Supporting Information

Controllable Synthesis of Calcium Carbonate with Different Geometry: Comprehensive Analysis of Particles Formation, Cellular Uptake and Biocompatibility

Hani Bahrom,^{1,2,=} Alexander A. Goncharenko,^{3,=} Landysh I. Fatkhutdinova,⁴ Oleksii O. Peltek,⁴ Albert R. Muslimov,^{5,6} Olga Yu. Koval,⁵ Igor E. Eliseev,⁵ Andrey Manchev,^{1,2} Dmitry Gorin,⁷ Ivan I. Shishkin,⁴ Roman E. Noskov,^{1,2} Alexander S. Timin,^{3,8,*} Pavel Ginzburg,^{1,2} Mikhail V. Zyuzin^{4,*}

¹Department of Electrical Engineering, Tel Aviv University, 55 Haim Levanon St., Tel Aviv, 69978, Israel

²Light-Matter Interaction Centre, Tel Aviv University, 55 Haim Levanon St., Tel Aviv, Tel Aviv, 69978, Israel

³Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya str. 29, St. Petersburg, 195251, Russia

⁴Faculty of Physics and Engineering, ITMO University, Lomonosova str. 9, 191002 St. Petersburg, Russia

⁵St. Petersburg Academic University, Khlopina str. 8, 194021 Saint Petersburg, Russia

⁶I. P. Pavlov State Medical University of St. Petersburg, Lev Tolstoy str. 6/8, 197022 St. Petersburg, Russia

⁷Skolkovo Institute of Science and Technology, Nobelya str. 3, 121205 Moscow, Russia;

⁸Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Lenin ave. 30, 634050 Tomsk, Russia

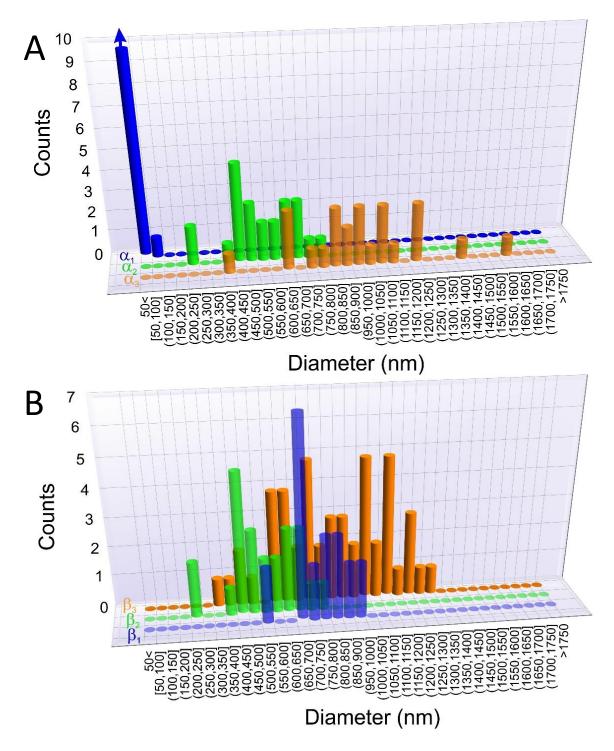
*corresponding authors: a_timin@mail.ru, timin@tpu.ru, mikhail.zyuzin@metalab.ifmo.ru

⁼ equal contribution

Number of pages: 15

Number of figures: 11

Number of tables: 2


1. Materials

All chemicals were provided by Sigma Aldrich and were used without any further purification. calcium chloride (CaCl₂), sodium carbonate (Na₂CO₃), sodium bicarbonate (NaHCO₃), poly(styrene sulfonate) sodium salt (PSS), ethylene glycol (EG), Ethanol (CH₃OH), dextrane sulphate (DS), tetrarhodamine isothiocyanate (TRITC), polyallylamine hydrochloride (PAH), sodium 4-vinylbenzenesulfonate (SV). Dulbecco's Modified Eagle Medium (DMEM) was obtained from Gibco. Fetal bovine serum (FBS) was obtained from HyClone. Penicillin and streptomycin (P/S) were purchased from Biolot, Russia. Trypsin-EDTA solution were obtained from Sigma Aldrich. Milli-Q water with a resistance greater than 18.2 M Ω cm⁻¹ was used for all experiments.

2. Synthesis of CaCO₃ particles

2.1 Reactions (α 1, α 2, α 3; β 1, β 2, β 3) of CaCl₂ with Na₂CO₃

The synthesis of CaCO₃ particles was performed using conventional procedure in co-precipitation reaction. For this, salts CaCl₂ and Na₂CO₃ were dissolved in EG:H₂O at certain concentrations (enlisted in **Table S1**) in volumetric ratio of 85:15 for all the reactions to the final volume V= 20 mL. Then, 20 mL CaCl₂ and 20 mL Na₂CO₃ were mixed together under magnetic stirring at 400 rpm for 5 min (**reactions** α **1**, α **2**, α **3**) and 24 h (**reactions** β **1**, β **2**, β **3**). At defined time periods (5, 10, 15, 20, 25, 30, 45, 60, 90, 1440 min) samples were taken from the **reactions** β **1**, β **2**, β **3** for the SEM analysis. The reaction conditions (reaction time, salt concentration, and their ratio) were varied depending on the reaction and are enlisted in **Table S1**. Afterwards, particles were washed 2 times with water and 1 time with ethanol by centrifuging (10 000 rpm during 2 min). The resulted particles were dispersed in ethanol to prevent recrystallization of CaCO₃ particles.

Figure S1. Size distributions of CaCO₃ particles obtained from the reactions $\alpha 1$, $\alpha 2$, $\alpha 3$ (A) and $\beta 1$, $\beta 2$, $\beta 3$ (B)

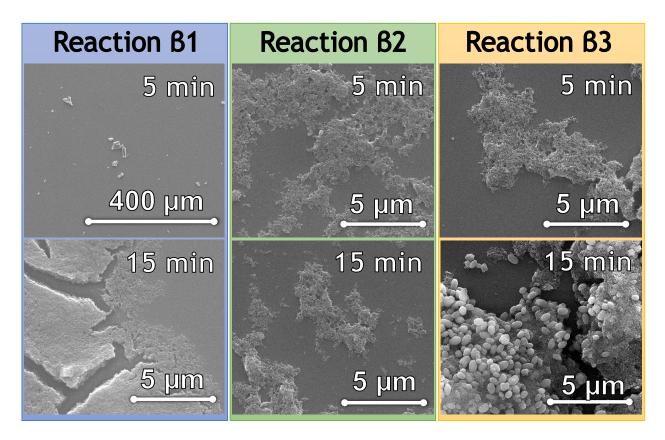
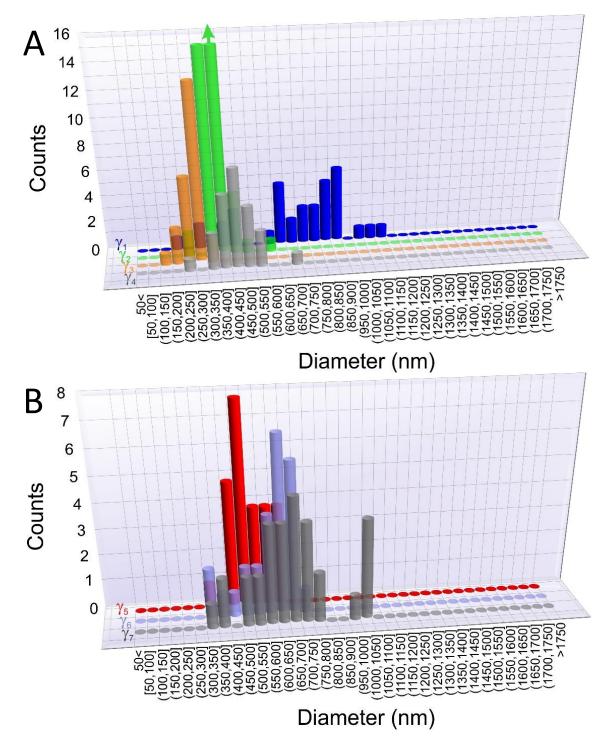



Figure S2. Study of CaCO₃ particles formation kinetics using CaCl₂ and Na₂CO₃: SEM images of the products of the reaction $\beta 1$ (5 min, 10 min and 15 min), the reaction $\beta 2$ (5 min, 10 min and 15 min), the reaction $\beta 3$ (5 min, 10 min and 15 min).

2.2 Reactions (γ 1, γ 2, γ 3, γ 4, γ 5, γ 6, γ 7) of CaCl₂ with NaHCO₃

To slow down the rate of the CaCO₃ particles growth, NaHCO₃ was applied as a carbonate source. The co-precipitation reaction was performed as described above, CaCl₂ was mixed with NaHCO₃ under magnetic stirring at 400 rpm for 24 h. After certain periods of time (5, 10, 15, 20, 25, 30, 45, 60, 90, 1440 min) reactions were stopped and formed CaCO₃ particles were observed by SEM. The reactions conditions, incl. concentration of used salts, salts ratio, reaction time, was varied as enlisted in the **Table S1**.

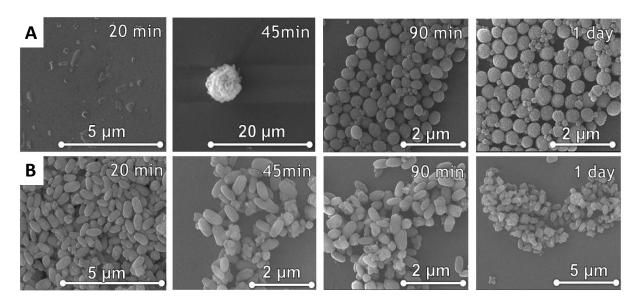


Figure S3. Size distributions of $CaCO_3$ particles obtained from the reactions **A**. $\gamma 1$, $\gamma 2$, $\gamma 3$, $\gamma 4$ and **B**. $\gamma 5$, $\gamma 6$, $\gamma 7$.

Tag	CaCl ₂	Na ₂ CO ₃	NaHCO ₃	aHCO ₃ Organic Additives	
	[M]	[M]	[M]	[mg/mL]	
α1	0.0005	0.0005	—	-	
α2	0.005	0.005	—	-	
a 3	0.05	0.05	—	-	
β1	0.025	0.005	-	-	
β2	0.005	0.005	—	-	
β3	0.005	0.025	_	_	
γ1	0.025	—	0.005	-	
γ2	0.005	—	0.005	-	
γ3	0.005	_	0.025	-	
γ4	0.005	—	0.05	-	
γ5	0.005	—	0.075	-	
γ6	0.01	—	0.05	-	
γ7	0.015	—	0.075	-	
δ1	0.025	0.005	-	0.5 (PSS)	
δ2	0.025	0.005	_	1 (PSS)	
δ3	0.025	0.005	-	2 (PSS)	
δ4	0.005	0.025	_	1 (PSS)	
δ5	0.025	0.005	—	1 (SV)	
δ6	0.025	0.005		0.5 (DS)	

Table S1. Reaction conditions to obtain differently shaped CaCO₃ particles.

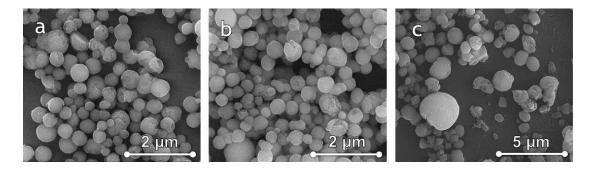
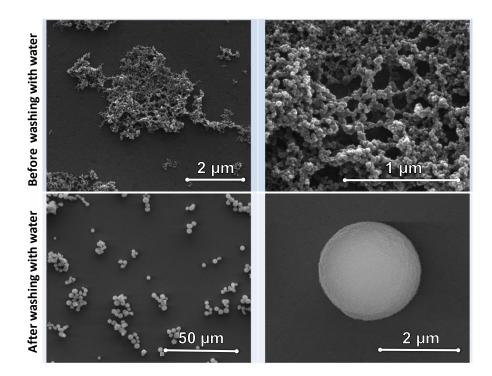

To study the CaCO₃ particles formation over time, the wider ranges 20:1 and 1:20 ratio Ca^{+2}/HCO_3^{-1} were used.

Figure S4. SEM images of $CaCO_3$ particles formed at different Ca^{+2}/HCO_3^{-1} ratios = **A.** 20:1 and **B.** 1:20.


Reactions ($\delta 1$, $\delta 2$, $\delta 3$, $\delta 4$, $\delta 5$, $\delta 6$) of CaCl₂ with Na₂CO₃ using organic additives

To reveal the influence of organic additives on the formation of CaCO₃ particles, PSS, SV and DS were employed for further reactions. Salt solutions CaCl₂ and Na₂CO₃ were mixed together under magnetic stirring at 400 rpm for 1440 min. The reaction conditions are enlisted in the **Table S1**.

Figure S5. Reaction $\delta 6$ *with increased concentrations of DS. Time of the reaction was 1 day, A.* c(DS)=0.5mg/mL. *B.* c(DS)=1mg/mL *DS, C.* c(DS)=2mg/mL.

It should be noted that $CaCO_3$ particles are stable in ethanol-based solvents, while unstable in aqueous solutions (**Figure S6**): the storage of freshly formed particle in ethanol makes them stable for a long period of time. However, transferring them from ethanol into water, will induce rapid growth of CaCO₃ particles up to several micrometers.

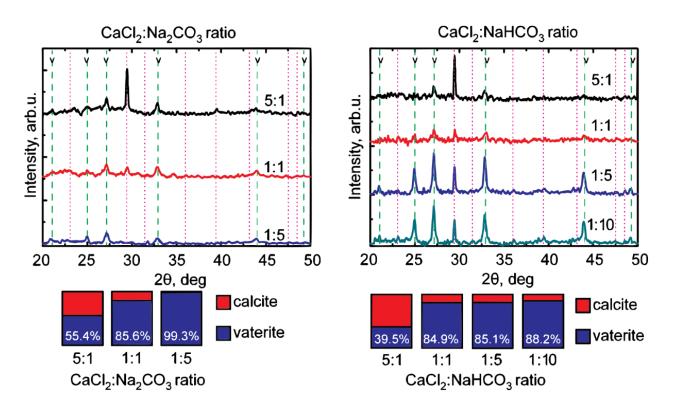


Figure S6: Re-crystallization of calcium carbonate particles. *SEM images of amorphous CaCO₃ particles before washing with water (upper row) and after washing with and dispersion in water (bottom row).*

3. X-ray diffraction (XRD)

To measure XRD spectra of obtained particles, 5 μ L drop of CaCO₃ particles stock solution was placed onto the glass SiO₂ substrate. The XRD spectra of synthesized particles were obtained with a Bruker's D8 Discover Diffractometer (setup: q:q geometry with the source was copper anode and the detector a LYNXEYE XE linear detector). The raw data was smoothed followed by baseline subtraction, which allowed to obtain the content of vaterite and calcite fractions in the reaction products. The following relations were used for the ratio assessment:

$$X_{v} = \frac{7.691 \cdot I_{110v}}{I_{104c} + 7.691 \cdot I_{110v}} \quad X_{c} = 1 - X_{v}$$

Figure S7: XRD analysis of CaCO₃ samples obtained by mixing of (left) CaCl₂ and Na₂CO₃ at different ratios and (right) and CaCl₂ and NaHCO₃ at different ratios.

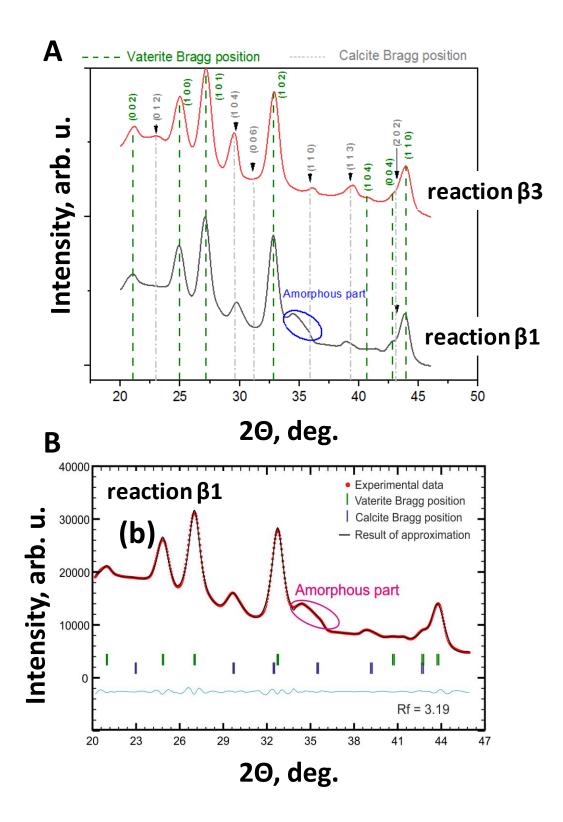


Figure S8: XRD analysis A. XRD Θ -2 Θ scans of CaCO₃ samples obtained in the reactions β 1 and β 3. B. Example of Rietveld fit approximation of the XRD Θ -2 Θ scan from CaCO₃ particles obtained in the reaction β 1, where blue bars are calcite Bragg positions, green bars are vaterite Bragg positions, red circles are experimental data and black line is result of approximation.

Sample	Fraction	Calcite	< D _v >	< D _v >	Volume	Volume
_	Vaterite,	Fraction,	vaterite,	calcite,	lattice	lattice
	%	%	nm	nm	vaterite, Å ³	calcite, Å ³
reaction $\delta 1$	72.44	27.56	8.5 ± 1	5.7 ± 3	124.994	367.873
reaction $\delta 2$	58.25	41.75	15±3	14±4	126.539	373.491
reaction $\delta 3$	100	-	13.8±4	-	125.942	-
reaction $\delta 4$	100	-	15.8±3.9	-	125.054	-
reaction $\delta 5$	94.6	5.4	18.1±4.6	8.9±4	125.483	371.074

Table S2: XRD data of $CaCO_3$ particles obtained in the reactions $\delta 1-\delta 5$.

4. Scanning Electron Microscope (SEM)

To perform SEM measurements of CaCO₃ particles, the dispersed in ethanol particles were dropped (5 μ L) onto indium tin oxide (ITO) glass or n-doped silicon substrate and let dry for a few minutes. Dried particles were coated by sputtering with several nanometers of gold-palladium film. Quanta 200 FEG Environmental Scanning Electron Microscope (SEM) was used to obtain SEM images of synthesized particles.

5. Confocal Laser Scanning Microscopy (CLSM)

The fluorescence profile assay of $CaCO_3$ particles was performed with CLSM (Zeiss LSM 710 equipped with a helium-neon laser 543 nm). Images were obtained using Objective Plan-Apochromat 63x/1.40 Oil DIC objective, and the pinhole was set to 1 airy unit.

6. Transmission electron microscopy (TEM)

Transmission electron microscopy (TEM) images were collected with a Jeol JEM 1011 (Jeol, Japan) electron microscope operating at an acceleration voltage of 100 kV, and recorded with a 11 Mp fiber optical charge-coupled device (CCD) camera (GatanOrius SC-1000). For the sample preparation, 3 μ L of the diluted sample was dropped onto a carbon-coated copper grid, and the solvent was removed by evaporation at room temperature.

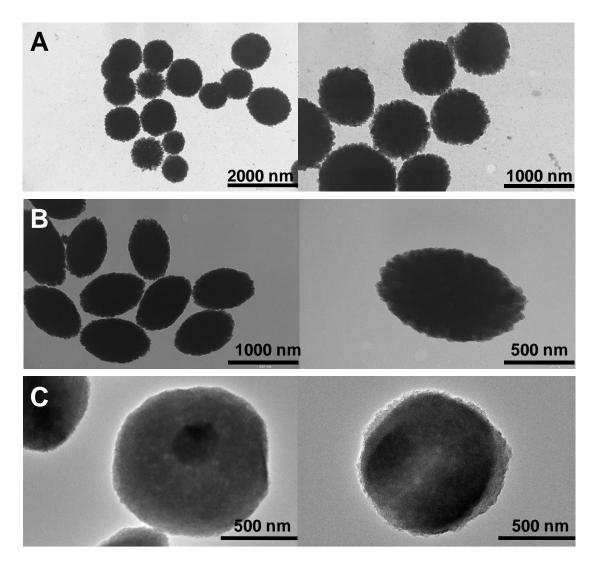
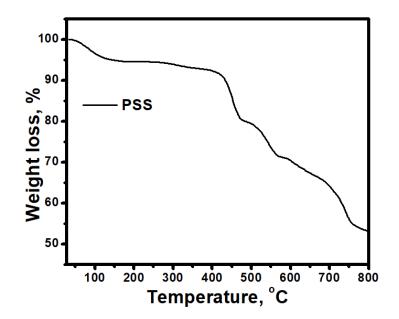
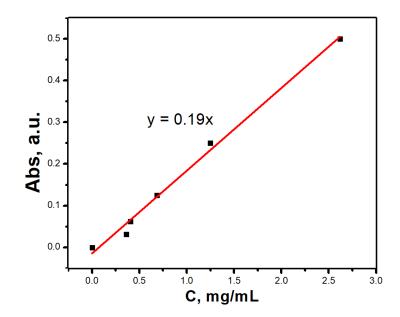


Figure S9: TEM images of A. Spheroids, B. Ellipsoids, C. Toroids.

7. Thermogravimetric analysis (TGA)




Figure S10: Thermogravimetric analysis. TGA curve of PSS.

8. Adsorption capacity of differently shaped CaCO₃ particles

The magnitude of TRITC adsorption on the surface of differently shaped (spheres, ellipses, toroids) CaCO₃ particles was determined as the difference between its initial and equilibrium concentrations in a water solution (pH 7.4) after contact with a sorbent from the formula:

$$Q_e = \frac{(C_o - C_{ads})V}{m}$$

where Q is the magnitude of TRITC adsorption, C_0 and C_{ads} are the initial and equilibrium concentrations of TRITC in a water solution, C is the volume of the solution, and m is the mass of the sorbent sample. The 100 µL of differently shaped particles were incubated TRITC at concentrations 0.5 mg/mL, 0.25 mg/mL, 0.12 mg/mL, 0.6 mg/mL and 0.3 mg/mL for 2 h. Afterwards, all samples were centrifuged at 10 000 rpm for 3 min, an supernatant was measured with multiplate reader (CLARIOstar[®], BMG LABTECH, 488/532). The concentration of adsorbed TRITC was calculated using calibration curve (**Figure S11**). To determine mass (m) of 100 µL CaCO₃ particles, they were dispersed in ethanol, dried and weighted. Finally, the adsorption capacity was plotted against concentration of sorbent.

Figure S11. Calibration curve. Absorbance of TRITC at 525 nm measured at known concentrations.

Release studies

To study the release of TRITC from the differently shaped CaCO3 particles, 10⁷ particles were shaken in water (1, 2, 4, 6, 8, 20, 24 h). Afterwards, particles were spun down at 10 000 rpm for 3 min and the absorbance spectra of supernatants were measured with multiplate reader (CLARIOstar[®], BMG LABTECH). The percentage of released TRITC was then plotted versus the time of incubation.

9. Cell culture

The C6 glioma cell line was kindly provided by Dr G. Yusubalieva from the Federal Research Clinical Center of the FMBA of Russia. The C6 glioma cell line was cultured in DMEM supplemented with 10% in vol. FBS and 1% in vol. P/S and cultured at the standard conditions (37°C, 5% CO₂).

10. Toxicity studies

To study toxicity of differently shaped CaCO₃ particles, LIVE/DEAD assay was used. For this, C6 glioma cells were seeded into 96-well plate at amount 10 000 cells/ well. At the same day, CaCO₃ particles were added to the cells at different concentrations (maximum concentration 100 particles/cell). Next day, C6 glioma cells were stained with 0.2 μ M Calcein AM (live staining) and 3 μ M Propidium Iodide (dead staining) for 30 min at 37°C and 5% CO₂. Afterwards, cells were observed under confocal microscope (Carl Zeiss LSM 710). To visualize live cells (cells stained with Calcein AM), argon laser emitting at 488 nm was used. To visualize dead cells (cell nuclei stained with Propidium iodide), helium neon laser emitting at 543 nm was used. The confocal pinhole was set to 1 airy unit and images were taken with an Objective EC Plan-Neofluar 40x/1.30 Oil DIC. Images were then analyzed with FIJI open source image analysis software. Finally, cell viability was plotted versus added amount of differently shaped CaCO₃ particles.

11. Uptake studies

To study uptake efficiency, 150 000 C6 glioma cells were seeded onto 3.5 cm confocal culture dishes (V=1 mL). At the same day, differently shaped CaCO₃ particles labeled with TRITC were added to the cells at amount 10 particles/cell. Next day, the cytoskeleton and cell nuclei were stained with plalloidin conjugated with AlexaFluor 488 (AF 488) and Propidium Iodide (PI). For this, cells were washed 2 times with PBS and permeabilized with PBS supplemented with 10% vol. formalin for 5 min. Afterwards, cells were washed again with PBS and PBS containing 1 μ M phalloidin-AF488 and 0.1 mg/mL PI was added to the cells. C6 glioma cells were leaved for 2 h in incubator at 37°C and 5% CO₂. Confocal microscopy was used to evaluate CaCO₃ particles

uptake. For this, cells were scanned using Z-stack option. At least 50 cells per experiment was analyzed. Taking into account that the cytoskeleton was fluorescently stained with phalloidin (green), nuclei with PI (blue) and particles with TRITC (red), the red fluorescence signal surrounded with the green fluoresce was an indication for intracellular particle localization. CaCO₃ particles adherent to the outer cell plasma membrane could be clearly distinguished from the internalized. Based on the confocal microscopy images, the histograms showing the number of internalized particles per cell and the corresponding cumulative distribution functions were plotted.

12. Statistical data

The particle size and geometry were obtained with SEM (FEI Quanta) and further analyzed using *Scandium software*. For all synthesis protocols average sizes of particles, particles elipticity were measured. Elliptical 3D symmetry was assumed to be identical in two minor axes of the ellipsoid. Collected data were further proceeded with MATLAB software. The measurements were repeated in triplicated. Errors were calculated as standard deviation.