Synthesis of Cyclic Alkenyl Dimethylsiloxanes from Alkynyl Benzyldimethylsilanes, and Application in Polyene Synthesis

Haraldur G. Gudmundsson, Christian J. Kuper, Damien Cornut, Felix Urbitsch,

Bryony L. Elbert and Edward A. Anderson*

Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.

edward.anderson@chem.ox.ac.uk

Supporting Information

Contents

¹ H NMR studies – 6-Membered dimethylsiloxane 14	S2
¹ H NMR studies – 5-Membered dimethylsiloxane 13	S3
¹ H NMR studies – ECC DOSY experiment	S4
Copies of ¹ H and ¹³ C NMR spectra	S 8
References	S50

¹H NMR studies – 6-Membered dimethylsiloxane 14

Upon treatment of 6-membered siloxane 14 (49 mg, 0.2 mmol, 1.0 equiv.) with TBAF•3H₂O (189 mg, 0.6 mmol, 3 equiv.) in d₈-THF (0.6 mL), a rapid equilibrium was established between siloxane 14 and acyclic disiloxane 28, which remained at a constant ratio (14:28, 1:1.3) throughout the course of the experiment (Figure S1).

Figure S1. Treatment of 6-membered dimethyl siloxane **14** with TBAF•3H₂O (3 equiv.) in d₈-THF, monitored periodically by ¹H NMR spectroscopy

¹H NMR studies – 5-Membered dimethyl siloxane 13

Upon treatment of 5-membered siloxane **13** (49 mg, 0.2 mmol, 1.0 equiv.) with TBAF•3H₂O (189 mg, 0.6 mmol, 3 equiv.) in d_8 -THF (0.6 mL), a rapid equilibrium is established between siloxane **13** and acyclic disiloxane **29** at an initial ratio of **13**:**29**, 1.7:1. These compounds slowly convert to protodesilylated product **13-desilylation** over the course of the experiment (Figure S2).

Figure S2. Treatment of 5-membered dimethyl siloxane **13** with TBAF•3H₂O (3 equiv.) in d₈-THF, monitored periodically by ¹H NMR spectroscopy

¹H NMR studies – ECC DOSY experiment

ECC DOSY experiment of 6-membered siloxane 14 in THF

6-membered siloxane 14 (10.2 mg, 41.1 μ mol) and internal standard tetramethylbutane (TMB) (3.4 mg, 29.8 mmol) were dissolved in d_8 -THF (0.6 mL). NMR spectra were recorded at 25 °C.

After processing only data points from signals with qualitatively good diffusion, decay curves are taken forward to calculate molecular weights using the methods described by Stalke *et. al.*^{1,2} Calculated molecular weights are shown in table S1.

ECC DOSY experiment for disiloxane 14.

\searrow

in THF- d_8

OBn	
14	
248.40 g/mol	

IB, IS

mol	TM

Entry	signal [ppm]ª	Diff.Coeff. [m²/s]ª	speciesª	MW [g/moll ^b	shape	MW _{det}	MW _{dif}
		[/ -]		[8/]	CS	192	29%
		$1.458 \cdot 10^{-9}$	14	248	Merge	196	27%
1	7.34				DSE	191	30%
					ED	211	18%
		1.222 · 10 ⁻⁹			CS	275	-10%
2				248	Merge	271	-8%
2	4.56		14		DSE	260	-5%
					ED	268	-7%
3 3.62		2.835 · 10 ⁻⁹	10 ⁻⁹ 14	14 248	CS	250	-1%
	2 (2				Merge	248	0%
	3.02				DSE	239	4%
					ED	251	-1%
	0.18	1.430 · 10 ⁻⁹	14	248	CS	201	23%
4					Merge	204	22%
			14		DSE	199	25%
					ED	217	14%

^a determined from DOSY NMR; ^b calculated molecular weight; ^c molecular shape: CS: compact spheres,

DSE: dissipated spheres and ellipsoids, ED: expanded discs, Merge: merged calibration curves.

To the above mixture of 6-membered siloxane 14 (10.2 mg, 41.1 μ mol, 1.0 equiv.) and internal standard tetramethylbutane (TMB) (3.4 mg, 29.8 mmol) in d_8 -THF (0.6 mL) was added TBAF•3H₂O (38 mg, 120 μ mol, 3.0 equiv.). NMR spectra were recorded at 25 °C.

Calculated molecular weights are shown in Table S2.

ECC DOSY experiment for disiloxane 14 plus TBAF•3H₂O

Table S2: Estimated molecular	weights of	f cyclic and	acyclic siloxane	species by	ECC-DOSY NMR
-------------------------------	------------	--------------	------------------	------------	--------------

		TBAF•3H ₂ O				Me ₂ OH	
		OBn TMB THF-d ₈	BnO OH	ОН	OBn	OH OBn	
	248.4	14 40 g/mol		disiloxane 514.81 g/mol		l anol monomer 266.41 g/mol	
	signal	Diff.Coeff.	. <u>.</u>	MW		MW _{det}	
Entry	[ppm] ^a	[m²/s]ª	species	[g/mol] ^b	shape	[g/mol]	M W dif
					CS	1117	-54%
1	7.24	F 072 10-10		F1F	Merge	946	-46%
1	7.34	$5.073 \cdot 10^{-10}$	acyclic	515	DSE	853	-40%
					ED	671	-23%
					CS	1252	-59%
2	6.04	4 705 10-10		F1F	Merge	1048	-51%
Ζ	6.94	4.795 • 10	acyclic	515	DSE	939	-45%
					ED	723	-29%
					CS	887	-42%
2			1.		Merge	770	-33%
3	4.57	5.686 • 10	acyclic	515	DSE	701	-27%
					ED	577	-11%
		$4.738 \cdot 10^{-10}$	acyclic	515	CS	1283	-60%
4	2 55				Merge	1071	-52%
4	3.55				DSE	959	-45%
					ED	735	-30%
					CS	1029	-50%
_	2.44	5 204 40-10	1.	F 1 F	Merge	879	-41%
5	3.41	5.284 • 10	acyclic	515	DSE	795	-35%
					ED	635	-19%
					CS	970	-47%
<i>(</i>	2 5 0	F 420 10-10	1.	F 1 F	Merge	834	-38%
6	2.50	5.439 10	acyclic	515	DSE	757	-32%
					ED	612	-15%
					CS	1126	-54%
7	0.06		a avalia	F1F	Merge	953	-46%
/	0.06	$5.053 \cdot 10^{-10}$	acyclic	515	DSE	859	-40%
					ED	675	-24%
					CS	279	-11%
0	0.16	$0.16 1.006 \cdot 10^{-9}$	cyclic	cyclic 248	Merge	274	-9%
8					DSE	263	-6%
					ED	270	-8%

^a determined from DOSY NMR; ^b calculated molecular weight; ^c molecular shape: CS: compact spheres, DSE: dissipated spheres and ellipsoids, ED: expanded discs, Merge: merged calibration curves.

Copies of ¹H and ¹³C NMR data

1-(Benzyldimethylsilyl)-5-(benzyloxy)pent-1-yn-3-ol, 7a

5-(Benzyldimethylsilyl)-1-(benzyloxy)pent-4-yn-2-ol, 8a

1-(Benzyldimethylsilyl)-5-(benzyloxy)pent-1-yn-3-yl acetate, 7b

Benzyl(5-(benzyloxy)-3-((tert-butyldimethylsilyl)oxy)pent-1-yn-1-yl)dimethylsilane, 7c

Benzyl(5-(benzyloxy)-3-((4-methoxybenzyl)oxy)pent-1-yn-1-yl)dimethylsilane, 7d

Project Account Code dmr00400 FRU-951-2 in CDCl3 h1acq.crl CDCl3 {C:\NMR} eaagrp 41 ſſ 1][N (m) 7.33 B (d) 4.51 G (s) F (dddd) 2.18 1.67 L (t) 7.07 J (ddd) 3.57 HO 0. K (d) 7.01 E (dtd) 1.80 O (d) 0.14 D (dd) 6.31 C (dd) 5.60 A (td) 4.28 I (ddd) 3.65 H (d) 2.44 Si M (t) 7.20 M M M . 1.064 5.17 1.61 0.94 1.49 1.49 1.01 D.81-I 1.65-0.73 1.03-2.00-1.47 5.43 10.5 10.0 7.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 1.0 9.5 9.0 8.5 . 8.0 . 7.0 2.0 1.5 0.5 0.0 May28-2019-41-FRU-951-2.2.fid Instrument AVG400 Group EAA Chemist FRU 140.12 138.17 128.87 128.87 128.56 128.43 128.28 128.28 127.75 127.75 124.25 150.95 - 36.79 - 26.98 Project Account Code dmr00400 FRU-951-2 in CDCl3 c13acq_512.crl CDCl3 {C:\NMR} eaagrp 41

-0.5

(Z)-1-(Benzyldimethylsilyl)-5-(benzyloxy)pent-1-en-3-ol, 11a

(Z)-1-(Benzyldimethylsilyl)-5-(benzyloxy)pent-1-en-3-yl acetate, 11b

(Z)-Benzyl(5-(benzyloxy)-3-((tert-butyldimethylsilyl)oxy)pent-1-en-1-yl)dimethylsilane, 11c

(Z)-Benzyl(5-(benzyloxy)-3-((4-methoxybenzyl)oxy)pent-1-en-1-yl)dimethylsilane, 11d

(Z)-5-(Benzyldimethylsilyl)-1-(benzyloxy)pent-4-en-2-ol, 12a

(Z)-5-(Benzyldimethylsilyl)-1-(benzyloxy)pent-4-en-2-yl acetate, 12b

(Z)-Benzyl(5-(benzyloxy)-4-((tert-butyldimethylsilyl)oxy)pent-1-en-1-yl)dimethylsilane, 12c

(Z)-Benzyl(5-(benzyloxy)-4-((4-methoxybenzyl)oxy)pent-1-en-1-yl)dimethylsilane, 12d

5-(2-(Benzyloxy)ethyl)-2,2-dimethyl-2,5-dihydro-1,2-oxasilole, 13

6-((Benzyloxy)methyl)-2,2-dimethyl-5,6-dihydro-2H-1,2-oxasiline, 14

(Z)-5-(Benzyloxy)-1-phenylpent-1-en-3-ol, 26a

(Z)-1-(((5-(Benzyloxy)-1-phenylpent-1-en-3-yl)oxy)methyl)-4-methoxybenzene, 26b

NMR spectra contain a 1:0.31 mixture of Z and E isomers.

1-(((5-(benzyloxy)pent-1-en-3-yl)oxy)methyl)-4-methoxybenzene, 26b-desilylation

(Z)-1-(Benzyloxy)-5-phenylpent-4-en-2-ol, 27a

(Z)-1-(((1-(Benzyloxy)-5-phenylpent-4-en-2-yl)oxy)methyl)-4-methoxybenzene, 27b

(4Z,6E)-1-(Benzyloxy)-7-phenylhepta-4,6-dien-3-ol, 26C

(4Z,6E)-1-(Benzyloxy)-7-phenylhepta-4,6-dien-2-ol, 27c

(4Z,6E)-1-(Benzyloxy)-8-((4-methoxybenzyl)oxy)octa-4,6-dien-3-ol, 26d

(4Z,6E)-1-(benzyloxy)-8-((4-methoxybenzyl)oxy)octa-4,6-dien-2-ol, 27d

(4Z,6E)-1-(Benzyloxy)-8-((4-methoxybenzyl)oxy)-7-methylocta-4,6-dien-3-ol, 26e

(4Z,6E)-1-(Benzyloxy)-8-((4-methoxybenzyl)oxy)-7-methylocta-4,6-dien-2-ol, 27e

1-((((2E,4E)-5-Bromopenta-2,4-dien-1-yl)oxy)methyl)-4-methoxybenzene, 25h

(4Z,6E,8E)-1-(Benzyloxy)-10-((4-methoxybenzyl)oxy)deca-4,6,8-trien-3-ol, 26f

(4Z,6E,8E)-1-(Benzyloxy)-10-((4-methoxybenzyl)oxy)deca-4,6,8-trien-2-ol, 27f

(2E,4Z,6Z)-10-(Benzyloxy)deca-2,4,6-triene-1,8-diol, 26g

(4Z,6Z)-1-(Benzyloxy)-7-cyclohexylhepta-4,6-dien-3-ol, 26h

Ethyl 7-(benzyldimethylsilyl)-5-oxohept-6-ynoate, 36

Ethyl (S)-5-acetoxy-7-(benzyldimethylsilyl)hept-6-ynoate, 37

Ethyl (S,Z)-5-acetoxy-7-(benzyldimethylsilyl)hept-6-enoate

Ethyl (S)-4-(2,2-dimethyl-2,5-dihydro-1,2-oxasilol-5-yl)butanoate, 34

(1*E*,3*E*)-1-Iodotrideca-1,3-dien-5-ol, (±)-38

(1E,3E)-1-Iodotrideca-1,3-dien-5-one

(5*R*,1*E*,3*E*)-1-Iodotrideca-1,3-dien-5-ol, (*R*)-38

• Spectroscopic data identical to (\pm) -38

Ethyl (5*S*,6*Z*,8*E*,10*E*,12*R*)-5,12-dihydroxyicosa-6,8,10-trienoate, 39 (partial decomposition occurred during acquisition of the ¹³C NMR spectrum)

References

- (1) Bachmann, S.; Gernert, B.; Stalke, D. *Chemical Communications (Cambridge)* **2016**, *52*, 12861.
- (2) Bachmann, S.; Neufeld, R.; Dzemski, M.; Stalke, D. *Chem. Eur. J.* **2016**, *22*, 8462.