Supporting Information

Psiguadiols A–J, rearranged meroterpenoids as potent PTP1B inhibitors from *Psidium guajava*

Ji-Qin Hou,[†] Chun-Lin Fan,[‡] Xin Pei,[†] Pei-Lin Zhang,[†] Fan Deng,[†] Wan-Qiang Jiang,[†] Guo-Cai Wang,[‡] Xiao-Qi Zhang,[‡] Wen-Cai Ye,[‡] and Hao Wang^{*,†}

[†]State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China

^{*}Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People' s Republic of China

Supporting information list:

For compound 1
Figure S1-1. HR-ESI-MS spectrum of 1 ······S1
Figure S1-2. UV spectrum of 1 in MeOH ······S1
Figure S1-3. CD spectrum of 1 in MeOH ······S2
Figure S1-4. IR spectrum of 1 ······S2
Figure S1-5. ¹ H NMR spectrum of 1 in CDCl ₃ (500 MHz) ······S3
Figure S1-6. ¹³ C NMR spectrum of 1 in CDCl ₃ (125 MHz) ······S3
Figure S1-7. 1 H- 1 H COSY spectrum of 1 in CDCl ₃ (500 MHz) ······S4
Figure S1-8. HSQC spectrum of 1 in CDCl ₃ (500 MHz) ······S4
Figure S1-9. HMBC spectrum of 1 in CDCl ₃ (500 MHz) ······S5
Figure S1-10. NOESY spectrum of 1 in CDCl ₃ (500 MHz) ······S5

For compound 2

Figure S2-1. HR-ESI-MS spectrum of 2 ······S6
Figure S2-2. UV spectrum of 2 in MeOH ······S6
Figure S2-3. CD spectrum of 2 in MeOH ······S7
Figure S2-4. ¹ H NMR spectrum of 2 in CDCl ₃ (500 MHz) ······S7
Figure S2-5. ¹³ C NMR spectrum of 2 in CDCl ₃ (125 MHz) ······S8
Figure S2-6. ¹ H- ¹ H COSY spectrum of 2 in CDCl ₃ (500 MHz) ······S8
Figure S2-7. HSQC spectrum of 2 in CDCl ₃ (500 MHz) ······S9
Figure S2-8. HMBC spectrum of 2 in CDCl ₃ (500 MHz) ······S9
Figure S2-9. NOESY spectrum of 2 in CDCl ₃ (500 MHz) ······S10

Figure S3-1. HR-ESI-MS spectrum of 3
Figure S3-2. UV spectrum of 3 in MeOH
Figure S3-3. CD spectrum of 3 in MeOHS11
Figure S3-4. ¹ H NMR spectrum of 3 in CDCl ₃ (500 MHz) ······S12
Figure S3-5. ¹³ C NMR spectrum of 3 in CDCl ₃ (150 MHz)S12
Figure S3-6. 1 H- 1 H COSY spectrum of 3 in CDCl ₃ (500 MHz) ······S13
Figure S3-7. HSQC spectrum of 3 in CDCl ₃ (500 MHz)S13
Figure S3-8. HMBC spectrum of 3 in CDCl ₃ (500 MHz)S14
Figure S3-9. NOESY spectrum of 3 in CDCl ₃ (500 MHz)S14

For compound 4

Figure S4-1. HR-ESI-MS spectrum of 4
Figure S4-2. UV spectrum of 4 in MeOHS15
Figure S4-3. CD spectrum of 4 in MeOH
Figure S4-4. ¹ H NMR spectrum of 4 in CDCl ₃ (500 MHz) ······S16
Figure S4-5. ¹³ C NMR spectrum of 4 in CDCl ₃ (125 MHz) ······S17
Figure S4-6. ¹ H- ¹ H COSY spectrum of 4 in CDCl ₃ (500 MHz) ······S17
Figure S4-7. HSQC spectrum of 4 in CDCl ₃ (500 MHz) ······S18
Figure S4-8. HMBC spectrum of 4 in CDCl ₃ (500 MHz) ······S18
Figure S4-9. NOESY spectrum of 4 in CDCl ₃ (500 MHz)S19

For compound 5

Figure S5-1. HR-ESI-MS spectrum of 5
Figure S5-2. UV spectrum of 5 in MeOH
Figure S5-3. CD spectrum of 5 in MeOH
Figure S5-4. ¹ H NMR spectrum of 5 in CDCl ₃ (500 MHz) ······S21
Figure S5-5. ¹³ C NMR spectrum of 5 in CDCl ₃ (125 MHz) ·······S21
Figure S5-6. ¹ H- ¹ H COSY spectrum of 5 in CDCl ₃ (500 MHz) ······S22
Figure S5-7. HSQC spectrum of 5 in CDCl ₃ (500 MHz)
Figure S5-8. HMBC spectrum of 5 in CDCl ₃ (500 MHz)
Figure S5-9. NOESY spectrum of 5 in CDCl ₃ (500 MHz) ······S23

Figure S6-1. HR-ESI-MS spectrum of 6
Figure S6-2. UV spectrum of 6 in MeOH
Figure S6-3. CD spectrum of 6 in MeOH
Figure S6-4. IR spectrum of 6
Figure S6-5. ¹ H NMR spectrum of 6 in CDCl ₃ (500 MHz) ······S26
Figure S6-6. ¹³ C NMR spectrum of 6 in CDCl ₃ (125 MHz) ······S26
Figure S6-7. 1 H- 1 H COSY spectrum of 6 in CDCl ₃ (500 MHz) ······S27
Figure S6-8. HSQC spectrum of 6 in CDCl ₃ (500 MHz) ······S27
Figure S6-9. HMBC spectrum of 6 in CDCl ₃ (500 MHz) ······S28
Figure S6-10. NOESY spectrum of 6 in CDCl ₃ (500 MHz)

For compound 7

Figure S7-1. HR-ESI-MS spectrum of 7 \$29
Figure S7-2. UV spectrum of 7 in MeOH
Figure S7-3. CD spectrum of 7 in MeOH
Figure S7-4. ¹ H NMR spectrum of 7 in CDCl ₃ (500 MHz) ······S30
Figure S7-5. ¹³ C NMR spectrum of 7 in CDCl ₃ (125 MHz)S31
Figure S7-6. 1 H- 1 H COSY spectrum of 7 in CDCl ₃ (500 MHz)S31
Figure S7-7. HSQC spectrum of 7 in CDCl ₃ (500 MHz)
Figure S7-8. HMBC spectrum of 7 in CDCl ₃ (500 MHz)
Figure S7-9. NOESY spectrum of 7 in CDCl ₃ (500 MHz) ······S33

For compound 8

Figure S8-1. HR-ESI-MS spectrum of 8 ·······S33
Figure S8-2. UV spectrum of 8 in MeOHS34
Figure S8-3. CD spectrum of 8 in MeOHS34
Figure S8-4. IR spectrum of 8
Figure S8-5. ¹ H NMR spectrum of 8 in CDCl ₃ (500 MHz) ······S35
Figure S8-6. ¹³ C NMR spectrum of 8 in CDCl ₃ (125 MHz)S36
Figure S8-7. 1 H- 1 H COSY spectrum of 8 in CDCl ₃ (500 MHz) ······S36
Figure S8-8. HSQC spectrum of 8 in CDCl ₃ (500 MHz) ······S37
Figure S8-9. HMBC spectrum of 8 in CDCl ₃ (500 MHz)S37
Figure S8-10. NOESY spectrum of 8 in CDCl ₃ (500 MHz)S38

Figure S9-1. HR-ESI-MS spectrum of 9S38
Figure S9-2. UV spectrum of 9 in MeOHS39
Figure S9-3. CD spectrum of 9 in MeOHS39
Figure S5-4. IR spectrum of 9 ······S40
Figure S9-5. ¹ H NMR spectrum of 9 in CDCl ₃ (500 MHz) ······S40
Figure S9-6. ¹³ C NMR spectrum of 9 in CDCl ₃ (125 MHz) ······S41
Figure S9-7. ${}^{1}H{}^{-1}H$ COSY spectrum of 9 in CDCl ₃ (500 MHz) \cdots S41
Figure S9-8. HSQC spectrum of 9 in CDCl ₃ (500 MHz)S42
Figure S9-9. HMBC spectrum of 9 in CDCl ₃ (500 MHz)S42
Figure S9-10. NOESY spectrum of 9 in CDCl ₃ (500 MHz)S43

Figure S10-1. HR-ESI-MS spectrum of 10
Figure S10-2. UV spectrum of 10 in MeOH ······S44
Figure S10-3. CD spectrum of 10 in MeOH ······S44
Figure S10-4. IR spectrum of 10
Figure S10-5. ¹ H NMR spectrum of 10 in CDCl ₃ (300 MHz)
Figure S10-6. ¹³ C NMR spectrum of 10 in CDCl ₃ (75 MHz) ······S46
Figure S10-7. ${}^{1}H$ - ${}^{1}H$ COSY spectrum of 10 in CDCl ₃ (300 MHz)S46
Figure S10-8. HSQC spectrum of 10 in CDCl ₃ (300 MHz)
Figure S10-9. HMBC spectrum of 10 in CDCl ₃ (300 MHz) ······S47
Figure S10-10. NOESY spectrum of 10 in CDCl ₃ (300 MHz) ······S48

Quantum chemical ECD calculation for 1, 4, 5, 7 and 8S49
Figure S11-1. DFT-optimized structures for (1' <i>R</i> , 1 <i>R</i> , 5 <i>R</i> , 8 <i>R</i> , 9 <i>S</i>)-1S50
Figure S11-2. TDDFT-calculated CD spectra for (1' <i>R</i> , 1 <i>R</i> , 5 <i>R</i> , 8 <i>R</i> , 9 <i>S</i>)-1S50
Figure S11-3. DFT-optimized structures for (1' <i>S</i> , 1 <i>S</i> , 5 <i>S</i> , 8 <i>S</i> , 9 <i>R</i>)-1
Figure S11-4. TDDFT-calculated CD spectra for (1' <i>S</i> , 1 <i>S</i> , 5 <i>S</i> , 8 <i>S</i> , 9 <i>R</i>)-1

Figure S12-1. DFT-optimized structures for $(1\beta, 6\beta$ -epoxy)-/(1'R, 1R, 3R, 4S, 5R, 6R,
7 <i>S</i> , 10 <i>R</i>)- 4
Figure S12-2. TDDFT-calculated CD spectra for $(1\beta, 6\beta$ -epoxy)-/(1'R, 1R, 3R, 4S, 5R,
6 <i>R</i> , 7 <i>S</i> , 10 <i>R</i>)- 4
Figure S12-3. DFT-optimized structures for $(1\alpha, 6\alpha$ -epoxy)-/(1'R, 1S, 3R, 4S, 5R, 6S,
7 <i>S</i> , 10 <i>R</i> - 4)
Figure S12-4. TDDFT-calculated CD spectra for $(1\alpha, 6\alpha$ -epoxy)-/(1'R, 1S, 3R, 4S, 5R,
6 <i>S</i> , 7 <i>S</i> , 10 <i>R</i> - 4)

Figure S13-1. DFT-optimized structures for $(3\beta,5\beta$ -epoxy-6 β -OH)-/(1'R, 1R, 3S, 4R,
<i>5S</i> , <i>6S</i> , <i>7S</i> , <i>10R</i>)- 5
Figure S13-2. TDDFT-calculated CD spectra for $(3\beta, 5\beta$ -epoxy- 6β -OH)-/(1'R, 1R, 3S,
4 <i>R</i> , 5 <i>S</i> , 6 <i>S</i> , 7 <i>S</i> , 10 <i>R</i>)- 5
Figure S13-3. DFT-optimized structures for $(3\beta,5\beta$ -epoxy-6 α -OH)-/(1'R, 1R, 3S, 4R,
5 <i>S</i> , 6 <i>R</i> , 7 <i>S</i> , 10 <i>R</i>)- 5
Figure S13-4. TDDFT-calculated CD spectra for $(3\beta, 5\beta$ -epoxy- 6α -OH)-/(1'R, 1R, 3S,

4 <i>R</i> , 5 <i>S</i> , 6 <i>R</i> , 7 <i>S</i> , 10 <i>R</i>)- 5
Figure S13-5. DFT-optimized structures for $(3\alpha, 5\alpha-\text{epoxy-}6\alpha-\text{OH})$ -/(1'R, 1R, 3R, 4R,
5 <i>R</i> , 6 <i>R</i> , 7 <i>S</i> , 10 <i>R</i>)- 5
Figure S13-6. TDDFT-calculated CD spectra for $(3\alpha, 5\alpha-\text{epoxy-}6\alpha-\text{OH})$ -/(1' <i>R</i> , 1 <i>R</i> , 3 <i>R</i> ,
4 <i>R</i> , 5 <i>R</i> , 6 <i>R</i> , 7 <i>S</i> , 10 <i>R</i>)- 5
Figure S13-7. DFT-optimized structures for $(3\alpha, 5\alpha-\text{epoxy-6}\beta-\text{OH})$ -/(1'R, 1R, 3R, 4R,
5 <i>R</i> , 6 <i>S</i> , 7 <i>S</i> , 10 <i>R</i>)- 5
Figure S13-8. TDDFT-calculated CD spectra for $(3\alpha, 5\alpha-\text{epoxy-}6\beta-\text{OH})$ -/(1' <i>R</i> , 1 <i>R</i> , 3 <i>R</i> ,
4 <i>R</i> , 5 <i>R</i> , 6 <i>S</i> , 7 <i>S</i> , 10 <i>R</i>)- 5

Figure S14-1. DFT-optimized structures for (1'*R*, 1*R*, 3*R*, 4*R*, 7*S*, 10*R*)-7S58 **Figure S14-2.** TDDFT-calculated CD spectra for (1'*R*, 1*R*, 3*R*, 4*R*, 7*S*, 10*R*)-7S58 **Figure S14-3.** DFT-optimized structures for (1'*R*, 1*R*, 3*S*, 4*R*, 7*S*, 10*R*)-7S59 **Figure S14-4.** TDDFT-calculated CD spectra for (1'*R*, 1*R*, 3*S*, 4*R*, 7*S*, 10*R*)-7S59

Figure S15-1. DFT-optimized structures for (1' <i>R</i> , 1 <i>S</i> , 4 <i>R</i> , 5 <i>S</i> , 6 <i>S</i> , 7 <i>R</i>)-8	50
Figure S15-2. TDDFT-calculated CD spectra for (1' <i>R</i> , 1 <i>S</i> , 4 <i>R</i> , 5 <i>S</i> , 6 <i>S</i> , 7 <i>R</i>)-8	50
Figure S15-3. DFT-optimized structures for (1' <i>S</i> , 1 <i>R</i> , 4 <i>S</i> , 5 <i>R</i> , 6 <i>R</i> , 7 <i>S</i>)-8	51
Figure S15-4. TDDFT-calculated CD spectra for (1' <i>S</i> , 1 <i>R</i> , 4 <i>S</i> , 5 <i>R</i> , 6 <i>R</i> , 7 <i>S</i>)-8	51

Figure S1-2. UV spectrum of 1 in MeOH

Figure S1-6. ¹³C NMR spectrum of 1 in CDCl₃ (125 MHz)

Figure S1-8. HSQC spectrum of 1 in CDCl₃ (500 MHz)

Figure S1-10. NOESY spectrum of 1 in CDCl₃ (500 MHz)

Figure S2-2. UV spectrum of 2 in MeOH

Figure S2-6. $^{1}H^{-1}H$ COSY spectrum of 2 in CDCl₃ (500 MHz)

S9

Figure S3-2. UV spectrum of 3 in MeOH

Figure S3-3. CD spectrum of 3 in MeOH

Figure S3-7. HSQC spectrum of 3 in CDCl₃ (500 MHz)

Figure S4-2. UV spectrum of 4 in MeOH

Figure S4-6. ¹H-¹H COSY spectrum of 4 in CDCl₃ (500 MHz)

Figure S4-7. HSQC spectrum of 4 in CDCl₃ (500 MHz)

Figure S5-2. UV spectrum of 5 in MeOH

Figure S5-3. CD spectrum of 5 in MeOH

Figure S5-5. ¹³C NMR spectrum of 5 in CDCl₃ (125 MHz)

Figure S6-2. UV spectrum of 6 in MeOH

Figure S6-8. HSQC spectrum of 6 in CDCl₃ (500 MHz)

Figure S6-10. NOESY spectrum of 6 in CDCl₃ (500 MHz)

Figure S7-2. UV spectrum of 7 in MeOH

Figure S7-6. ¹H-¹H COSY spectrum of 7 in CDCl₃ (500 MHz)

Figure S7-8. HMBC spectrum of 7 in CDCl₃ (500 MHz)

0.1 0.05 0

476

Figure S8-2. UV spectrum of 8 in MeOH

Figure S8-3. CD spectrum of 8 in MeOH

Figure S8-7. ¹H-¹H COSY spectrum of 8 in CDCl₃ (500 MHz)

Figure S9-2. UV spectrum of 9 in MeOH

Figure S9-3. CD spectrum of 9 in MeOH

S40

Figure S9-7. ¹H-¹H COSY spectrum of 9 in CDCl₃ (500 MHz)

Figure S10-2. UV spectrum of 10 in MeOH

Figure S10-3. CD spectrum of 10 in MeOH

Figure S10-7. ¹H-¹H COSY spectrum of **10** in CDCl₃ (300 MHz)

Figure S10-9. HMBC spectrum of 10 in CDCl₃ (300 MHz)

Quantum chemical ECD calculation for 1, 4, 5, 7, and 8

The systematic random conformational analysis of the enantiomers of compounds (1'R, 1R, 5R, 8R, 9S)-1, (1'S, 1S, 5S, 8S, 9R)-1; $(1\beta, 6\beta$ -epoxy)-/(1'R, 1R, 3R, 4S, 5R, 6R, 7S, 10R)-4, $(1\alpha$, 6α -epoxy)-/(1'R, 1S, 3R, 4S, 5R, 6S, 7S, 10R-4); $(3\beta, 5\beta$ -epoxy-6 β -OH)-/(1'R, 5*S*, 7*S*, 10R)-5, 1*R*, 3S, 4R, 6*S*, $(3\beta.5\beta$ -epoxy-6 α -OH)-/(1'R, 3*S*. 4R. 5*S*. 6R. 7S, 10R)-5. 1*R*, $(3\alpha, 5\alpha$ -epoxy-6 α -OH)-/(1'R, 1*R*, 3R, 4R, 5R, 6R, 7*S*, 10R)-5, (3α,5α-epoxy-6β-OH)-/(1'R, 1R, 3R, 4R, 5R, 6S, 7S, 10R)-5; (1'R, 1R, 3R, 4R, 7S, 10R)-7, (1'R, 1R, 3S, 4R, 7S, 10R)-7; (1'R, 1S, 4R, 5S, 6S, 7R)-8, and (1'S, 1R, 4S, 5R, 6R, 7S)-8, were performed in the SYBYL 8.1 program by using the Monte Carlo protocol at the MMFF94s level. Considering a cutoff of 10 kcal/mol, 3, 3, 4, 6, 2, 3, 3, 3, 2, 4, 5, and 5 minimum energy conformers for 1, 4, 5, 7, and 8, respectively, were inferred to the global minima. All the obtained conformers were optimized using DFT at the B3LYP/6-31+G(d) level in gas phase, and 2, 2, 4, 4, 2, 2, 2, 3, 1, 2, 4, and 4 most stable conformers for 1, 4, 5, 7, and 8 respectively, were selected. All of the optimized stable conformers were used for TDDFT computation of the excited stats at the same levels, with the consideration of the first 50 excitations. The overall ECD curves were weighted by Boltzmann distribution of each conformer (with a half-bandwidth of 0.3eV) derived from their relative free energy values. The ECD spectra were produced by SpecDis 1.6 software.

Figure S11-1. DFT-optimized structures for low-energy conformers of (1'R, 1R, 5R, 8R, 9S)-1 at B3LYP/6-31+G(d) level in methanol (PCM), with zero-point corrected free energies calculated at the same level (and Boltzmann population at 298K estimated thereof).

Figure S11-2. TDDFT-calculated spectra at B3LYP/6-31+G(d) level in methanol (PCM) for the low energy structures of (1'R, 1R, 5R, 8R, 9S)-1, and their weighted average using Boltzmann populations at 298K. Gaussian band-shape with 0.3 eV applied to generate the spectra.

Figure S11-3. DFT-optimized structures for low-energy conformers of (1'*S*, 1*S*, 5*S*, 8*S*, 9R)-1 at B3LYP/6-31+G(d) level in methanol (PCM), with zero-point corrected free energies calculated at the same level (and Boltzmann population at 298K estimated thereof).

Figure S11-4. TDDFT-calculated spectra at B3LYP/6-31+G(d) level in methanol (PCM) for the low energy structures of (1'*S*, 1*S*, 5*S*, 8*S*, 9*R*)-1, and their weighted average using Boltzmann populations at 298K. Gaussian band-shape with 0.3 eV applied to generate the spectra.

Figure S12-1. DFT-optimized structures for low-energy conformers of $(1\beta, 6\beta$ -epoxy)-/(1'*R*, 1*R*, 3*R*, 4*S*, 5*R*, 6*R*, 7*S*, 10*R*)-4 at B3LYP/6-31+G(d) level in methanol (PCM), with zero-point corrected free energies calculated at the same level (and Boltzmann population at 298K estimated thereof).

Figure S12-2. TDDFT-calculated spectra at B3LYP/6-31+G(d) level in methanol (PCM) for the low energy structures of $(1\beta, 6\beta$ -epoxy)-/(1'R, 1R, 3R, 4S, 5R, 6R, 7S, 10R)-4, and their weighted average using Boltzmann populations at 298K. Gaussian band-shape with 0.3 eV applied to generate the spectra.

Figure S12-3. DFT-optimized structures for low-energy conformers of $(1\alpha, 6\alpha$ -epoxy)-/(1'*R*, 1*S*, 3*R*, 4*S*, 5*R*, 6*S*, 7*S*, 10*R*-4) at B3LYP/6-31+G(d) level in methanol (PCM), with zero-point corrected free energies calculated at the same level (and Boltzmann population at 298K estimated thereof).

Figure S12-4. TDDFT-calculated spectra at B3LYP/6-31+G(d) level in methanol (PCM) for the low energy structures of $(1\alpha, 6\alpha$ -epoxy)-/(1'R, 1S, 3R, 4S, 5R, 6S, 7S, 10R-4), and their weighted average using Boltzmann populations at 298K. Gaussian band-shape with 0.3 eV applied to generate the spectra.

Figure S13-1. DFT-optimized structures for low-energy conformers of $(3\beta,5\beta$ -epoxy-6 β -OH)-/(1'R, 1R, 3S, 4R, 5S, 6S, 7S, 10R)-5 at B3LYP/6-31+G(d) level in methanol (PCM), with zero-point corrected free energies calculated at the same level (and Boltzmann population at 298K estimated thereof).

Figure S13-2. DFT-optimized structures for low-energy conformers of $(3\beta,5\beta$ -epoxy-6 β -OH)-/(1'R, 1R, 3S, 4R, 5S, 6S, 7S, 10R)-**5** at B3LYP/6-31+G(d) level in methanol (PCM), with zero-point corrected free energies calculated at the same level (and Boltzmann population at 298K estimated thereof).

Figure S13-3. DFT-optimized structures for low-energy conformers of $(3\beta,5\beta$ -epoxy-6 α -OH)-/(1'R, 1R, 3S, 4R, 5S, 6R, 7S, 10R)-5 at B3LYP/6-31+G(d) level in methanol (PCM), with zero-point corrected free energies calculated at the same level (and Boltzmann population at 298K estimated thereof).

Figure S13-4. DFT-optimized structures for low-energy conformers of $(3\beta,5\beta$ -epoxy-6 α -OH)-/(1'R, 1R, 3S, 4R, 5S, 6R, 7S, 10R)-5 at B3LYP/6-31+G(d) level in methanol (PCM), with zero-point corrected free energies calculated at the same level (and Boltzmann population at 298K estimated thereof).

Figure S13-5. DFT-optimized structures for low-energy conformers of $(3\alpha,5\alpha$ -epoxy- 6α -OH)-/(1'R, 1R, 3R, 4R, 5R, 6R, 7S, 10R)-**5** at B3LYP/6-31+G(d) level in methanol (PCM), with zero-point corrected free energies calculated at the same level (and Boltzmann population at 298K estimated thereof).

Figure S13-6. DFT-optimized structures for low-energy conformers of $(3\alpha,5\alpha$ -epoxy- 6α -OH)-/(1'R, 1R, 3R, 4R, 5R, 6R, 7S, 10R)-**5** at B3LYP/6-31+G(d) level in methanol (PCM), with zero-point corrected free energies calculated at the same level (and Boltzmann population at 298K estimated thereof).

Figure S13-7. DFT-optimized structures for low-energy conformers of $(3\alpha,5\alpha$ -epoxy-6 β -OH)-/(1'R, 1R, 3R, 4R, 5R, 6S, 7S, 10R)-5 at B3LYP/6-31+G(d) level in methanol (PCM), with zero-point corrected free energies calculated at the same level (and Boltzmann population at 298K estimated thereof).

Figure S13-8. TDDFT-calculated spectra at B3LYP/6-31+G(d) level in methanol (PCM) for the low energy structures of $(3\alpha, 5\alpha$ -epoxy-6 β -OH)-/(1'R, 1R, 3R, 4R, 5R, 6S, 7S, 10R)-5, and their weighted average using Boltzmann populations at 298K. Gaussian band-shape with 0.3 eV applied to generate the spectra.

Figure S14-1. DFT-optimized structures for low-energy conformers of (1'R, 1R, 3R, 4R, 7S, 10R)-7 at B3LYP/6-31+G(d) level in methanol (PCM), with zero-point corrected free energies calculated at the same level (and Boltzmann population at 298K estimated thereof).

Figure S14-2. TDDFT-calculated spectra at B3LYP/6-31+G(d) level in methanol (PCM) for the low energy structures of (1'R, 1R, 3R, 4R, 7S, 10R)-7, and the weighted average using Boltzmann populations at 298K. Gaussian band-shape with 0.3 eV applied to generate the spectra.

Figure S14-3. TDDFT-calculated spectra at B3LYP/6-31+G(d) level in methanol (PCM) for the low energy structures of (1'R, 1R, 3S, 4R, 7S, 10R)-7, and the weighted average using Boltzmann populations at 298K. Gaussian band-shape with 0.3 eV applied to generate the spectra.

Figure S14-4. TDDFT-calculated spectra at B3LYP/6-31+G(d) level in methanol (PCM) for the low energy structures of (1'R, 1R, 3S, 4R, 7S, 10R)-7, and the weighted average using Boltzmann populations at 298K. Gaussian band-shape with 0.3 eV applied to generate the spectra.

Figure S15-1. TDDFT-calculated spectra at B3LYP/6-31+G(d) level in methanol (PCM) for the low energy structures of (1'R, 1S, 4R, 5S, 6S, 7R)-8, and the weighted average using Boltzmann populations at 298K. Gaussian band-shape with 0.3 eV applied to generate the spectra.

Figure S15-2. TDDFT-calculated spectra at B3LYP/6-31+G(d) level in methanol (PCM) for the low energy structures of (1'R, 1S, 4R, 5S, 6S, 7R)-**8**, and the weighted average using Boltzmann populations at 298K. Gaussian band-shape with 0.3 eV applied to generate the spectra.

Figure S15-3. TDDFT-calculated spectra at B3LYP/6-31+G(d) level in methanol (PCM) for the low energy structures of (1'*S*, 1*R*, 4*S*, 5*R*, 6*R*, 7*S*)-**8**, and the weighted average using Boltzmann populations at 298K. Gaussian band-shape with 0.3 eV applied to generate the spectra.

Figure S15-4. TDDFT-calculated spectra at B3LYP/6-31+G(d) level in methanol (PCM) for the low energy structures of (1'*S*, 1*R*, 4*S*, 5*R*, 6*R*, 7*S*)-**8**, and the weighted average using Boltzmann populations at 298K. Gaussian band-shape with 0.3 eV applied to generate the spectra.