2828 | 12.435 | Ļ | No difference | С |

#### 4. Reference

(1) Suchal, K.,Malik, S.,Khan, S. I.,Malhotra, R. K.,Goyal, S. N.,Bhatia, J.,Ojha, S.Arya, D. S., (2017) Molecular Pathways Involved in the Amelioration of Myocardial Injury in Diabetic Rats by Kaempferol. *International journal of molecular sciences* 18 (5).

(2) Sanchez-Gonzalez, P. D.,Lopez-Hernandez, F. J.,Perez-Barriocanal, F.,Morales, A. I.Lopez-Novoa, J. M., (2011) Quercetin reduces cisplatin nephrotoxicity in rats without compromising its anti-tumour activity. *Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association* 26 (11), 3484-95.

(3) Sahu, B. D.,Kalvala, A. K.,Koneru, M.,Mahesh Kumar, J.,Kuncha, M.,Rachamalla, S. S.Sistla, R., (2014) Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-kappaB activation and antioxidant defence. *PloS one* 9 (9), e105070.

(4) Zhang, P.,Chen, J. Q.,Huang, W. Q.,Li, W.,Huang, Y.,Zhang, Z. J.Xu, F. G., (2017) Renal Medulla is More Sensitive to Cisplatin than Cortex Revealed by Untargeted Mass Spectrometry-Based Metabolomics in Rats. *Scientific reports* 7, 44804.