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Supporting Information

Zero density lines
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Figure S1: a) Zero-density lines for single-layer graphene (SLG, dashed line), bilayer graphene
(BG, dashed line), large-angle twisted bilayer graphene (TBG, brown), large-angle twisted
double bilayer graphene (TDBG, red) b) Electrostatic model for large-angle twisted bilayer
graphene and c) large-angle twisted double bilayer graphene, where the geometric capacitance
Cm,BG = Cm,SLG/2.

Following the argumentation of Ref.1 and using that Cb/Cm � 1 and Ct/Cm � 1, the
zero density lines in the gate-gate map have slopes:
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In Fig. S1a we show the impact of these formulas for different structures in a symmetric
geometry. For single- (SLG) and Bernal bilayer graphene (BG), the zero density line consists
of a single line with slope −Ct/Cb. For BG, the applied perpendicular electric field along
this line is changing, and it is zero at the origin. A splitting of the zero density line can
be observed for large-angle twisted BG, with the amount of splitting given by (1 +Cq/Cm).
The behavior is non-linear, since Cq ∝

√
n. This is different for large angle TDBG where

Cq ∝ const. (red lines in the figure). For the depicted lines in the figure we used a symmetric
configuration with Ct = Cb = 0.05µF/cm2. As geometric capacitances between the twisted
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layers we use Cm,BG = Cm,SLG/2 = 3.75µF/cm2 and for the quantum capacitances standard
values from literature.

In Fig. S1b we schematically draw the electrostatic model for large-angle twisted bilayer
graphene. The geometric capacitance between the layers, Cm,SLG, can be obtained by con-
sidering two ”thick” graphene layers with relative dielectric constant εg = 6.9 and thickness
dg = 2.6 Å separated by vacuum (ε = 1) and d = 0.8 Å. In this case:

Cm,SLG =
εgε0
dg

+
ε0
d

In the case of TDBG, between the center of charges of the top BG and the bottom BG there
are two graphene layers and two times a gap with vacuum, therefore

Cm,BG =
εgε0
2dg

+
ε0
2d

=
Cm,SLG
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Extracting the slopes from the measurements
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Figure S2: Extracting the slopes of the zero density lines

Here we describe our procedure to extract the slopes of the zero density condition from
the measurement. In Fig.S2a we consider the slope of the Fabry-Pérot oscillations of the
bottom layer if the top layer is gapped. We find

∂Vb
∂Vt

∣∣∣∣
ntot=0

≈ −Ct

Cb

≈ −1.6± 0.2
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which is in reasonable agreement with the expected slope from electrostatic considerations
considering the measured thickness of top and bottom hBN i.e. Ct/Cb = db/dt = 1.5. In
Figs.S2b-e we determine the slopes of the zero density lines by fitting a line in the middle of
the gap and we find:
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Electron-hole asymmetry

We notice that the slopes of the zero-density lines deviate depending on the charge carrier
polarity of the other BG. We attribute this effect to a different effective mass for electrons
(m∗

e) or holes (m∗
h) which changes the screening. With

Cqte = Cqbe = Cqe = e2De = e2
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e

~2
for electrons
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for holes

we modify the above equations to
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(S6)

By using the experimentally extracted value for Ct/Cb, for the zero-density line of the
top BG, we then determine the asymmetry

Cqe

Cqh

=
m∗

e

m∗
h

= 0.73± 0.19

and for the bottom zero density line

Cqe

Cqh

=
m∗

e

m∗
h

= 0.54± 0.09

In average:

m∗
e

m∗
h

= 0.63± 0.1 (S7)

Note that this is independent of the value of Cm.
In Fig.S3a we show the influence of different electron/hole masses on the zero density
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lines. In the brown shaded area, the top BG is p-doped. The heavier mass in the valence
band leads to a stronger screening of the top-gate. Therefore, a large voltage Vt needs to be
applied in order to reach the zero-density line in the bottom layer (red solid line) compared
to the case where the masses are equal (red dashed lines). I.e. if the top BG is p-doped, the
slope of the red solid line is less steep than the red dashed line, and vice-versa if the top BG
is n-doped.

In Fig.S3b we plot again the DFT calculation for low energies (see main text) and added
dashed lines as guide to the eyes. Clearly, m∗

e and m∗
h differ.
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Figure S3: a) Zero density lines if an electron-hole asymmetry is assumed. b) Such asym-
metry is obviously present in the DFT band structure. Dashed lines are guides to the eye.

Estimation of Cm

We can estimate the geometric capacitance by making assumptions for the quantum ca-
pacitance, i.e. Cqe = e2 · 2m∗

e/~2π with m∗
e = 0.80 · 0.03me and Cqh = e2 · 2m∗

h/~2π with
m∗

h = 1.26m∗
e such that m∗

e/m
∗
h = 0.63 By inserting this assumption and the measured slopes

into Eq.S6, we find

Cm = 3.5± 1µF/cm2 (S8)

We can estimate whether this number is reasonable by comparing to the measured capac-
itance between two single-layer graphene sheets, which was Cm,SLG = 7.5 ± 0.7µF/cm2.1

Within the error bars, we measure half this capacitance, as expected.

Determining applied fields to the top/bottom BG

For just one bilayer system, the displacement field between the two single layers is roughly

D =
1

2ε0
(CtVt − CbVb)

Where Ct (Cb) is the capacitance between the top (bottom) graphene layer and the top
(bottom) gate and Vt (Vb) the voltage applied to the top (bottom) gate.
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For the TDBG system and for zero density in the top two layers (i.e. nt = 0 and VtBG = 0),
we notice that the lower two layers act as a gate on the upper layers, i.e. we replace CbVb
by CmVbBG (the product of measured interlayer capacitance between the BG sheets Cm and
the electrochemical potential of the lower layer VbBG) and use that the Fermi energy in the
bottom layer is

EF,b = eVbBG =
~2

2m∗πnb =
e2

Cqb

nb

Therefore, the displacement field between the upper two layers is:

Dtop = − 1

2ε0
(CtVt −

Cm

Cq

· enb) (S9)

We note that we have used two approximations: FIrst, the parabolic dispersion of the
bottom BG, i.e. no trigonal warping. For large enough EF,b, this approximation is valid.
Second, we considered the gating effect of the bottom BG on the top BG and neglected
that the bottom BG consists of two layers with different electrochemical potential. Also this
approximation is valid for large enough EF,b.

In analogy we find

Dbottom =
1

2ε0
(CbVb −

Cm

Cq

· ent) (S10)

The relation between D and the gap has to be solved self-consistently, but for sufficiently
large D it is roughly linear, with a slope of 195 meV/(Vnm−1).

Measurements on device 2
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Figure S4: a) G(Vt, Vb) for the second device. b) Similar to the main text, we indicate lines
of zero density. c) Numerical derivative dG/dVt of the data.

6



We fabricated a second TDBG device which exhibits comparable results. The main
differences are:

• The different thickness of top- and bottom hBN (dt = 49 nm, db = 56 nm, as compared
to device 1 with dt = 60 nm, db = 90 nm) results in larger capacitances and thus a
stronger gating effect and different slopes in the G(Vt, Vb) maps.

• The groundstate resistance is higher, i.e. the highest measured resistance in device 2 is
Rmax = 94 kΩ compared to Rmax = 10 kΩ in device 1. This may originate from higher
quality of the stack.

• Unfortunately, the top gate covers an area, where a single-layer flake is twisted on
top of a bilayer flake. We call this area twisted single-layer bilayer graphene TSLBG
area. The TSLBG area does not connect source and drain contacts, therefore the
observation of high resistance is possible. However, the TSBLG area leads to the
appearance of a curved zero density line in the conductance map (white dashed line
in FigS4b, originating from the single-layer graphene flake (compare to Fig.S1a) and
a straight line (black dashed line in FigS4b) that is caused by the bilayer graphene in
this area. The presence of the TSBLG are does not affect the analysis of the TDBG
features.

We apply the above discussed capacitance model, considering the modified values for Ct

and Cb, and obtain the crystal fields present in this device. We find similar values as for
device 1, i.e.

Et = 0.11 V/nm

Eb = −0.12 V/nm

With a slope of with a slope of 195 meV/(Vnm−1) we find gaps of:

∆t = 21 meV

∆b = 23 meV.

Measurements on device 3 with a global topgate

In figure S8 we show the gate-gate map G(Vt, Vb) of a device which has a global topgate,
which we realized by evaporating an additional layer of AlOx after contacting the device
and before depositing the top gate. As opposed to devices 1 and 2, the gap appears only
in the central region of the plot (around Vt, Vb = 0, 0), i.e. there is no high resistive state
present around Vb = 0 for arbitrary Vt, as expected for a global topgate. The zero density
lines appear to be more ’blurry’ in device 3 compared to devices 2 and 1. We attribute this
to the fact that the region that we probe with this device is significantly larger (2× 3µm2)
than the region that we probe with the local topgate (0.4× 3µm2), making the conductance
more affected by local charge density variations due to disorder. Nevertheless, we do observe
charge density lines which are in good agreement with our capacitance model. I.e. the red
and yellow line in figure S8b are obtained by inserting the geometric capacitances of this
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Figure S5: a) G(Vt, Vb) for the third device with a global topgate. b) Device 3 with calculated
zero density lines nt = 0 and nb = 0. c) Numerical derivative dG/dVt of the data.

specific device into equation S6. We use εr = 9.5 for the AlOx layer. At the marked positions
of gap closing in the top/bottom layer we find:

Et = 0.13 V/nm

Eb = −0.14 V/nm

With a slope of with a slope of 195 meV/(Vnm−1) we find gaps of:

∆t = 25 meV

∆b = 27 meV.

A model for the Fabry-Pérot resonances

To obtain the Fabry-Pérot oscillation periodicity, we calculate the densities using :

nt = atVb + btVt

nb = abVb + bbVt

where

at =
CbCmCq

(Cq(Cq + Ctg) + Cb(Cm + Cq + Ct) + Cm(2Cq + Ct))e

bt =
CqCt(Cb + Cm + Cq)

(Cq(Cq + Ct) + Cb(Cm + Cq + Ct) + Cm(2Cq + Ct))e

ab =
CqCb(Cm + Cq + Ct)

(Cq(Cq + Ct) + Cb(Cm + Cq + Ct) + Cm(2Cq + Ct))e

bb =
CqCmCt

(Cq(Cq + Ct) + Cb(Cm + Cq + Ct) + Cm(2Cq + Ct))e
.
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Figure S6: a Numerical derivative of the measured conductance as a function of the gate
voltages. Insets show the charge configurations of the device (p = holes, n = electrons).
The black dashed lines delimit a region that corresponds to the opening of a gap in the
bottom BLG (see main text). The bending of the yellow line is due to a non-constant cavity
size (see main text). b Plots of FP resonances calculated with a capacitance model on top
of the experimental measurement. The black lines outline the calculations made with the
capacitance model of tBBG while the red lines are calculated with the capacitance model of
BLG. Lines with very small spacing are not plotted.

From the resulting density maps we calculte the Fabry-Pérot interference pattern using:

λ

2
N = L,

where L = 400 nm is the width of the top gate and N is a natural number. Therefore,
knowing that λ = 2π/k, with k =

√
πni (i = t, b), we obtain the condition

ni =
πN2

L2
. (S11)

Plotting this condition in a gate-gate map yields the FP pattern in the top and bottom
bilayer that are depicted on top of the experimental measurement in figure S6.
Figure S6 represents the numerical derivative of the measured conductance with respect to
the top gate ∂G/∂Vtg, which allows us to observe the FP resonance pattern. On the upper
left corner of the map we recognize FP interferences that belong to the pn-junction in the
bottom BLG. They match reasonably well with the resonances calculated for the bottom
layer in the previous section, which are plotted on top of the corresponding region in figure
S6 b. The same is valid for the top bilayer resonances in the bottom right corner, except
for a change in slope (yellow line in figure S6 a) due to an increase of the cavity size at low
densities (see e.g. Supporting Information of Ref.2), which is not captured in our model.
A third slope of the interference pattern is observed between the black lines of figure S6 a.
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This pattern matches reasonably well with the plot of FP resonances in dual gated BLG that
we show in red in figure S6 b. These plots were obtained by applying the FP condition (eq
S11) using the calculated density of only one BLG. From these results we deduce that the
top BLG in this area is not affected by the screening of the bottom BLG, which is possible
if the Fermi energy in the bottom BLG is in a gap. This demonstrates that the region of
reduced conductance around the zero density lines observed indeed correspond to gapped
regions.
The mid-gap states in this region may be responsible for the slight difference between the
predicted and the measured interference pattern in the gap: in our calculations we approxi-
mate the bottom BLG as a charge neutral layer, while instead it may contain non-conducting
mid-gap states which can give a small contribution to the screening.

Thermal activation behavior of device 1
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Figure S7: a) R(Vb) for Vt = 0 and temperatures between 20 K and 45 K reveal the thermal
activation of the gap in the ground state of device 1. b) In an Arrhenius plot (Vt = Vb = 0),
the slope at high temperatures (red line) corresponds to a gap of ∆ = 15 meV. In c) we plot
the extracted ∆(Vb).

In figure S7 we show the thermally activated behavior of device 1 (local topgate). We
extract the gap as a function of Vb by setting Vt = 0.

Measurements on device 3 with a global topgate

In figure S8 we show the gate-gate map G(Vt, Vb) of a device which has a global topgate,
which we realized by evaporating an additional layer of AlOx after contacting the device
and before depositing the top gate. As opposed to devices 1 and 2, the gap appears only
in the central region of the plot (around Vt, Vb = 0, 0), i.e. there is no high resistive state
present around Vb = 0 for arbitrary Vt, as expected for a global topgate. The zero density
lines appear to be more ’blurry’ in device 3 compared to devices 2 and 1. We attribute this
to the fact that the region that we probe with this device is significantly larger (2× 3µm2)
than the region that we probe with the local topgate (0.4× 3µm2), making the conductance
more affected by local charge density variations due to disorder. Nevertheless, we do observe
charge density lines which are in good agreement with our capacitance model. I.e. the red
and yellow line in figure S8b are obtained by inserting the geometric capacitances of this
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Figure S8: a) G(Vt, Vb) for the third device with a global topgate. b) Device 3 with calculated
zero density lines nt = 0 and nb = 0. c) Numerical derivative dG/dVt of the data.

specific device into equation S6. We use εr = 9.5 for the AlOx layer. At the marked positions
of gap closing in the top/bottom layer we find:

Et = 0.13 V/nm

Eb = −0.14 V/nm

With a slope of with a slope of 195 meV/(Vnm−1) we find gaps of:

∆t = 25 meV

∆b = 27 meV.

Gate maps at different temperatures
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Figure S9: G(Vt, Vb) of device 3 at different temperatures.

In figure S9 we show the gate-gate map G(Vt, Vb) of device 3 at different temperatures,
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ranging from 2.2 K to 91 K.

Density functional theory methods

Computational details

Density functional theory calculations were performed for a structure of twisted double
bilayer graphene with a relative rotation angle between the two Bernal stacked bilayers of
13 degrees. The unit cell consists on 152 carbon atoms, and the structure was fully relaxed
including van der Waals forces using the Grimme scheme.3,4 The first principles calculations
were performed with the plane-wave pseudopotential formalism as implemented in Quantum
Espresso,5,6 using ultrasoft pseudopotentials7,8 and PBEsol exchange correlation functional.9

Figure S10: a) Average electrostatic potential in the z-direction as obtained from density
functional theory. The dashed lines show the location of each graphene layer, and the Fermi
energy corresponds to Vz = 0. Panel b) shows a sketch of the origin of the crytal field effect,
highlighting that Wannier orbitals in the outer layers will feel a higher electrostatic potential,
effectively increase the onsite energy in the outer layers and creating a small negative charge
in the inner layers.

Microscopic origin of the crystal field effect

We now address the microscopic origin of the crystal field contribution in the TDBG using
as starting point the first principles results, which can be easily rationalized combining the
selfconsistent Khon-Sham potential with first order perturbation theory.

We start with V (x, y, z) the electronic potential as obtained from solving the Khon-Sham
equations with density functional theory, which gives access to the effective potential in each
point of the space in the twisted bilayer unit cell. We define the average potential in the
xy-plane, parallel to the graphene planes as

Vz(z) =
1

A

∫
UC

V (x, y, z)dxdy (S12)
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where
∫
UC

denotes integral of the TDBG unit cell and A is the area of the unit cell in the xy
plane. The previous average potential as obtained from the first principles method is shown
in Fig. S10a. We now take a Ψi(z) the Wannier wavefunction of an electron localized in
layer i, where we have integrated out the xy dependence, and we assume to have analogous
z−profiles for the four different layers. The onsite energies α, β in layer 1 and 2 can be
computed as

α =
∫
Vz(z)|Ψ1(z)|2dz

β =
∫
Vz(z)|Ψ2(z)|2dz (S13)

with the onsite difference between the layers δ = α− β. It can be easily seen by inspection
of the potential profile Vz of Fig. S10a that the integrals α and β will give different results.
In particular, since the layer 1 is closer to the outer region with higher potential, the onsite
energy of the outer layers will be higher than the one of the inner layers (Fig. S10b). This
yields that for electrons it is energetically favorable to sit in the two inner layers, creating
a small internal electric field that yields the inner layers negatively charged and the outer
ones positively charged.

Influence of the hBN substrate

Estimate from monolayer graphene encapsulated in hBN

Figure S11: a) Representation of the crystal structure to qualitatively estimate the effect
of hBN on the crystal fields. The free-standing graphene is separated by vacuum from
the encapsulated graphene and the two systems are decoupled. b) Band structures of the
structure represented in figure a), calculated with DFT.

In the first principle calculations, the top and bottom hBN is neglected in order to re-
duce the computational cost of the problem. But, because the presence of the hBN lattices
influence the crystal field effect, it is relevant to understand their impact. For this reason
we compute a structure that allows to estimate their effect on a single layer of graphene,
and compare it with the energy dispersion of free standing graphene. Such a structure is
schematically represented in figure S11, where the two SLGs are spatially separated by a
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large distance. In this way we compute a unit cell with two decoupled graphene layers, an
encapsulated and a free-standing one, such that we obtain the energy differenece of the two
situations (figure S11). The result shows a splitting of ∼ 120 meV between the Dirac points
of the two SLGs, where the encapsulated graphene has a lower energy. From this observation
we deduce that one hBN layer can shift the potential of a graphene layer in its vicinity by
∼ 60 meV. Therefore, each hBN layer reduces the electrostatic potential of a neighboring
graphene layer by 60 meV
By simply subtracting the previous 60 meV from the gap computed with free-standing tBBG,
we estimate ∆0 ≈ 20 meV for encapsulated tBBG, which is of the same order as the exper-
imentally measured gap. Notice that, in order to have a small enough unit cell, we had to
stretch the bonds of the hBN lattice.

Full calculation of twisted double bilayer graphene encapsulated in hBN

Figure S12: a,b) Sketch of the twisted double bilayer structure without the hBN encapsu-
lation and a rotation angle of 21.8◦. Panels c,d) show the first principles band structure,
showing that the top of the valence band is localized in the two inner layers, which is asso-
ciated with the crystal field induced gap.

We now address from first principles a twisted double bilayer together with the hBN
encapsulation. Since the calculations involving hBN are computationally expensive, here we
will focus on an encapsulated double bilayer structure with a rotation angle of 21.8◦, i.e. a
large angle double bilayer which shows an analogous crystal field induced gap to the exper-
imental situation. For the sake of completeness, we will compare the electronic structure
of such twisted double bilayer with and without the hBN encapsulation, showing that no
qualitative change is introduced by the hBN substrate. We first focus on the twisted double
bilayer without hBN encapsulation and a rotation angle of 21.8◦ (Fig. S12a,b). As shown
in the first principles band structures of Fig. S12c,d, an analogous crystal field induced gap
appears in the system, creating a small charge imbalance between the inner and outer layers.

14



Figure S13: a,b) Sketch of the twisted double bilayer structure with the hBN encapsulation
and a rotation angle of 21.8◦. The first principles band structure c,d) shows an analogous
behavior to the case without hBN, but presenting a smaller crystal-field induced gap.

This is the same phenomenology as it was observed in the twisted structure at 13 degrees
rotation, which highlights that the crystal field induced gap happens for generic large angles.
We now move on to the twisted double bilayer with hBN encapsulation and a rotation angle
of 21.8◦ (Fig. S13a,b). In this situation, we also observe a crystal field induced gap in the
encapsulated twisted double bilayer (Fig. S13c,d), similar to the one found without the
encapsulation. The top of the valence band is also localized in the inner layers, showing
that this encapsulated system will also present a small charge imbalance. The effect of the
hBN is to slightly decrease the value of the crystal field induced gap, yet without creating a
qualitative change in the electronic structure.
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