Electronic Supplementary Information (ESI)

An Asymmetric Supercapacitor Based on a Non-Calcined 3D Pillared Cobalt(II) Metal-Organic Framework with Long Cyclic Stability

Soheila Sanati, [†] Reza Abazari, [†] Ali Morsali, [†]* Alexander M. Kirillov, [‡] Peter C. Junk[§] and Jun

Wang[§]

⁺Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115–175, Iran

^{*}Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow, 117198, Russia

[§]College of Science & Engineering, James Cook University, Townsville, Queensland 4811, Australia

*E-mail: morsali_a@modares.ac.ir

Materials and physical techniques. All starting materials for the synthesis were purchased from commercial providers and used without further purification. FT-IR spectra were recorded using a Nicolet Fourier Transform IR 100 spectrometer in the 400-4000 cm⁻¹ range using the KBr disk technique. The thermal behavior of the samples was analyzed by a PL-STA 1500 apparatus working under a nitrogen atmosphere and at the heating rate of 10 °C min⁻¹. Powder X-ray diffraction (PXRD) measurements were performed using a Bruker AXS model D8 advanced with monochromated Cu-Kα (λ=1.54056 A) radiation. The N₂ adsorption/desorption isotherms were measured at 77 K using a Micromeritics ASAP 2020 analyzer. The specific surface area was calculated by the Brunauer-Emmett-Teller (BET) method. The inductively coupled plasma (ICP) analysis was performed on a Varian ICP-OES VISTA-PRO CCD instrument. A CHNS Thermo Scientific Flash 2000 elemental analyzer was used to analyze elemental contributions to the samples. Finally, melting points were measured on an Electrothermal 9100 apparatus.

X-ray diffraction structure determinations: Single crystals coated with viscous hydrocarbon oil were mounted on loops. Data of Co(II)-TMU-63 were obtained at -173 °C (100 K) on the MX1 beamline at the Australian Synchrotron operating at 17.4 keV ($\lambda = 0.7109$ Å) with data collection conducted using Blu-Ice control software.^{S1} The diffraction data were processed, reduced and corrected with the XDS software suite.^{S2} The structures were solved by conventional methods and refined by full-matrix least-squares on all *F*² data using SHELX2014,^{S3} in conjunction with the X-Seed^{S4} or Olex2^{S5} graphical user interface. All hydrogen atoms were placed in calculated positions using the riding model. Crystal data and refinement details are given in Table S1. CCDC-1944674 contains the supplementary crystallographic data for this

paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

MOF activation method. Under vacuum, each sample of Co(II)-TMU-63 was heated at 140 °C in an oven for 48 h. When all DMF moieties are removed, the structure experiences no damage or impairment.

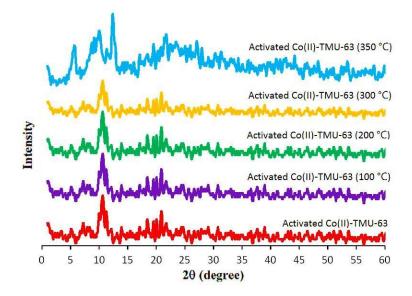


Figure S1. PXRD patterns of Co(II)-TMU-63 at different temperatures.

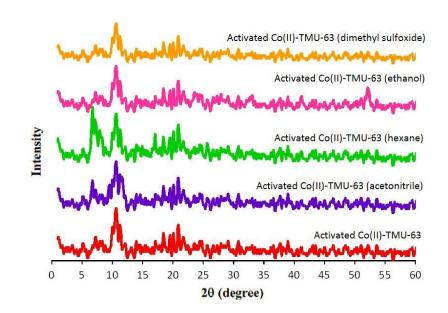


Figure S2. PXRD patterns of Co(II)-TMU-63 after refluxing for 24 h in different solvents.

Figure S3. PXRD patterns of Co(II)-TMU-63 before and after cyclic stability test.

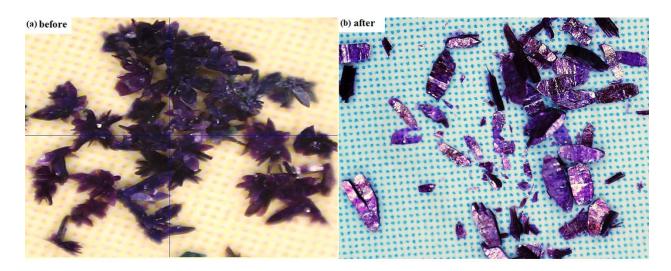
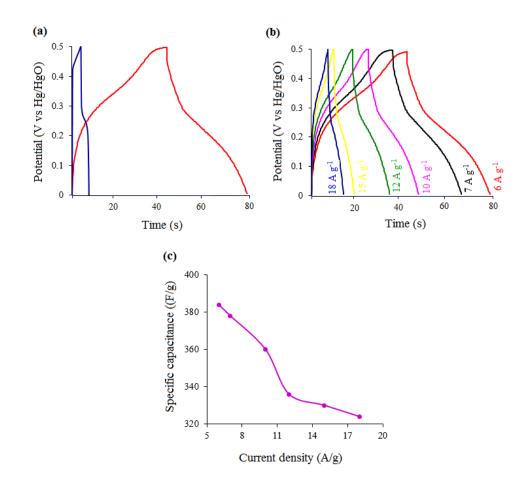



Figure S4. Light microscope image of solvated bulk sample of the Co(II)-TMU-63 crystals (a)

before and (b) after cyclic stability test.

Figure S5. Charge-discharge curves of the Co(II)-TMU-63 electrode material: (a) at 6 A g⁻¹ current density and (b) at various current densities from 6 to 18 A g⁻¹. (c) Relationship of the specific capacitance and current densities from 6 to 18 A g⁻¹.

Table S1. Crystal data and structure refinement for Co(II)-TMU-63.

Identification code	Co(II)-TMU-63
Empirical formula	$C_{20}H_{21}Co_{1.50}N_4O_8$
Formula weight	533.80
Temperature/K	173(2)
Crystal system	monoclinic
Space group	C 2/c
a/Å	31.351(6)
b/Å	9.5960(19)
c/Å	18.028(4)
α/°	90
β/°	118.68(3)
γ/°	90
Volume/Å ³	4758(2)
Z	8
$\rho_{calc}g/cm^3$	1.490
F(000)	2188
Crystal size/mm ³	0.240
Radiation	Mo\a (λ = 0.71073)
20 range for data collection/°	1.481 to 24.99
Index ranges	$-37 \leq h \leq 37, -11 \leq k \leq 11, -21 \leq l \leq 21$
Reflections collected	27245
Independent reflections	11818 [R _{int} = 0.0722, R _{sigma} = 0.1427]
Data/restraints/parameters	4186/9/283
Goodness-of-fit on F ²	1.062
Final R indexes [I>=2σ (I)]	$R_1 = 0.0773$, $wR_2 = 0.1978$
Final R indexes [all data]	$R_1 = 0.0707, wR_2 = 0.2048$
Largest diff. peak/hole / e Å ⁻³	1.923/-1.461

Reference

S1 Cowieson, N. P.; Aragao, D.; Clift, M.; Ericsson, D. J.; Gee, C.; Harrop, S. J.; Mudie, N.; Panjikar, S.; Price, J. R.;

Riboldi-Tunnicliffe, A.; Williamson, R.; Caradoc-Davies, T. J. Synchrotron Rad. 2015, 22, 187–190.

S2 Kabsch, W. J. J. Appl. Cryst. 1993, 26, 795-800.

S3 Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.

S4 Barbour, L. J. J. Supramol. Chem. 2001, 1, 189-191.

S5 Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; J. Howard, A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.