2-Picolinate Decorated Iron–Lanthanide Heterometallic Germanotungstates Including an S-shaped [Ge₂W₂₀O₇₂]¹⁶⁻ Segment

Jun Jiang, Yanhong Chen, Lulu Liu, Lijuan Chen* and Junwei Zhao*

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China. *E-mail: ljchen@henu.edu.cn, zhaojunwei@henu.edu.cn

Supporting Information

Figure S1. Comparison of PXRD patterns for **1** (a), **3** (b), **4** (c), **6** (d), **7** (e) and **10** (f) with simulated X-ray diffraction patterns from single-crystal structural analyses.

Figure S2. (a) Polyoxoanionic skeleton for **10**. (b-d) Coordination spheres of Eu1³⁺, Fe1³⁺ and Fe2³⁺ ions in **10**.

Figure S3. (a) Space packing for **1** with a regular –ABAB– fashion in ab plane. (b) Simplified packing for **1**. (c) Layer A in bc plane. (d) Simplified layer A. (e) Layer B in bc plane. (f) Simplified layer B. (g-h) Representations of 3D stacking for **1** in bc plane. (i) Simplified 3D stacking for **1** in bc plane.

Figure S4. (a) Space packing for **10** with a regular –ABAB–fashion in ab plane. (b) Simplified packing for **10**. (c) Layer A in bc plane. (d) Simplified layer A. (e) Layer B in bc plane. (f) Simplified layer B. (g-h) Representations of 3D stacking for **10** in bc plane. (i) Simplified 3D stacking for **10** in bc plane.

Figure S5. Solid-state excitation spectrum for **3** (λ_{em} = 1056 nm) at room temperature.

Figure S6. Solid-state excitation spectrum for **4** ($\lambda_{em} = 642$ nm) at room temperature.

Figure S7. Solid-state excitation spectrum for 6 ($\lambda_{em} = 543$ nm) at room temperature.

Figure S8. Solid-state excitation spectrum for **10** (λ_{em} = 616 nm) at room temperature.

Figure S9. (a) Solid-state emission spectrum for $K_8[\gamma-GeW_{10}O_{36}]\cdot 6H_2O$ ($\lambda_{ex} = 403$ nm) at room temperature. (b) Luminescence decay profile for $K_8[\gamma-GeW_{10}O_{36}]\cdot 6H_2O$ taken through supervising 470 nm emission.

Figure S10. (a) Solid-state emission spectrum for $K_8[\gamma-\text{GeW}_{10}\text{O}_{36}]\cdot6\text{H}_2\text{O}$ ($\lambda_{ex} = 379$ nm) at room temperature. (b) Luminescence decay profile for $K_8[\gamma-\text{GeW}_{10}\text{O}_{36}]\cdot6\text{H}_2\text{O}$ taken through supervising 470 nm emission.

Figure S11. (a) Solid-state emission spectrum for $K_8[\gamma-GeW_{10}O_{36}]\cdot 6H_2O$ ($\lambda_{ex} = 464$ nm) at room temperature. (b) Luminescence decay profile for $K_8[\gamma-GeW_{10}O_{36}]\cdot 6H_2O$ taken through supervising 530 nm emission.

Figure S12. (a) Solid-state emission spectra for $K_8[\gamma-\text{GeW}_{10}\text{O}_{36}]\cdot6\text{H}_2\text{O}$ ($\lambda_{ex} = 265 \text{ nm}$) at room temperature. (b) Solid-state excitation spectrum for $K_8[\gamma-\text{GeW}_{10}\text{O}_{36}]\cdot6\text{H}_2\text{O}$ ($\lambda_{ex} = 520 \text{ nm}$) at room temperature. (c) Solid-state emission spectrum for Hpic ligand ($\lambda_{ex} = 265 \text{ nm}$) at room temperature.

Figure S13. Excitation spectrogram for **10** (λ_{em} = 616 nm).

Figure S14. (a) The variation tendency of the intensity of emission peaks at 480 nm and 584 nm in the decay time range of 9.0 to 16.5 μ s. (a) The variation tendency of the intensity of emission peaks at 480 nm and 616 nm in the decay time range of 9.0 to 16.5 μ s.

Figure S15. Temperature evolution of the inverse magnetic susceptibility for **6** between o and 300 K. The red solid line was generated from the best fit by the Curie-Weiss expression.

Figure S16. Temperature evolution of the inverse magnetic susceptibility for **10** between 0 and 300 K. The red solid line was generated from the best fit by the Curie–Weiss expression.

Figure S17. IR spectra of 1–10, $K_8Na_2[A-\alpha-GeW_9O_{34}]\cdot 25H_2O$ and $K_8[\gamma-GeW_{10}O_{36}]\cdot 6H_2O$.

Figure S18. TG curves of 1-10.

 Table S1. Crystallographic Data and Structure Refinements for 1–10.

Table S2. Bond Valence Sum (BVS) Calculations of All the W, Fe, Ge and Ln Atoms in 1 and 10.

Materials and methods. All chemicals were commercially purchased and used without further purification. $K_8Na_2[A-\alpha-GeW_9O_{34}]\cdot 25H_2O$ and $K_8[\gamma-GeW_{10}O_{36}]\cdot 6H_2O$ were synthesized as described in the previous literature,¹⁻³ and characterized by IR spectra. Elemental analyses (carbon, hydrogen and nitrogen) were performed on a Vario EL Cube CHNS analyzer. IR spectra were received from a solid sample palletized with KBr on a Nicolet 170 SXFT-IR spectrometer in the range 400–4000 cm⁻¹. PXRD measurements were taken by a Bruker D8 ADVANCE apparatus with Cu K α radiation ($\lambda = 1.54056$ Å) at 293 K. TG analyses were performed under a N₂ atmosphere on a Mettler-Toledo TGA/SDTA 851° instrument with a heating rate of 10 °C min⁻¹ from 25 to 800 °C. Photoluminescence spectra and lifetimes were recorded using an FLS 980 Edinburgh Analytical Instrument apparatus equipped with a 450 W xenon lamp and a µF900H high energy microsecond flashlamp as the excitation sources. Magnetic measurements were carried out with a Quantum Design MPMS-XL-7 magnetometer in the temperature range of 2–300 K.

Preparation of $[La(H_2O)_8]_2H_2[Fe_4(H_2O)_4(pic)_4Ge_2W_{20}O_{72}]\cdot 34H_2O$ (1). A mixture of $K_8Na_2[A-\alpha-GeW_9O_{34}]\cdot 25H_2O$ (1.001 g, 0.621 mmol), $La(NO_3)_3\cdot 6H_2O$ (0.087 g, 0.201 mmol), Hpic (0.125 g, 1.015 mmol) and 10 mL of distilled water was stirred for 0.5 h. The pH value of this system was adjusted to 2.3 using 2 M hydrochloric acid. After stirring for another 0.5 h, FeCl₃·6H2O (0.108g, 0.398 mmol) was added in the mixture, and the pH value at this moment is about 1.2. The reaction mixture was continuously stirred for 0.5 h and sealed in a 25 mL Teflon-lined steel autoclave, kept at 80 °C for 5 d. Then the mixture was cooled to room temperature and yellow block crystals were gathered by filtering, washed with distilled water and dried in air at ambient temperature. Yield: ca. 0.22 g (7.89 %) based on La(NO₃)₃·6H₂O. Elemental analysis (%) calcd: C, 4.15; H, 1.83; N, 0.81; W, 52.99; Ge, 2.09; Fe, 3.22; La, 4.00. Found: C, 4.35; H, 1.93; N, 0.71; W, 52.78; Ge, 1.84; Fe, 3.37; La, 4.18. IR (KBr, cm⁻¹): 3426 (s), 1636 (s), 1602 (s), 1477(w), 1369(m), 1297(w), 948 (s), 806 (s), 695 (m), 648 (m) (Figure Sr7).

Preparation of $[Ce(H_2O)_8]_2H_2[Fe_4(H_2O)_4(pic)_4Ge_2W_{20}O_{72}]\cdot 34H_2O$ (2). The synthetic procedure of 2 is similar to 1 except that La(NO₃)₃·6H₂O was replaced by Ce(NO₃)₃·6H₂O (0.084 g, 0.193 mmol). Yellow block crystals of 2 were obtained. Yield: ca. 0.18 g (6.72 %) based on Ce(NO₃)₃·6H₂O. Elemental analysis (%) calcd: C, 4.15; H, 1.83; N, 0.81; W, 52.97; Ge, 2.09; Fe, 3.22; Ce, 4.04. Found: C, 4.40; H, 1.95; N, 0.66, W, 52.70; Ge, 1.80; Fe, 3.32; Ce, 4.12. IR (KBr, cm⁻¹): 3433 (s), 1632 (s), 1601 (s), 1474(w), 1374(m), 1295(w), 948 (s), 806 (s), 701 (m), 643 (m) (Figure S17).

Preparation of $[Nd(H_2O)_8]_2H_2[Fe_4(H_2O)_4(pic)_4Ge_2W_{20}O_{72}]\cdot 34H_2O$ (3). The synthetic procedure of 3 is similar to 1 except that La(NO₃)₃·6H₂O was replaced by Nd(NO₃)₃·6H₂O (0.085 g, 0.194 mmol). Yellow block crystals of 3 were obtained. Yield: 0.25 g (9.72 %) based on Nd(NO₃)₃·6H₂O. Elemental analysis (%) calcd: C, 4.15; H, 1.83; N, 0.81; W, 52.91; Ge, 2.09; Fe, 3.21; Nd, 4.15. Found: C, 4.31; H, 1.89; N, 0.70, W, 52.72; Ge, 1.89; Fe, 3.35; Nd, 4.30. IR (KBr, cm⁻¹): 3343 (s), 1632 (s), 1601 (s), 1474(w), 1374(m), 1295(w), 953 (s), 806 (s), 695 (m), 648 (m) (Figure S17).

Preparation of $[Sm(H_2O)_8]_2H_2[Fe_4(H_2O)_4(pic)_4Ge_2W_{20}O_{72}]\cdot 34H_2O$ (4). The synthetic procedure of 4 is similar to 1 except that La(NO₃)₃·6H₂O was replaced by Sm(NO₃)₃·6H₂O (0.087 g, 0.196 mmol). Yellow block crystals of 4 were obtained. Yield: 0.38 g (13.93 %) based on Sm(NO₃)₃·6H₂O. Elemental analysis (%) calcd: C, 4.14; H, 1.82; N, 0.80; W, 52.82; Ge, 2.09; Fe, 3.21; Sm, 4.32. Found: C, 4.37 H, 1.86; N, 0.66, W, 52.65; Ge, 1.93; Fe, 3.37; Sm, 4.22. IR (KBr, cm⁻¹): 3396 (s), 1638 (s), 1601 (s), 1480(w), 1369(m), 1295(w), 948 (s), 801 (s), 695 (m), 643 (m) (Figure S17).

Preparation of $[Gd(H_2O)_8]_2H_2[Fe_4(H_2O)_4(pic)_4Ge_2W_{20}O_{72}]\cdot 34H_2O$ (5). The synthetic procedure of 5 is similar to 1 except that La(NO₃)₃·6H₂O was replaced by Gd(NO₃)₃·6H₂O (0.084 g, 0.188 mmol). Yellow block crystals of 5

were obtained. Yield: 0.32 g (12.2 %) based on Gd(NO₃)₃·6H₂O. Elemental analysis (%) calcd: C, 4.13; H, 1.82; N, 0.80; W, 52.71; Ge, 2.08; Fe, 3.20; Gd, 4.51. Found: C, 4.29; H, 1.90; N, 0.70, W, 52.59; Ge, 1.89; Fe, 3.41; Gd, 4.38. IR (KBr, cm⁻¹): 3480 (s), 1638 (s), 1601 (s), 1474(w), 1369(m), 1295(w), 953 (s), 801 (s), 695 (m), 643 (m) (Figure S17).

Preparation of $[Tb(H_2O)_8]_2H_2[Fe_4(H_2O)_4(pic)_4Ge_2W_{20}O_{72}]\cdot 34H_2O$ (6). The synthetic procedure of 6 is similar to 1 except that La(NO₃)₃·6H₂O was replaced by Tb(NO₃)₃·6H₂O (0.086 g, 0.188 mmol). Yellow block crystals of 6 were obtained. Yield: 0.43 g (16.39 %) based on Tb(NO₃)₃·6H₂O. Elemental analysis (%) calcd: C, 4.13; H, 1.82; N, 0.80; W, 52.69; Ge, 2.08; Fe, 3.20; Tb, 4.55. Found: C, 4.33; H, 1.87; N, 0.65, W, 52.53; Ge, 1.84; Fe, 3.27; Tb, 4.46. IR (KBr, cm⁻¹): 3380 (s), 1632 (s), 1601 (s), 1474(w), 1404(m), 1295(w), 953 (s), 806 (s), 695 (m), 643 (m) (Figure S17).

Preparation of $[Dy(H_2O)_8]_2H_2[Fe_4(H_2O)_4(pic)_4Ge_2W_{20}O_{72}]\cdot 34H_2O$ (7). The synthetic procedure of 7 is similar to 1 except that La(NO₃)₃·6H₂O was replaced by Dy(NO₃)₃·6H₂O (0.087 g, 0.188 mmol). Yellow block crystals of 7 were obtained. Yield: 0.28 g (10.66 %) based on Dy(NO₃)₃·6H₂O. Elemental analysis (%) calcd: C, 4.13; H, 1.82; N, 0.80; W, 52.63; Ge, 2.08; Fe, 3.20; Dy, 4.65. Found: C, 4.29; H, 1.93; N, 0.69, W, 52.60; Ge, 1.90; Fe, 3.33; Dy, 4.44. IR (KBr, cm⁻¹): 3417 (s), 1632 (s), 1601 (s), 1480(w), 1389(m), 1295(w), 953 (s), 806 (s), 701 (m), 643 (m) (Figure Sr7).

Preparation of $[\text{Er}(\text{H}_2\text{O})_8]_2\text{H}_2[\text{Fe}_4(\text{H}_2\text{O})_4(\text{pic})_4\text{Ge}_2\text{W}_{20}\text{O}_{72}]\cdot34\text{H}_2\text{O}$ (8). The synthetic procedure of 8 is similar to 1 except that La(NO₃)₃·6H₂O was replaced by $\text{Er}(\text{NO}_3)_3\cdot6\text{H}_2\text{O}$ (0.065 g, 0.141 mmol). Yellow block crystals of 8 were obtained. Yield: 0.42 g (21.27 %) based on $\text{Er}(\text{NO}_3)_3\cdot6\text{H}_2\text{O}$. Elemental analysis (%) calcd: C, 4.12; H, 1.82; N, 0.80; W, 52.56; Ge, 2.07; Fe, 3.19; Er, 4.78. Found: C, 4.26; H, 1.99; N, 0.62, W, 52.44; Ge, 1.87; Fe, 3.31; Er, 4.55. IR (KBr, cm⁻¹): 3389 (s), 1633 (s), 1597 (s), 1476(w), 1374(m), 1295(w), 955 (s), 802 (s), 701 (m), 640 (m) (Figure S17).

Preparation of $[Tm(H_2O)_8]_2H_2[Fe_4(H_2O)_4(pic)_4Ge_2W_{20}O_{72}]\cdot_{34}H_2O$ (9). The synthetic procedure of 9 is similar to 1 except that La(NO₃)₃·6H₂O was replaced by Tm(NO₃)₃·6H₂O (0.065 g, 0.140 mmol). Yellow block crystals of 9 were obtained. Yield: 0.33 g (16.84 %) based on Tm(NO₃)₃·6H₂O. Elemental analysis (%) calcd: C, 4.12; H, 1.81; N, 0.80; W, 52.54; Ge, 2.08; Fe, 3.19; Tm, 4.83. Found: C, 4.33; H, 1.94; N, 0.72, W, 52.44; Ge, 1.93; Fe, 3.27; Tm, 4.69. IR (KBr, cm⁻¹): 3359 (s), 1633 (s), 1600 (s), 1478(w), 1374(m), 1295(w), 952 (s), 799 (s), 701 (m), 640 (m) (Figure Sr7).

Preparation of $[Eu(H_2O)_8]_2H_2[Fe_4(H_2O)_4(pic)_4Ge_2W_{20}O_{72}]\cdot 36H_2O$ (10). The synthetic procedure of 10 is similar to 1 except that $La(NO_3)_3\cdot 6H_2O$ was replaced by $Eu(NO_3)_3\cdot 6H_2O$ (0.085 g, 0.190 mmol). Yellow block crystals of 10 were obtained. Yield: 0.40 g (24.1 %) based on $Eu(NO_3)_3\cdot 6H_2O$. Elemental analysis (%) calcd: C, 4.12; H, 1.87; N, 0.80; W, 52.52; Ge, 2.08; Fe, 3.19; Eu, 4.34. Found: C, 4.36; H, 1.94; N, 0.77, W, 52.61; Ge, 1.89; Fe, 3.06; Eu, 4.26. IR (KBr, cm⁻¹): 3359 (s), 1632 (s), 1598 (s), 1480(w), 1387(m), 1297(w), 954 (s), 807 (s), 701 (m), 644 (m) (Figure S17).

X-ray crystallography. Single-crystal X-ray diffraction data of **1–10** were collected on a Bruker APEX–II CCD detector at 150 K with Mo K α radiation (λ = 0.71073 Å). Direct methods were used to solve their structures and locate the heavy atoms using the SHELXTL-97 program package. The remaining atoms were found from successive full-matrix least-squares refinements on F^2 and Fourier syntheses. Lorentz polarization and SADABS corrections were applied.⁴ All hydrogen atoms attached to carbon and nitrogen atoms were geometrically placed and refined isotropically as a riding model using the default SHELXTL parameters.⁵⁻⁶ No hydrogen atoms associated with water molecules were located from the difference Fourier map. All non-hydrogen atoms were refined anisotropically. In the refinement of **1–9**, eight lattice water molecules per molecule of **1–9** and eighteen lattice water molecules per molecule of **10** were found from the Fourier maps. However, there are still solvent accessible voids accessible solvent

voids in the check cif reports of crystal structures, suggesting that some water molecules should exist in the structures, which can't be found from the weak residual electron peaks. These water molecules are highly disordered and attempts to locate and refine them were unsuccessful. The SQUEEZE program performed in PLATON was further used to calculate and evaluate the possible numbers of the disordered solvent water molecules in the accessible voids of their crystal structures. Based on the electron count and void volume, twenty-six water molecules were directly added to each molecular formula of **1-9** in the revised paper. Similarly, eighteen water molecules were directly added to each molecular formula of **10** in the revised paper, which are basically consistent with the results of elemental analyses and TG analyses. The crystallographic data and structure refinement parameters for **1-10** are demonstrated in Table SI. Crystallographic Data Centre with CCDC 1941771-1941777, 1955082-1955083, 1941778. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc. cam.ac.uk/data_request/cif.

- Haraguchi N.; Okaue Y.; Isobe T.; Matsuda Y.; Stabilization of Tetravalent Cerium upon Coordination of Unsaturated Heteropolytungstate Anions, *Inorg. Chem.* 1994, 33, 1015–1020.
- 2 Bi L. H.; Kortz U.; Nellutla S.; Stowe A. C.; Tol J. v.; Dalal N. S.; Structure, electrochemistry, and magnetism of the Iron(III)-substituted Keggin dimer, $[Fe_6(OH)_3(A-\alpha-GeW_9O_{34}(OH)_3)_2]^{n-}$. *Inorg. Chem.* **2005**, *44*, 896–903.
- 3 Nsouli N. H.; Bassil B. S.; Dickman M. H.; Kortz U.; Keita B.; Nadjo L. Synthesis and structure of dilacunary decatungstogermanate, [γ-GeW₁₀O₃₆]⁸. *Inorg. Chem.* **2006**, *45*, 3858–3860.
- 4 Sheldrick, G. M. SADABS: Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen: Göttingen, Germany, 1996.
- 5 Sheldrick, G. M. SHELXL97, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1997.
- 6 Sheldrick, G. M. SHELXS97, Program for Crystal Structure Solution; University of Göttingen: Göttingen, Germany, 1997.

Figure S1. Comparison of PXRD patterns for **1** (a), **3** (b), **4** (c), **6** (d), **7** (e) and **10** (f) with simulated X-ray diffraction patterns from single-crystal structural analyses.

Figure S2. (a) Polyoxoanionic skeleton for **10**. (b-d) Coordination spheres of Eu1³⁺, Fe1³⁺ and Fe2³⁺ ions in **10**.

In Eu1³⁺ coordination polyhedron in **10**, three side faces of the triangular prism are constituted by the O8W–O7W–O5W–O10W, O5W–O10W–O29–O3W, and O8W–O7W–O3W–O29 groups with standard deviations of 0.0926 Å, 0.3052 Å and 0.1336 Å from their least-square planes, and the dihedral angles between adjacent side faces are 81.2°, 44.8° and 55.0°. The distance between the Eu1³⁺ ion and the above-mentioned three side faces are 0.7963 Å, 1.2589 Å and 0.6336 Å, respectively. O6W, O4W, and O9W are located at the three cap positions over O8W–O7W–O5W–O10W, O5W–O10W– O29–O3W, and O8W–O7W–O3W–O29 groups and the distances from three cap positions to the corresponding side planes are 1.6447 Å, 1.2126 Å and 1.7779 Å, respectively (Figure 2i, S2b). Notably, the O5W–O7W–O3W group and the O8W–O10W–O29 group define two bottom faces of the trigonal prism.

Figure S3. (a) Space packing for 1 with a regular –ABAB– fashion in ab plane. (b) Simplified packing for 1. (c) Layer A in bc plane. (d) Simplified layer A. (e) Layer B in bc plane. (f) Simplified layer B. (g-h) Representations of 3D stacking for 1 in bc plane. (i) Simplified 3D stacking for 1 in bc plane.

Figure S4. (a) Space packing for **10** with a regular –ABAB–fashion in ab plane. (b) Simplified packing for **10**. (c) Layer A in bc plane. (d) Simplified layer A. (e) Layer B in bc plane. (f) Simplified layer B. (g-h) Representations of 3D stacking for **10** in bc plane. (i) Simplified 3D stacking for **10** in bc plane.

Figure S5. Solid-state excitation spectrum for **3** (λ_{em} = 1056 nm) at room temperature.

Figure S6. Solid-state excitation spectrum for 4 (λ_{em} = 642 nm) at room temperature.

Figure S7. Solid-state excitation spectrum for **6** ($\lambda_{em} = 543$ nm) at room temperature.

Figure S8. Solid-state excitation spectrum for **10** (λ_{em} = 616 nm) at room temperature.

Figure S9. (a) Solid-state emission spectrum for $K_8[\gamma-GeW_{10}O_{36}]\cdot 6H_2O$ ($\lambda_{ex} = 403$ nm) at room temperature. (b) Luminescence decay profile for $K_8[\gamma-GeW_{10}O_{36}]\cdot 6H_2O$ taken through supervising 470 nm emission.

Figure S10. (a) Solid-state emission spectrum for $K_8[\gamma-GeW_{10}O_{36}]\cdot 6H_2O$ ($\lambda_{ex} = 379$ nm) at room temperature. (b) Luminescence decay profile for $K_8[\gamma-GeW_{10}O_{36}]\cdot 6H_2O$ taken through supervising 470 nm emission.

Figure S11. (a) Solid-state emission spectrum for $K_8[\gamma-GeW_{10}O_{36}]\cdot 6H_2O$ ($\lambda_{ex} = 464$ nm) at room temperature. (b) Luminescence decay profile for $K_8[\gamma-GeW_{10}O_{36}]\cdot 6H_2O$ taken through supervising 530 nm emission.

Figure S12. (a) Solid-state emission spectra for $K_8[\gamma-GeW_{10}O_{36}]\cdot 6H_2O$ ($\lambda_{ex} = 265$ nm) at room temperature. (b) Solid-state excitation spectrum for $K_8[\gamma-GeW_{10}O_{36}]\cdot 6H_2O$ ($\lambda_{ex} = 520$ nm) at room temperature. (c) Solid-state emission spectrum for Hpic ligand ($\lambda_{ex} = 265$ nm) at room temperature.

Figure S13. Excitation spectrogram for **10** (λ_{em} = 616 nm).

Figure S14. (a) The variation tendency of the intensity of emission peaks at 480 nm and 584 nm in the decay time range of 9.0 to 16.5 μ s. (a) The variation tendency of the intensity of emission peaks at 480 nm and 616 nm in the decay time range of 9.0 to 16.5 μ s.

Figure S15. Temperature evolution of the inverse magnetic susceptibility for **7** between o and 300 K. The red solid line was generated from the best fit by the Curie-Weiss expression.

Figure S16. Temperature evolution of the inverse magnetic susceptibility for **10** between 0 and 300 K. The red solid line was generated from the best fit by the Curie-Weiss expression.

Figure S17. IR spectra of 1–10, $K_8Na_2[A-\alpha-GeW_9O_{34}]\cdot 25H_2O$ and $K_8[\gamma-GeW_{10}O_{36}]\cdot 6H_2O$.

IR spectra

The IR spectra of **1–10** in the range of 4000–400 cm⁻¹ have been recorded using solid samples palletized with KBr (Figure S17). Four characteristic peaks at 953, 806, 695 and 643 cm⁻¹ are respectively attributed to $v(W-O_t)$, v(Ge-O), $v(W-O_b)$ and $v(W-O_c)$ of the GT fragments. In addition, the absorption bands at 1638–1021 cm⁻¹ can be regarded as characteristic peaks of pic ligands. Furthermore, as a rule, the carboxylic group is anticipated to show intense absorption bands from asymmetric (1640–1520 cm⁻¹) and symmetric (1480–1340 cm⁻¹) stretching vibrations. Obviously, the absorption bands observed at 1602–1595 cm⁻¹ and 1411–1369 cm⁻¹ are attributed to the asymmetric [$v_{as}(CO^{2-})$] and symmetric [$v_{sy}(CO^{2-})$] stretching vibrations of carboxylic groups of pic ligands, respectively.¹⁻² In the high wavenumber region, the broad absorption band at around 3250 cm⁻¹ can be regarded as a feature of the lattice and coordinated water molecules.

- 1 An H. Y.; Han Z. B.; Xu T. Q. Three-dimensional architectures based on lanthanide-substituted double Keggin-type polyoxometalates and lanthanide cations or lanthanide-organic complexes. *Inorg. Chem.* 2010, 49, 11403-11414;
- Li C. H.; Huang K. L.; Chi Y. N.; Liu X.; Han Z. G.; Shen L.; Hu C. W. Lanthanide-organic cation frameworks with zeolite gismondine topology and large cavities from intersected channels templated by polyoxometalate counterions. *Inorg. Chem.* 2009, 48, 2010-2017.

Figure S18. TG curves of 1-10.

TG Analyses

For the sake of exploring the thermal stability of **1-10**, TG measurements were carried out from 25 to 700 °C under a N₂ atmosphere at a heating rate of 10 °C min⁻¹. The TG curves suggest that **1–9** undergo a two-step weight loss (Figure Si8). For **1–9**, the first weight loss from 25 to 320 °C of 13.95 % (calcd. 14.27 %) for **1**, 13.90 % (calcd. 14.26 %) for **2**, 13.82 % (calcd. 14.25 %) for **3**, 13.05 % (calcd. 14.22%) for **4**, 13.24 % (calcd. 14.19 %) for **5**, 12.65 % (calcd. 14.19 %) for **6**, 12.85 % (calcd. 14.17 %) for **7**, 13.89 % (calcd. 14.15 %) for **8** and 13.45 % (calcd. 14.15 %) for **9** is attributed to the liberation of thirty-four lattice water molecules, twenty coordinate water molecules and the dehydration of two protons. The first weight loss 13.88 % (calcd. 14.65 %) from 25 to 320 °C for **10** is attributed to the liberation of thirty-six lattice water molecules, twenty coordinate water molecules and the dehydration of two protons. Upon heating to 700 °C, the second weight loss of 20.54 % (calcd. 21.36 %) for **1**, 20.00 % (calcd. 21.35 %) for **2**, 20.10 % (calcd. 21.33 %) for **3**, 19.19 % (calcd. 21.29 %) for **4**, 21.11 % (calcd. 21.25 %) for **5**, 19.66 % (calcd. 21.24 %) for **6**, 19.49 % (calcd. 21.22 %) for **7**, 19.77 % (calcd. 21.18 %) for **8** and 20.27 % (calcd. 21.19 %) for **9** is attributed to four pic ligands.

	1	2	3	4	5
	C. H. Ge Fe I a	C. H. Ge Fe Ce	C. H. Ge Fe Nd	C. H. Ge Fe Sm	C. H. Ge Fe Gd
Empirical formula	$N \cap W$	$N \cap W$	$N \cap W$	$N \cap W$	$N \cap W$
Formula weight	6028 68	604110	6040 24	6061 56	6075 26
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	C2/m	C2/m	C2/m	C2/m	C2/m
a Å	27.0401(6)	26 0272(11)	26 00 42(8)	26 8026(6)	26.8102(5)
	27.0401(0)	20.93/3(11)	20.9043(0)	20.0020(0)	20.0102(5)
	14.0100(3)	14.7422(0)	14.7275(4)	14.0343(3)	14.0501(3)
c, A	20.1043(0)	20.1339(10)	20.1035(5)	20.1350(4)	20.1///(/)
a, deg	90	90	90 10 (18 - a(1a)	90	90
p, deg	124.3240(10)	124.2020(10)	124.1650(10)	124.0160(10)	124.0330(10)
γ , deg	90	90	90	90	90 6==0 =(0)
V, A ³	00/2.5(3)	0012.7(7)	0009.1(3)	0540.3(2)	0570.5(3)
	2	2	2	2	2
μ , mm ⁻¹	18.773	18.985	19.902	19.379	19.424
F(000)	6264	6268	6276.0	6284.0	6292.0
D_{o} g cm ⁻³	3.454	3.480	3.492	3.532	3.526
Т, К	150	150	150	150	150
T · · · · · · · ·	$-32 \le h \le 32$	$-32 \le h \le 32$	$-32 \le h \le 26$	$-31 \le h \le 29$	$-31 \le h \le 31$
Limiting indices	$-17 \le k \le 17$	$-17 \le k \le 17$	$-17 \le k \le 17$	$-17 \le k \le 17$	$-16 \le k \le 17$
	$-24 \le l \le 24$	-24 <= <i>l</i> <= 24	-24 <= <i>l</i> <= 24	-24 <= l <= 23	$-23 \le l \le 24$
Reflections collected/unique	38658 / 6147	29903 / 6081	30979 / 6081	29555 / 6014	41430 / 6046
R _{int}	0.0458	0.0501	0.0357	0.0604	0.0624
Data/restrains/parameters	6147 / 12 / 385	6081 / 0 / 389	6081 / 0 / <u>3</u> 88	6014 / 13 / 388	6046 / o / 388
GOF on F^2	1.040	1.038	1.037	0.989	1.043
$R_1, wR_2 (I > 2\sigma(I))^a$	0.0292, 0.0791	0.0266, 0.0689	0.0244, 0.0627	0.0320, 0.0679	0.0216, 0.0529
R_1, wR_2 (all data)	0.0306, 0.0801	0.0293, 0.0702	0.0263, 0.0638	0.0429, 0.0715	0.0252, 0.0539
	6	7	8	9	10
Empirical formula	6 C ₂₄ H ₁₂₆ Ge ₂ Fe ₄ Tb ₂	$\frac{7}{C_{24}H_{126}Ge_2Fe_4Dy_2}$	8 $C_{24}H_{126}Ge_2Fe_4Tm_2$	9 C ₂₄ H ₁₂₆ Ge ₂ Fe ₄ Er ₂	10 C ₂₄ H ₁₃₀ Ge ₂ Fe ₄ Eu ₂
Empirical formula	6 C ₂₄ H ₁₂₆ Ge ₂ Fe ₄ Tb ₂ N ₄ O ₁₃₄ W ₂₀	$\frac{7}{C_{24}H_{126}Ge_2Fe_4Dy_2}\\N_4O_{134}W_{20}$	8 C ₂₄ H ₁₂₆ Ge ₂ Fe ₄ Tm ₂ N ₄ O ₁₃₄ W ₂₀	9 C ₂₄ H ₁₂₆ Ge ₂ Fe ₄ Er ₂ N ₄ O ₁₃₄ W ₂₀	10 C ₂₄ H ₁₃₀ Ge ₂ Fe ₄ Eu ₂ N ₄ O ₁₃₆ W ₂₀
Empirical formula Formula weight	$\begin{array}{c} 6 \\ C_{24}H_{126}Ge_2Fe_4Tb_2 \\ N_4O_{134}W_{20} \\ 6978.70 \end{array}$	$\begin{array}{c} 7 \\ C_{24}H_{126}Ge_2Fe_4Dy_2 \\ N_4O_{134}W_{20} \\ 6985.86 \end{array}$	8 C ₂₄ H ₁₂₆ Ge ₂ Fe ₄ Tm ₂ N ₄ O ₁₃₄ W ₂₀ 6998.72	9 C ₂₄ H ₁₂₆ Ge ₂ Fe ₄ Er ₂ N ₄ O ₁₃₄ W ₂₀ 6995.18	10 C ₂₄ H ₁₃₀ Ge ₂ Fe ₄ Eu ₂ N ₄ O ₁₃₆ W ₂₀ 7000.81
Empirical formula Formula weight Crystal system	$\begin{array}{c} 6 \\ C_{24}H_{126}Ge_2Fe_4Tb_2 \\ N_4O_{134}W_{20} \\ 6978.70 \\ Monoclinic \end{array}$	$\begin{array}{c} 7 \\ C_{24}H_{126}Ge_{2}Fe_{4}Dy_{2} \\ N_{4}O_{134}W_{20} \\ 6985.86 \\ Monoclinic \end{array}$	8 C ₂₄ H ₁₂₆ Ge ₂ Fe ₄ Tm ₂ N ₄ O ₁₃₄ W ₂₀ 6998.72 Monoclinic	9 C ₂₄ H ₁₂₆ Ge ₂ Fe ₄ Er ₂ N ₄ O ₁₃₄ W ₂₀ 6995.18 Monoclinic	10 C ₂₄ H ₁₃₀ Ge ₂ Fe ₄ Eu ₂ N ₄ O ₁₃₆ W ₂₀ 7000.81 Monoclinic
Empirical formula Formula weight Crystal system Space group	6 C ₂₄ H ₁₂₆ Ge ₂ Fe ₄ Tb ₂ N ₄ O ₁₃₄ W ₂₀ 6978.70 Monoclinic C ₂ /m	$\frac{7}{C_{24}H_{126}Ge_2Fe_4Dy_2}\\ N_4O_{134}W_{20}\\ 6985.86\\ Monoclinic\\ C_2/m$	8 C ₂₄ H ₁₂₆ Ge ₂ Fe ₄ Tm ₂ N ₄ O ₁₃₄ W ₂₀ 6998.72 Monoclinic C ₂ /m	$\begin{array}{c} 9 \\ C_{24}H_{126}Ge_2Fe_4Er_2 \\ N_4O_{134}W_{20} \\ 6995.18 \\ Monoclinic \\ C_2/m \end{array}$	$\begin{array}{c} \textbf{10} \\ C_{24}H_{130}Ge_{2}Fe_{4}Eu_{2} \\ N_{4}O_{136}W_{20} \\ \textbf{7000.81} \\ \textbf{Monoclinic} \\ P_{2}(1)/c \end{array}$
Empirical formula Formula weight Crystal system Space group <i>a</i> , Å	6 C ₂₄ H ₁₂₆ Ge ₂ Fe ₄ Tb ₂ N ₄ O ₁₃₄ W ₂₀ 6978.70 Monoclinic C ₂ /m 26.8034(10)	$\frac{7}{C_{24}H_{126}Ge_2Fe_4Dy_2} \\ N_4O_{134}W_{20} \\ 6985.86 \\ Monoclinic \\ C2/m \\ 26.838(2)$	8 C ₂₄ H ₁₂₆ Ge ₂ Fe ₄ Tm ₂ N ₄ O ₁₃₄ W ₂₀ 6998.72 Monoclinic C ₂ /m 26.8454(7)	9 C ₂₄ H ₁₂₆ Ge ₂ Fe ₄ Er ₂ N ₄ O ₁₃₄ W ₂₀ 6995.18 Monoclinic C ₂ /m 26.9313(8)	10 $C_{24}H_{130}Ge_2Fe_4Eu_2$ $N_4O_{136}W_{20}$ 7000.81 Monoclinic $P_2(1)/c$ 15.2869(4)
Empirical formula Formula weight Crystal system Space group <i>a</i> , Å <i>b</i> , Å	6 C ₂₄ H ₁₂₆ Ge ₂ Fe ₄ Tb ₂ N ₄ O ₁₃₄ W ₂₀ 6978.70 Monoclinic C ₂ /m 26.8034(10) 14.6355(6)	7 C ₂₄ H ₁₂₆ Ge ₂ Fe ₄ Dy ₂ N ₄ O ₁₃₄ W ₂₀ 6985.86 Monoclinic C ₂ /m 26.8 ₃ 8(2) 14.616 ₃ (12)	$\frac{8}{C_{24}H_{126}Ge_2Fe_4Tm_2}$ $N_4O_{134}W_{20}$ 6998.72 Monoclinic C2/m 26.8454(7) 14.6001(4)	9 C ₂₄ H ₁₂₆ Ge ₂ Fe ₄ Er ₂ N ₄ O ₁₃₄ W ₂₀ 6995.18 Monoclinic C ₂ /m 26.9313(8) 13.8212(5)	$\begin{array}{c} \textbf{10} \\ C_{24}H_{130}Ge_2Fe_4Eu_2 \\ N_4O_{136}W_{20} \\ \textbf{7000.81} \\ \textbf{Monoclinic} \\ P_2(1)/c \\ \textbf{15.2869(4)} \\ \textbf{16.7796(4)} \end{array}$
Empirical formula Formula weight Crystal system Space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å	$\frac{6}{C_{24}H_{126}Ge_2Fe_4Tb_2} \\ N_4O_{134}W_{20} \\ 6978.70 \\ Monoclinic \\ C2/m \\ 26.8034(10) \\ 14.6355(6) \\ 20.1830(7) \\ \end{bmatrix}$	$\frac{7}{C_{24}H_{126}Ge_2Fe_4Dy_2} \\ N_4O_{134}W_{20} \\ 6985.86 \\ Monoclinic \\ C2/m \\ 26.838(2) \\ 14.6163(12) \\ 20.215(3) \\ \end{array}$	$\frac{8}{C_{24}H_{126}Ge_2Fe_4Tm_2}$ $N_4O_{134}W_{20}$ 6998.72 Monoclinic C2/m 26.8454(7) 14.6001(4) 20.2286(5)	$\begin{array}{c} 9\\ C_{24}H_{126}Ge_2Fe_4Er_2\\ N_4O_{134}W_{20}\\ 6995.18\\ Monoclinic\\ C2/m\\ 26.9313(8)\\ 13.8212(5)\\ 20.2797(8)\\ \end{array}$	$\begin{array}{c} \textbf{10} \\ \hline C_{24}H_{130}Ge_2Fe_4Eu_2 \\ N_4O_{136}W_{20} \\ \hline \textbf{7000.81} \\ \hline \textbf{Monoclinic} \\ P_2(1)/c \\ 15.2869(4) \\ 16.7796(4) \\ \textbf{25.9984}(6) \end{array}$
Empirical formula Formula weight Crystal system Space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α, deg	$\frac{6}{C_{24}H_{126}Ge_2Fe_4Tb_2}$ N ₄ O ₁₃₄ W ₂₀ 6978.70 Monoclinic C2/m 26.8034(10) 14.6355(6) 20.1830(7) 90	$\frac{7}{C_{24}H_{126}Ge_2Fe_4Dy_2} \\ N_4O_{134}W_{20} \\ 6985.86 \\ Monoclinic \\ C_2/m \\ 26.838(2) \\ 14.6163(12) \\ 20.215(3) \\ 90 \\ \end{bmatrix}$	$\frac{8}{C_{24}H_{126}Ge_2Fe_4Tm_2}$ $N_4O_{134}W_{20}$ 6998.72 Monoclinic C2/m 26.8454(7) 14.6001(4) 20.2286(5) 90	$\begin{array}{c} 9\\ C_{24}H_{126}Ge_2Fe_4Er_2\\ N_4O_{134}W_{20}\\ 6995.18\\ Monoclinic\\ C2/m\\ 26.9313(8)\\ 13.8212(5)\\ 20.2797(8)\\ 90 \end{array}$	$\begin{array}{c} \textbf{10} \\ \hline C_{24}H_{130}Ge_2Fe_4Eu_2 \\ N_4O_{136}W_{20} \\ \hline \textbf{7000.81} \\ \hline \textbf{Monoclinic} \\ P_2(1)/c \\ 15.2869(4) \\ 16.7796(4) \\ 25.9984(6) \\ 90 \end{array}$
Empirical formula Formula weight Crystal system Space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>α</i> , deg <i>β</i> , deg	$\frac{6}{C_{24}H_{126}Ge_2Fe_4Tb_2}$ N ₄ O ₁₃₄ W ₂₀ 6978.70 Monoclinic C2/m 26.8034(10) 14.6355(6) 20.1830(7) 90 123.9320(10)	$\frac{7}{N_4O_{134}H_{126}Ge_2Fe_4Dy_2} \\ N_4O_{134}W_{20} \\ 6985.86 \\ Monoclinic \\ C_2/m \\ 26.838(2) \\ 14.6163(12) \\ 20.215(3) \\ 90 \\ 123.898(2) \\ \end{tabular}$	$\frac{8}{C_{24}H_{126}Ge_2Fe_4Tm_2}$ $N_4O_{134}W_{20}$ 6998.72 Monoclinic C2/m 26.8454(7) 14.6001(4) 20.2286(5) 90 124.0100(10)	$\begin{array}{c} 9\\ C_{24}H_{126}Ge_2Fe_4Er_2\\ N_4O_{134}W_{20}\\ 6995.18\\ Monoclinic\\ C2/m\\ 26.9313(8)\\ 13.8212(5)\\ 20.2797(8)\\ 90\\ 123.0180(10)\\ \end{array}$	$\begin{array}{c} \textbf{10} \\ \hline C_{24}H_{130}Ge_2Fe_4Eu_2 \\ N_4O_{136}W_{20} \\ \hline 7000.81 \\ \hline Monoclinic \\ P_2(1)/c \\ 15.2869(4) \\ 16.7796(4) \\ 25.9984(6) \\ 90 \\ 97.0860(10) \\ \end{array}$
Empirical formula Formula weight Crystal system Space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>α</i> , deg <i>β</i> , deg <i>y</i> , deg	$\begin{array}{c} {\bf 6} \\ {\bf C}_{24}{\bf H}_{126}{\bf G}e_2{\bf F}e_4{\bf T}b_2 \\ {\bf N}_4{\bf O}_{134}{\bf W}_{20} \\ 6978.70 \\ {\bf Monoclinic} \\ {\bf C}_2/m \\ {\bf 26.8034(10)} \\ {\bf 14.6355(6)} \\ {\bf 20.1830(7)} \\ {\bf 90} \\ {\bf 123.9320(10)} \\ {\bf 90} \end{array}$	$\frac{7}{N_4O_{134}H_{126}Ge_2Fe_4Dy_2} \\ N_4O_{134}W_{20} \\ 6985.86 \\ Monoclinic \\ C_2/m \\ 26.838(2) \\ 14.6163(12) \\ 20.215(3) \\ 90 \\ 123.898(2) \\ 90 \\ 123.898(2) \\ 90 \\ 123.898(2) \\ 90 \\ 123.898(2) \\ 90 \\ 123.898(2) \\ 90 \\ 123.898(2) \\ 123$	$\frac{8}{C_{24}H_{126}Ge_2Fe_4Tm_2}$ $N_4O_{134}W_{20}$ 6998.72 Monoclinic C2/m 26.8454(7) 14.6001(4) 20.2286(5) 90 124.0100(10) 90	$\begin{array}{c} 9\\ C_{24}H_{126}Ge_2Fe_4Er_2\\ N_4O_{134}W_{20}\\ 6995.18\\ Monoclinic\\ C2/m\\ 26.9313(8)\\ 13.8212(5)\\ 20.2797(8)\\ 90\\ 123.0180(10)\\ 90 \end{array}$	$\begin{array}{c} \textbf{10} \\ \hline C_{24}H_{130}Ge_2Fe_4Eu_2 \\ N_4O_{136}W_{20} \\ \hline 7000.81 \\ \hline Monoclinic \\ P_2(1)/c \\ 15.2869(4) \\ 16.7796(4) \\ 25.9984(6) \\ 90 \\ 97.0860(10) \\ 90 \\ \end{array}$
Empirical formula Formula weight Crystal system Space group a, Å b, Å c, Å α, \deg β, \deg γ, \deg $V, Å^{-3}$	$\frac{6}{C_{24}H_{126}Ge_2Fe_4Tb_2}$ N ₄ O ₁₃₄ W ₂₀ 6978.70 Monoclinic C ₂ /m 26.8034(10) 14.6355(6) 20.1830(7) 90 123.9320(10) 90 6569.1(4)	$\begin{array}{c} 7\\ C_{24}H_{126}Ge_2Fe_4Dy_2\\ N_4O_{134}W_{20}\\ 6985.86\\ Monoclinic\\ C_2/m\\ 26.838(2)\\ 14.6163(12)\\ 20.215(3)\\ 90\\ 123.898(2)\\ 90\\ 6582.0(12)\\ \end{array}$	$\frac{8}{C_{24}H_{126}Ge_2Fe_4Tm_2}$ N ₄ O ₁₃₄ W ₂₀ 6998.72 Monoclinic C2/m 26.8454(7) 14.6001(4) 20.2286(5) 90 124.0100(10) 90 6572.3(3)	$\begin{array}{c} 9\\ C_{24}H_{126}Ge_2Fe_4Er_2\\ N_4O_{134}W_{20}\\ 6995.18\\ Monoclinic\\ C2/m\\ 26.9313(8)\\ 13.8212(5)\\ 20.2797(8)\\ 90\\ 123.0180(10)\\ 90\\ 6329.5(4)\\ \end{array}$	$\begin{array}{c} \textbf{10} \\ \hline C_{24}H_{130}Ge_2Fe_4Eu_2 \\ N_4O_{136}W_{20} \\ \hline 7000.81 \\ \hline Monoclinic \\ P_2(1)/c \\ 15.2869(4) \\ 16.7796(4) \\ 25.9984(6) \\ 90 \\ 97.0860(10) \\ 90 \\ 6617.9(3) \end{array}$
Empirical formula Formula weight Crystal system Space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>α</i> , deg <i>β</i> , deg <i>γ</i> , deg <i>V</i> , Å ⁻³ <i>Z</i>	$\begin{array}{c} 6\\ C_{24}H_{126}Ge_2Fe_4Tb_2\\ N_4O_{134}W_{20}\\ 6978.70\\ Monoclinic\\ C_2/m\\ 26.8034(10)\\ 14.6355(6)\\ 20.1830(7)\\ 90\\ 123.9320(10)\\ 90\\ 6569.1(4)\\ 2\\ \end{array}$	$\begin{array}{c} 7\\ C_{24}H_{126}Ge_2Fe_4Dy_2\\ N_4O_{134}W_{20}\\ 6985.86\\ Monoclinic\\ C2/m\\ 26.838(2)\\ 14.6163(12)\\ 20.215(3)\\ 90\\ 123.898(2)\\ 90\\ 6582.0(12)\\ 2\end{array}$	$\frac{8}{C_{24}H_{126}Ge_2Fe_4Tm_2}$ $N_4O_{134}W_{20}$ 6998.72 Monoclinic C2/m 26.8454(7) 14.6001(4) 20.2286(5) 90 124.0100(10) 90 6572.3(3) 2	$\begin{array}{c} 9\\ C_{24}H_{126}Ge_2Fe_4Er_2\\ N_4O_{134}W_{20}\\ 6995.18\\ Monoclinic\\ C2/m\\ 26.9313(8)\\ 13.8212(5)\\ 20.2797(8)\\ 90\\ 123.0180(10)\\ 90\\ 6329.5(4)\\ 2\end{array}$	$\begin{array}{c} \textbf{10} \\ \hline C_{24}H_{130}Ge_2Fe_4Eu_2 \\ N_4O_{136}W_{20} \\ \hline 7000.81 \\ \hline Monoclinic \\ P_2(1)/c \\ 15.2869(4) \\ 16.7796(4) \\ 25.9984(6) \\ 90 \\ 97.0860(10) \\ 90 \\ 6617.9(3) \\ 2 \\ \end{array}$
Empirical formula Formula weight Crystal system Space group a, Å b, Å c, Å α, deg β, deg γ, deg $V, Å^{-3}$ Z μ, mm^{-1}	$\frac{6}{C_{24}H_{126}Ge_2Fe_4Tb_2}$ $N_4O_{134}W_{20}$ 6978.70 Monoclinic C2/m 26.8034(10) 14.6355(6) 20.1830(7) 90 123.9320(10) 90 6569.1(4) 2 19.495	$\frac{7}{N_4O_{134}W_{20}}$ $\frac{6985.86}{Monoclinic}$ $\frac{7}{26.838(2)}$ $\frac{14.6163(12)}{20.215(3)}$ $\frac{90}{123.898(2)}$ $\frac{14.6582.0(12)}{20.215(3)}$ $\frac{7}{20}$	$\frac{8}{C_{24}H_{126}Ge_2Fe_4Tm_2}$ $N_4O_{134}W_{20}$ 6998.72 Monoclinic C2/m 26.8454(7) 14.6001(4) 20.2286(5) 90 124.0100(10) 90 6572.3(3) 2 19.759	$\begin{array}{c} 9\\ C_{24}H_{126}Ge_2Fe_4Er_2\\ N_4O_{134}W_{20}\\ 6995.18\\ Monoclinic\\ C2/m\\ 26.9313(8)\\ 13.8212(5)\\ 20.2797(8)\\ 90\\ 123.0180(10)\\ 90\\ 6329.5(4)\\ 2\\ 20.441\\ \end{array}$	$\begin{array}{c} \textbf{10} \\ \hline C_{24}H_{130}Ge_2Fe_4Eu_2 \\ N_4O_{136}W_{20} \\ \hline 7000.81 \\ \hline Monoclinic \\ P_2(1)/c \\ 15.2869(4) \\ 16.7796(4) \\ 25.9984(6) \\ 90 \\ 97.0860(10) \\ 90 \\ 6617.9(3) \\ 2 \\ 19.232 \\ \end{array}$
Empirical formula Formula weight Crystal system Space group a, Å b, Å c, Å α, deg β, deg γ, deg $V, Å^{-3}$ Z μ, mm^{-1} F(000)	$\begin{array}{c} 6\\ C_{24}H_{126}Ge_2Fe_4Tb_2\\ N_4O_{134}W_{20}\\ 6978.70\\ Monoclinic\\ C2/m\\ 26.8034(10)\\ 14.6355(6)\\ 20.1830(7)\\ 90\\ 123.9320(10)\\ 90\\ 6569.1(4)\\ 2\\ 19.495\\ 6216\\ \end{array}$	$\frac{7}{N_4O_{134}W_{20}}$ $\frac{6985.86}{Monoclinic}$ $\frac{7}{26.838(2)}$ $\frac{14.6163(12)}{20.215(3)}$ $\frac{90}{123.898(2)}$ $\frac{123.898(2)}{20.215(3)}$ $\frac{90}{6582.0(12)}$ $\frac{2}{19.517}$ $\frac{6300.0}{6380.0}$	$\frac{8}{C_{24}H_{126}Ge_2Fe_4Tm_2}$ $N_4O_{134}W_{20}$ 6998.72 Monoclinic C2/m 26.8454(7) 14.6001(4) 20.2286(5) 90 124.0100(10) 90 6572.3(3) 2 19.759 6312.0	$\begin{array}{c} 9\\ C_{24}H_{126}Ge_2Fe_4Er_2\\ N_4O_{134}W_{20}\\ 6995.18\\ Monoclinic\\ C2/m\\ 26.9313(8)\\ 13.8212(5)\\ 20.2797(8)\\ 90\\ 123.0180(10)\\ 90\\ 6329.5(4)\\ 2\\ 20.441\\ 6308.0\\ \end{array}$	$\begin{array}{c} \textbf{10} \\ \hline C_{24}H_{130}Ge_2Fe_4Eu_2 \\ N_4O_{136}W_{20} \\ \hline 7000.81 \\ \hline Monoclinic \\ P_2(1)/c \\ 15.2869(4) \\ 16.7796(4) \\ 25.9984(6) \\ 90 \\ 97.0860(10) \\ 90 \\ 6617.9(3) \\ 2 \\ 19.232 \\ 6328.0 \\ \end{array}$
Empirical formula Formula weight Crystal system Space group a, Å b, Å c, Å α, \deg β, \deg γ, \deg $V, Å^{-3}$ Z μ, mm^{-1} F(000) D_{C} g cm ⁻³	$\frac{6}{C_{24}H_{126}Ge_2Fe_4Tb_2}$ N ₄ O ₁₃₄ W ₂₀ 6978.70 Monoclinic C2/m 26.8034(10) 14.6355(6) 20.1830(7) 90 123.9320(10) 90 6569.1(4) 2 19.495 6216 3.428	$\frac{7}{N_4O_{134}W_{20}}$ 6985.86 Monoclinic C_2/m $26.838(2)$ $14.6163(12)$ $20.215(3)$ 90 $123.898(2)$ 90 $6582.0(12)$ 2 19.517 6300.0 3.525	$\frac{8}{C_{24}H_{126}Ge_2Fe_4Tm_2}$ $N_4O_{134}W_{20}$ 6998.72 Monoclinic C2/m 26.8454(7) 14.6001(4) 20.2286(5) 90 124.0100(10) 90 6572.3(3) 2 19.759 6312.0 3.537	$\begin{array}{c} 9\\ C_{24}H_{126}Ge_2Fe_4Er_2\\ N_4O_{134}W_{20}\\ 6995.18\\ Monoclinic\\ C2/m\\ 26.9313(8)\\ 13.8212(5)\\ 20.2797(8)\\ 90\\ 123.0180(10)\\ 90\\ 6329.5(4)\\ 2\\ 20.441\\ 6308.0\\ 3.670\\ \end{array}$	$\begin{array}{c} 10 \\ C_{24}H_{130}Ge_2Fe_4Eu_2 \\ N_4O_{136}W_{20} \\ 7000.81 \\ Monoclinic \\ P_2(1)/c \\ 15.2869(4) \\ 16.7796(4) \\ 25.9984(6) \\ 90 \\ 97.0860(10) \\ 90 \\ 6617.9(3) \\ 2 \\ 19.232 \\ 6328.0 \\ 3.513 \\ \end{array}$
Empirical formula Formula weight Crystal system Space group a, Å b, Å c, Å a, deg β, deg γ, deg $V, Å^{-3}$ Z μ, mm^{-1} F(000) D_{c} g cm ⁻³ T, K	$\frac{6}{C_{24}H_{126}Ge_2Fe_4Tb_2}$ N ₄ O ₁₃₄ W ₂₀ 6978.70 Monoclinic C2/m 26.8034(10) 14.6355(6) 20.1830(7) 90 123.9320(10) 90 6569.1(4) 2 19.495 6216 3.428 150	$\frac{7}{N_4O_{134}W_{20}}$ 6985.86 Monoclinic C_2/m $26.838(2)$ $14.6163(12)$ $20.215(3)$ 90 $123.898(2)$ 90 $6582.0(12)$ 2 19.517 6300.0 3.525 150	$\frac{8}{C_{24}H_{126}Ge_2Fe_4Tm_2}$ N ₄ O ₁₃₄ W ₂₀ 6998.72 Monoclinic C2/m 26.8454(7) 14.6001(4) 20.2286(5) 90 124.0100(10) 90 6572.3(3) 2 19.759 6312.0 3.537 150	$\begin{array}{c} 9\\ C_{24}H_{126}Ge_2Fe_4Er_2\\ N_4O_{134}W_{20}\\ 6995.18\\ Monoclinic\\ C2/m\\ 26.9313(8)\\ 13.8212(5)\\ 20.2797(8)\\ 90\\ 123.0180(10)\\ 90\\ 6329.5(4)\\ 2\\ 20.441\\ 6308.0\\ 3.670\\ 150\\ \end{array}$	$\begin{array}{c} 10\\ C_{24}H_{130}Ge_2Fe_4Eu_2\\ N_4O_{136}W_{20}\\ 7000.81\\ Monoclinic\\ P_2(1)/c\\ 15.2869(4)\\ 16.7796(4)\\ 25.9984(6)\\ 90\\ 97.0860(10)\\ 90\\ 6617.9(3)\\ 2\\ 19.232\\ 6328.0\\ 3.513\\ 150\\ \end{array}$
Empirical formula Formula weight Crystal system Space group a, Å b, Å c, Å a, deg β, deg γ, deg $V, Å^{-3}$ Z μ, mm^{-1} F(000) D_{o} g cm ⁻³ T, K	$\frac{6}{C_{24}H_{126}Ge_2Fe_4Tb_2}$ N ₄ O ₁₃₄ W ₂₀ 6978.70 Monoclinic C2/m 26.8034(10) 14.6355(6) 20.1830(7) 90 123.9320(10) 90 6569.1(4) 2 19.495 6216 3.428 150 -31 ≤ $h \le 31$	$\frac{7}{N_4O_{134}W_{20}}$ 6985.86 Monoclinic C_2/m $26.838(2)$ $14.6163(12)$ $20.215(3)$ 90 $123.898(2)$ 90 $6582.0(12)$ 2 19.517 6300.0 3.525 150 $-26 \le h \le 32$	8 $C_{24}H_{126}Ge_2Fe_4Tm_2$ $N_4O_{134}W_{20}$ 6998.72 Monoclinic C2/m 26.8454(7) 14.6001(4) 20.2286(5) 90 124.0100(10) 90 6572.3(3) 2 19.759 6312.0 3.537 150 -26 ≤ h ≤ 32	9 $C_{24}H_{126}Ge_2Fe_4Er_2$ $N_4O_{134}W_{20}$ 6995.18 Monoclinic C_2/m 26.9313(8) 13.8212(5) 20.2797(8) 90 123.0180(10) 90 6329.5(4) 2 20.441 6308.0 3.670 150 $-32 \le h \le 32$	10 $C_{24}H_{130}Ge_2Fe_4Eu_2$ $N_4O_{136}W_{20}$ 7000.81 Monoclinic $P_2(1)/c$ 15.2869(4) 16.7796(4) 25.9984(6) 90 97.0860(10) 90 6617.9(3) 2 19.232 6328.0 3.513 150 -18 ≤ h ≤ 18
Empirical formula Formula weight Crystal system Space group a, Å b, Å c, Å a, deg β, deg γ, deg $V, Å^{-3}$ Z μ, mm^{-1} F(ooo) D_{c} g cm ⁻³ T, K Limiting indices	$\frac{6}{C_{24}H_{126}Ge_2Fe_4Tb_2}$ N ₄ O ₁₃₄ W ₂₀ 6978.70 Monoclinic C2/m 26.8034(10) 14.6355(6) 20.1830(7) 90 123.9320(10) 90 6569.1(4) 2 19.495 6216 3.428 150 -31 ≤ h ≤ 31 -14 ≤ k ≤ 17	$\frac{7}{N_4O_{134}W_{20}}$ 6985.86 Monoclinic C_2/m $26.838(2)$ $14.6163(12)$ $20.215(3)$ 90 $123.898(2)$ 90 $6582.0(12)$ 2 19.517 6300.0 3.525 150 $-26 \le h \le 32$ $-17 \le k \le 15$	8 $C_{24}H_{126}Ge_2Fe_4Tm_2$ $N_4O_{134}W_{20}$ 6998.72 Monoclinic C_2/m 26.8454(7) 14.6001(4) 20.2286(5) 90 124.0100(10) 90 6572.3(3) 2 19.759 6312.0 3.537 150 $-26 \le h \le 32$ $-17 \le k \le 15$	9 $C_{24}H_{126}Ge_2Fe_4Er_2$ $N_4O_{134}W_{20}$ 6995.18 Monoclinic C_2/m 26.9313(8) 13.8212(5) 20.2797(8) 90 123.0180(10) 90 6329.5(4) 2 20.441 6308.0 3.670 150 $-32 \le h \le 32$ $-16 \le k \le 16$	10 $C_{24}H_{130}Ge_2Fe_4Eu_2$ $N_4O_{136}W_{20}$ 7000.81 Monoclinic $P_2(1)/c$ 15.2869(4) 16.7796(4) 25.9984(6) 90 97.0860(10) 90 6617.9(3) 2 19.232 6328.0 3.513 150 $-18 \le h \le 18$ $-20 \le k \le 10$
Empirical formula Formula weight Crystal system Space group a, Å b, Å c, Å a, deg β, deg γ, deg $V, Å^{-3}$ Z μ, mm^{-1} F(000) D_{c} g cm ⁻³ T, K Limiting indices	$\frac{6}{C_{24}H_{126}Ge_2Fe_4Tb_2}$ N ₄ O ₁₃₄ W ₂₀ 6978.70 Monoclinic C2/m 26.8034(10) 14.6355(6) 20.1830(7) 90 123.9320(10) 90 6569.1(4) 2 19.495 6216 3.428 150 -31 ≤ h ≤ 31 -14 ≤ k ≤ 17 -24 ≤ l ≤ 23	$\frac{7}{N_4O_{134}W_{20}}$ 6985.86 Monoclinic C_2/m $26.838(2)$ $14.6163(12)$ $20.215(3)$ 90 $123.898(2)$ 90 $6582.0(12)$ 2 19.517 6300.0 3.525 150 $-26 \le h \le 32$ $-17 \le k \le 15$ $-24 \le l \le 24$	8 $C_{24}H_{126}Ge_2Fe_4Tm_2$ $N_4O_{134}W_{20}$ 6998.72 Monoclinic C_2/m 26.8454(7) 14.6001(4) 20.2286(5) 90 124.0100(10) 90 6572.3(3) 2 19.759 6312.0 3.537 150 $-26 \le h \le 32$ $-17 \le k \le 15$ $-17 \le k \le 15$	9 $C_{24}H_{126}Ge_2Fe_4Er_2$ $N_4O_{134}W_{20}$ 6995.18 Monoclinic C_2/m 26.9313(8) 13.8212(5) 20.2797(8) 90 123.0180(10) 90 6329.5(4) 2 20.441 6308.0 3.670 150 $-32 \le h \le 32$ $-16 \le k \le 16$ $-10 \le l \le 24$	10 $C_{24}H_{130}Ge_2Fe_4Eu_2$ $N_4O_{136}W_{20}$ 7000.81 Monoclinic $P_2(1)/c$ 15.2869(4) 16.7796(4) 25.9984(6) 90 97.0860(10) 90 6617.9(3) 2 19.232 6328.0 3.513 150 $-18 \le h \le 18$ $-20 \le k \le 19$ $-31 \le l \le 31$
Empirical formula Formula weight Crystal system Space group a, Å b, Å c, Å a, deg β, deg γ, deg γ, deg $V, Å^{-3}$ Z μ, mm^{-1} F(000) D_{c} g cm ⁻³ T, K Limiting indices Reflections collected/unique	$\frac{6}{C_{24}H_{126}Ge_2Fe_4Tb_2}$ N ₄ O ₁₃₄ W ₂₀ 6978.70 Monoclinic C2/m 26.8034(10) 14.6355(6) 20.1830(7) 90 123.9320(10) 90 6569.1(4) 2 19.495 6216 3.428 150 -31 ≤ h ≤ 31 -14 ≤ k ≤ 17 -24 ≤ l ≤ 23 22669 / 6038	$\frac{7}{N_4O_{134}W_{20}}$ $\frac{6}{985.86}$ Monoclinic $\frac{7}{2}m$ $\frac{26.838(2)}{14.6163(12)}$ $\frac{14.6163(12)}{20.215(3)}$ $\frac{90}{123.898(2)}$ $\frac{90}{6582.0(12)}$ $\frac{2}{19.517}$ $\frac{6}{300.0}$ $\frac{3.525}{150}$ $\frac{-26 \le h \le 32}{-17 \le k \le 15}$ $\frac{-24 \le l \le 24}{26121 / 6055}$	8 $C_{24}H_{126}Ge_2Fe_4Tm_2$ $N_4O_{134}W_{20}$ 6998.72 Monoclinic C_2/m 26.8454(7) 14.6001(4) 20.2286(5) 90 124.0100(10) 90 6572.3(3) 2 19.759 6312.0 3.537 150 $-26 \le h \le 32$ $-17 \le k \le 15$ $-24 \le l \le 24$ 23204 / 5080	9 $C_{24}H_{126}Ge_2Fe_4Er_2$ $N_4O_{134}W_{20}$ 6995.18 Monoclinic C_2/m 26.9313(8) 13.8212(5) 20.2797(8) 90 123.0180(10) 90 6329.5(4) 2 20.441 6308.0 3.670 150 $-32 \le h \le 32$ $-16 \le k \le 16$ $-19 \le l \le 24$ 24940 / 5712	10 $C_{24}H_{130}Ge_2Fe_4Eu_2$ $N_4O_{136}W_{20}$ 7000.81Monoclinic $P_2(1)/c$ 15.2869(4)16.7796(4)25.9984(6)9097.0860(10)906617.9(3)219.2326328.03.513150 $-18 \le h \le 18$ $-20 \le k \le 19$ $-31 \le l \le 31$ 69954 / 11450
Empirical formula Formula weight Crystal system Space group a, Å b, Å c, Å α, \deg β, \deg γ, \deg γ, \deg γ, \deg γ, deg γ, deg γ, deg $\gamma, \delta eg$ γ, deg γ, de	$\frac{6}{C_{24}H_{126}Ge_2Fe_4Tb_2}$ N ₄ O ₁₃₄ W ₂₀ 6978.70 Monoclinic C2/m 26.8034(10) 14.6355(6) 20.1830(7) 90 123.9320(10) 90 6569.1(4) 2 19.495 6216 3.428 150 -31 ≤ h ≤ 31 -14 ≤ k ≤ 17 -24 ≤ l ≤ 23 22669 / 6038 0.0461	$\frac{7}{N_4O_{134}W_{20}}$ $\frac{6}{985.86}$ Monoclinic $\frac{7}{2}m$ $\frac{26.838(2)}{14.6163(12)}$ $\frac{14.6163(12)}{20.215(3)}$ $\frac{90}{123.898(2)}$ $\frac{90}{6582.0(12)}$ $\frac{2}{19.517}$ $\frac{6}{300.0}$ $\frac{3.525}{150}$ $\frac{-26 \le h \le 32}{-17 \le k \le 15}$ $\frac{-24 \le l \le 24}{26121 / 6055}$ 0.0610	8 $C_{24}H_{126}Ge_2Fe_4Tm_2$ $N_4O_{134}W_{20}$ 6998.72 Monoclinic C_2/m 26.8454(7) 14.6001(4) 20.2286(5) 90 124.0100(10) 90 6572.3(3) 2 19.759 6312.0 3.537 150 $-26 \le h \le 32$ $-17 \le k \le 15$ $-24 \le l \le 24$ 23204 / 5989 0.0407	9 $C_{24}H_{126}Ge_2Fe_4Er_2$ $N_4O_{134}W_{20}$ 6995.18 Monoclinic C_2/m 26.9313(8) 13.8212(5) 20.2797(8) 90 123.0180(10) 90 6329.5(4) 2 20.441 6308.0 3.670 150 $-32 \le h \le 32$ $-16 \le k \le 16$ $-19 \le l \le 24$ 24940 / 5712 0.0530	10 $C_{24}H_{130}Ge_2Fe_4Eu_2$ $N_4O_{136}W_{20}$ 7000.81Monoclinic $P_2(1)/c$ 15.2869(4)16.7796(4)25.9984(6)9097.0860(10)906617.9(3)219.2326328.03.513150 $-18 \le h \le 18$ $-20 \le k \le 19$ $-31 \le l \le 31$ 69954 / 114590.0468
Empirical formula Formula weight Crystal system Space group a, Å b, Å c, Å α, \deg β, \deg γ, \deg γ, \deg γ, \deg γ, \deg γ, deg γ, deg $\gamma, \delta eg$ $\gamma, \delta eg$ $\gamma, \delta eg$ γ, deg γ, deg λeg z z z z z z z z	$\frac{6}{C_{24}H_{126}Ge_2Fe_4Tb_2}$ N ₄ O ₁₃₄ W ₂₀ 6978.70 Monoclinic C2/m 26.8034(10) 14.6355(6) 20.1830(7) 90 123.9320(10) 90 6569.1(4) 2 19.495 6216 3.428 150 -31 ≤ h ≤ 31 -14 ≤ k ≤ 17 -24 ≤ l ≤ 23 22669 / 6038 0.0461 6028 / 0 / 288	$\frac{7}{N_4O_{134}W_{20}}$ $\frac{6}{985.86}$ Monoclinic $\frac{7}{2}m$ $\frac{26.838(2)}{14.6163(12)}$ $\frac{14.6163(12)}{20.215(3)}$ $\frac{90}{123.898(2)}$ $\frac{90}{6582.0(12)}$ $\frac{2}{19.517}$ $\frac{6}{300.0}$ $\frac{3.525}{150}$ $-26 \le h \le 32$ $-17 \le k \le 15$ $-24 \le l \le 24$ $\frac{26121}{6055}$ 0.6619 $\frac{6055}{55} \le 125$	8 $C_{24}H_{126}Ge_2Fe_4Tm_2$ $N_4O_{134}W_{20}$ 6998.72 Monoclinic C_2/m 26.8454(7) 14.6001(4) 20.2286(5) 90 124.0100(10) 90 6572.3(3) 2 19.759 6312.0 3.537 150 $-26 \le h \le 32$ $-17 \le k \le 15$ $-24 \le l \le 24$ 23204 / 5989 0.0407 5080 / 0 / 284	9 $C_{24}H_{126}Ge_2Fe_4Er_2$ $N_4O_{134}W_{20}$ 6995.18 Monoclinic C_2/m 26.9313(8) 13.8212(5) 20.2797(8) 90 123.0180(10) 90 6329.5(4) 2 20.441 6308.0 3.670 150 $-32 \le h \le 32$ $-16 \le k \le 16$ $-19 \le l \le 24$ 24940 / 5712 0.0530 5712 / 6 / 276	10 $C_{24}H_{130}Ge_2Fe_4Eu_2$ $N_4O_{136}W_{20}$ 7000.81 Monoclinic $P_2(1)/c$ 15.2869(4) 16.7796(4) 25.9984(6) 90 97.0860(10) 90 6617.9(3) 2 19.232 6328.0 3.513 150 $-18 \le h \le 18$ $-20 \le k \le 19$ $-31 \le l \le 31$ 69954 / 11459 0.0468
Empirical formula Formula weight Crystal system Space group a, Å b, Å c, Å α, deg β, deg γ, deg γ, deg $V, Å^{-3}$ Z μ, mm^{-1} F(000) $D_{c}, g cm^{-3}$ T, K Limiting indices Reflections collected/unique R_{int} Data/restrains/parameters GOF on F^2	$\frac{6}{C_{24}H_{126}Ge_2Fe_4Tb_2}$ N ₄ O ₁₃₄ W ₂₀ 6978.70 Monoclinic C2/m 26.8034(10) 14.6355(6) 20.1830(7) 90 123.9320(10) 90 6569.1(4) 2 19.495 6216 3.428 150 -31 ≤ h ≤ 31 -14 ≤ k ≤ 17 -24 ≤ l ≤ 23 22669 / 6038 0.0461 6038 / 0 / 388 L020	$\frac{7}{N_4O_{134}W_{20}}$ $\frac{6}{985.86}$ Monoclinic $\frac{7}{2}$ $\frac{2}{6.838(2)}$ $\frac{1}{4.6163(12)}$ $\frac{2}{20.215(3)}$ $\frac{90}{123.898(2)}$ $\frac{90}{6582.0(12)}$ $\frac{2}{19.517}$ $\frac{6}{300.0}$ $\frac{3.525}{150}$ $\frac{-26 \le h \le 32}{-17 \le k \le 15}$ $\frac{-24 \le l \le 24}{26121 / 6055}$ $\frac{6}{055 / 55 / 425}$ $\frac{1}{1063}$	8 $C_{24}H_{126}Ge_2Fe_4Tm_2$ $N_4O_{134}W_{20}$ 6998.72 Monoclinic C_2/m 26.8454(7) 14.6001(4) 20.2286(5) 90 124.0100(10) 90 6572.3(3) 2 19.759 6312.0 3.537 150 $-26 \le h \le 32$ $-17 \le k \le 15$ $-24 \le l \le 24$ 23204 / 5989 0.0407 5989 / 0 / 384	9 $C_{24}H_{126}Ge_2Fe_4Er_2$ $N_4O_{134}W_{20}$ 6995.18 Monoclinic C_2/m 26.9313(8) 13.8212(5) 20.2797(8) 90 123.0180(10) 90 6329.5(4) 2 20.441 6308.0 3.670 150 $-32 \le h \le 32$ $-16 \le k \le 16$ $-19 \le l \le 24$ 24940 / 5712 0.0530 5712 / 6 / 376 1.056	10 $C_{24}H_{130}Ge_2Fe_4Eu_2$ $N_4O_{136}W_{20}$ 7000.81Monoclinic $P_2(1)/c$ 15.2869(4)16.7796(4)25.9984(6)9097.0860(10)906617.9(3)219.2326328.03.513150 $-18 \le h \le 18$ $-20 \le k \le 19$ $-31 \le l \le 31$ 69954 / 114590.046811459 / 0 / 7421.028
Empirical formula Formula weight Crystal system Space group a, Å b, Å c, Å a, deg β, deg γ, deg γ, deg $\gamma, Å^{-3}$ Z μ, mm^{-1} F(000) D_{c} g cm ⁻³ T, K Limiting indices Reflections collected/unique R_{int} Data/restrains/parameters GOF on F^2 R_{c} wR_{n} $(I > 2\sigma(I))^a$	$\frac{6}{C_{24}H_{126}Ge_2Fe_4Tb_2}$ $N_4O_{134}W_{20}$ 6978.70 Monoclinic C_2/m 26.8034(10) 14.6355(6) 20.1830(7) 90 123.9320(10) 90 6569.1(4) 2 19.495 6216 3.428 150 -31 ≤ h ≤ 31 -14 ≤ k ≤ 17 -24 ≤ l ≤ 23 22669 / 6038 0.0461 6038 / 0 / 388 1.020 9.0372 0 0020	$\frac{7}{N_4O_{134}W_{20}}$ $\frac{6}{985.86}$ Monoclinic $\frac{7}{2}$ $\frac{2}{6.838}(2)$ $\frac{1}{4.6163}(12)$ $\frac{2}{20.215}(3)$ $\frac{90}{123.898}(2)$ $\frac{90}{6582.0}(12)$ $\frac{2}{19.517}$ $\frac{6}{300.0}$ $\frac{3.525}{150}$ $\frac{-26 \le h \le 32}{-17 \le k \le 15}$ $\frac{-24 \le l \le 24}{26121 / 6055}$ $\frac{1}{00}$ $\frac{6}{00} \le 1755$	8 $C_{24}H_{126}Ge_2Fe_4Tm_2$ $N_4O_{134}W_{20}$ 6998.72 Monoclinic C_2/m 26.8454(7) 14.6001(4) 20.2286(5) 90 124.0100(10) 90 6572.3(3) 2 19.759 6312.0 3.537 150 -26 ≤ h ≤ 32 -17 ≤ k ≤ 15 -24 ≤ l ≤ 24 23204 / 5989 0.0407 5989 / 0 / 384 1.069 0.0326, 0.0708	9 $C_{24}H_{126}Ge_2Fe_4Er_2$ $N_4O_{134}W_{20}$ 6995.18 Monoclinic C_2/m 26.9313(8) 13.8212(5) 20.2797(8) 90 123.0180(10) 90 6329.5(4) 2 20.441 6308.0 3.670 150 $-32 \le h \le 32$ $-16 \le k \le 16$ $-19 \le l \le 24$ 24940 / 5712 0.0530 5712 / 6 / 376 1.056 0.0402 0 0.027	10 $C_{24}H_{130}Ge_2Fe_4Eu_2$ $N_4O_{136}W_{20}$ 7000.81Monoclinic $P_2(1)/c$ 15.2869(4)16.7796(4)25.9984(6)9097.0860(10)906617.9(3)219.2326328.03.513150 $-18 \le h \le 18$ $-20 \le k \le 19$ $-31 \le l \le 31$ 69954 / 114590.046811459 / 0 / 7421.0380.0270 0 0 651
Empirical formula Formula weight Crystal system Space group a, Å b, Å c, Å a, deg β, deg γ, deg γ, deg $V, Å^{-3}$ Z μ, mm^{-1} F(000) D_{c} g cm ⁻³ T, K Limiting indices Reflections collected/unique R_{int} Data/restrains/parameters GOF on F^2 $R_1, wR_2 (I>2\sigma(I))^a$	6 $C_{24}H_{126}Ge_2Fe_4Tb_2$ $N_4O_{134}W_{20}$ 6978.70 Monoclinic C_2/m $26.8034(10)$ $14.6355(6)$ $20.1830(7)$ 90 $123.9320(10)$ 90 $6569.1(4)$ 2 19.495 6216 3.428 150 $-31 \le h \le 31$ $-14 \le k \le 17$ $-24 \le l \le 23$ $22669 / 6038$ 0.0461 $6038 / 0 / 388$ 1.020 $0.0372, 0.0920$	$\frac{7}{N_4O_{134}W_{20}}$ $\frac{6}{985.86}$ Monoclinic $\frac{7}{2}$ $\frac{26.838(2)}{14.6163(12)}$ $\frac{20.215(3)}{90}$ $\frac{123.898(2)}{123.898(2)}$ $\frac{90}{6582.0(12)}$ $\frac{2}{19.517}$ $\frac{6}{300.0}$ $\frac{3.525}{150}$ $\frac{-26 \le h \le 32}{-17 \le k \le 15}$ $\frac{-24 \le l \le 24}{26121 / 6055}$ $\frac{6}{055} / 55 / 425$ $\frac{1.063}{0.0627, 0.1755}$ $\frac{6}{0.051}$	8 $C_{24}H_{126}Ge_2Fe_4Tm_2$ $N_4O_{134}W_{20}$ 6998.72 Monoclinic C_2/m 26.8454(7) 14.6001(4) 20.2286(5) 90 124.0100(10) 90 6572.3(3) 2 19.759 6312.0 3.537 150 $-26 \le h \le 32$ $-17 \le k \le 15$ $-24 \le l \le 24$ 23204 / 5989 0.0407 5989 / 0 / 384 1.069 0.0326, 0.07988	9 $C_{24}H_{126}Ge_2Fe_4Er_2$ $N_4O_{134}W_{20}$ 6995.18 Monoclinic C_2/m 26.9313(8) 13.8212(5) 20.2797(8) 90 123.0180(10) 90 6329.5(4) 2 20.441 6308.0 3.670 150 $-32 \le h \le 32$ $-16 \le k \le 16$ $-19 \le l \le 24$ 24940 / 5712 0.0530 5712 / 6 / 376 0.0402, 0.0927 0.0402, 0.0927	10 $C_{24}H_{130}Ge_2Fe_4Eu_2$ $N_4O_{136}W_{20}$ 7000.81Monoclinic $P_2(1)/c$ 15.2869(4)16.7796(4)25.9984(6)9097.0860(10)906617.9(3)219.2326328.03.513150-18 $\leq h \leq 18$ -20 $\leq k \leq 19$ -31 $\leq l \leq 31$ 69954 / 114590.046811459 / 0 / 7421.0380.0279, 0.06210.0682

Table S1. Crystallographic Data and Structure Refinements for 1–10.

Table S2. Bond Valence Sum (BVS) Calculations of All the W, Fe, Ge and Ln Atoms in 1 and 10.

Atom La W1 W2 W3 W4 W5 W6 Ge	Fe
------------------------------	----

BVS(1)	3.18	6.05	6.15	6.18	6.18	6.13	6.08	4.03	2.95
Atom	Eu	W1		W2	W3	W4		W5	W6
BVS(10)	3.07	6	6.12		6.14	6.14		6.13	6.13
Atom	W7	V	W8		W10	Feı		Fe2	Geı
BVS(10)	6.11	6	.10	6.13	6.11	3.11		3.10	4.03