2-Picolinate Decorated Iron-Lanthanide Heterometallic

Germanotungstates Including an S-shaped $\left[\mathrm{Ge}_{2} \mathrm{~W}_{20} \mathrm{O}_{72}\right]^{16-}$ Segment

Jun Jiang, Yanhong Chen, Lulu Liu, Lijuan Chen* and Junwei Zhao*

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People’s Republic of China. *E-mail: ljchen@henu.edu.cn, zhaojunwei@henu.edu.cn

Supporting Information

Figure S1. Comparison of PXRD patterns for 1 (a), 3 (b), 4 (c), 6 (d), 7 (e) and 10 (f) with simulated X-ray diffraction patterns from single-crystal structural analyses.
Figure S2. (a) Polyoxoanionic skeleton for 10. (b-d) Coordination spheres of Eu1 ${ }^{3^{+}}$, $\mathrm{Fe}^{3^{+}}$and Fe^{2+} ions in 10.

Figure S3. (a) Space packing for 1 with a regular -ABAB- fashion in ab plane. (b) Simplified packing for 1. (c) Layer A in bc plane. (d) Simplified layer A. (e) Layer B in bc plane. (f) Simplified layer B. (g-h) Representations of 3^{D} stacking for $\mathbf{1}$ in bc plane. (i) Simplified $3_{3} D$ stacking for $\mathbf{1}$ in bc plane.

Figure S4. (a) Space packing for 10 with a regular -ABAB-fashion in ab plane. (b) Simplified packing for 10. (c) Layer A in bc plane. (d) Simplified layer A. (e) Layer B in bc plane. (f) Simplified layer B. (g-h) Representations of 3^{D} stacking for 10 in bc plane. (i) Simplified 3D stacking for 10 in bc plane.
Figure \mathbf{S}_{5}. Solid-state excitation spectrum for $3\left(\lambda_{\text {em }}=1056 \mathrm{~nm}\right)$ at room temperature.
Figure S6. Solid-state excitation spectrum for $4\left(\lambda_{\mathrm{em}}=642 \mathrm{~nm}\right)$ at room temperature.
Figure S_{7}. Solid-state excitation spectrum for $6\left(\lambda_{\mathrm{em}}=543 \mathrm{~nm}\right)$ at room temperature.
Figure S8. Solid-state excitation spectrum for $10\left(\lambda_{\mathrm{em}}=616 \mathrm{~nm}\right)$ at room temperature.
Figure S9. (a) Solid-state emission spectrum for $\mathrm{K}_{8}\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($\lambda_{\text {ex }}=403 \mathrm{~nm}$) at room temperature. (b) Luminescence decay profile for $\mathrm{K}_{8}\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ taken through supervising 470 nm emission.

Figure Sio. (a) Solid-state emission spectrum for $\mathrm{K}_{8}\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($\lambda_{\text {ex }}=379 \mathrm{~nm}$) at room temperature. (b) Luminescence decay profile for $\mathrm{K}_{8}\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ taken through supervising 470 nm emission.

Figure Sn1. (a) Solid-state emission spectrum for $\mathrm{K}_{8}\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O} \quad\left(\lambda_{\text {ex }}=464 \mathrm{~nm}\right)$ at room temperature. (b) Luminescence decay profile for $\mathrm{K}_{8}\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ taken through supervising 530 nm emission.

Figure S12. (a) Solid-state emission spectra for $\mathrm{K}_{8}\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(\lambda_{\text {ex }}=265 \mathrm{~nm}\right)$ at room temperature.
(b) Solid-state excitation spectrum for $\mathrm{K}_{8}\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(\lambda_{\text {ex }}=520 \mathrm{~nm}\right)$ at room temperature. (c) Solid-state emission spectrum for Hpic ligand ($\lambda_{\text {ex }}=265 \mathrm{~nm}$) at room temperature.
Figure S13. Excitation spectrogram for $10\left(\lambda_{\mathrm{em}}=616 \mathrm{~nm}\right)$.

Figure S14. (a) The variation tendency of the intensity of emission peaks at 480 nm and 584 nm in the decay time range of 9.0 to $16.5 \mu \mathrm{~s}$. (a) The variation tendency of the intensity of emission peaks at 48 onm and 616 nm in the decay time range of 9.0 to $16.5 \mu \mathrm{~s}$.
Figure S15. Temperature evolution of the inverse magnetic susceptibility for $\mathbf{6}$ between o and 300 K . The red solid line was generated from the best fit by the Curie-Weiss expression.

Figure S16. Temperature evolution of the inverse magnetic susceptibility for $\mathbf{1 0}$ between o and 300 K . The red solid line was generated from the best fit by the Curie-Weiss expression.
Figure S17. IR spectra of $\mathbf{1}-\mathbf{1 0}, \mathrm{K}_{8} \mathrm{Na}_{2}\left[\mathrm{~A}-\alpha-\mathrm{GeW}_{9} \mathrm{O}_{34}\right] \cdot 25 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{K}_{8}\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$.
Figure S18. TG curves of $\mathbf{1 - 1 0}$.
Table Sı. Crystallographic Data and Structure Refinements for 1-10.
Table S2. Bond Valence Sum (BVS) Calculations of All the W, Fe, Ge and Ln Atoms in $\mathbf{1}$ and $\mathbf{1 0}$.

Materials and methods. All chemicals were commercially purchased and used without further purification. $\mathrm{K}_{8} \mathrm{Na}_{2}\left[\mathrm{~A}-\alpha-\mathrm{GeW}_{9} \mathrm{O}_{34}\right] \cdot 25 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{K}_{8}\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ were synthesized as described in the previous literature, ${ }^{1-3}$ and characterized by IR spectra. Elemental analyses (carbon, hydrogen and nitrogen) were performed on a Vario EL Cube CHNS analyzer. IR spectra were received from a solid sample palletized with KBr on a Nicolet 170 SXFT-IR spectrometer in the range $400-4000 \mathrm{~cm}^{-1}$. PXRD measurements were taken by a Bruker D8 ADVANCE apparatus with $\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$ radiation ($\lambda=1.54056 \AA$) at $293 \mathrm{~K} . \mathrm{TG}$ analyses were performed under a N_{2} atmosphere on a Mettler-Toledo TGA/SDTA 851^{1} instrument with a heating rate of $10{ }^{\circ} \mathrm{C}$ min^{-1} from 25 to $800{ }^{\circ} \mathrm{C}$. Photoluminescence spectra and lifetimes were recorded using an FLS 980 Edinburgh Analytical Instrument apparatus equipped with a 450 W xenon lamp and a $\mu \mathrm{F} 900 \mathrm{H}$ high energy microsecond flashlamp as the excitation sources. Magnetic measurements were carried out with a Quantum Design MPMS-XL-7 magnetometer in the temperature range of $2-300 \mathrm{~K}$.

Preparation of $\left[\mathbf{L a}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2} \mathrm{H}_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathbf{p i c})_{4} \mathrm{Ge}_{2} \mathrm{~W}_{20} \mathrm{O}_{72}\right] \cdot 34 \mathrm{H}_{2} \mathrm{O}$ (1). A mixture of $\mathrm{K}_{8} \mathrm{Na}_{2}[\mathrm{~A}-\alpha-$ $\left.\mathrm{GeW}_{9} \mathrm{O}_{34}\right] \cdot 25 \mathrm{H}_{2} \mathrm{O}(1.001 \mathrm{~g}, 0.621 \mathrm{mmol}), \mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.087 \mathrm{~g}, 0.201 \mathrm{mmol})$, Hpic ($0.125 \mathrm{~g}, 1.015 \mathrm{mmol}$) and 10 mL of distilled water was stirred for 0.5 h . The pH value of this system was adjusted to 2.3 using 2 M hydrochloric acid. After stirring for another $0.5 \mathrm{~h}, \mathrm{FeCl}_{3} \cdot 6 \mathrm{H} 2 \mathrm{O}$ ($0.108 \mathrm{~g}, 0.398 \mathrm{mmol}$) was added in the mixture, and the pH value at this moment is about 1.2. The reaction mixture was continuously stirred for 0.5 h and sealed in a 25 mL Teflon-lined steel autoclave, kept at $80^{\circ} \mathrm{C}$ for 5 d . Then the mixture was cooled to room temperature and yellow block crystals were gathered by filtering, washed with distilled water and dried in air at ambient temperature. Yield: ca. $0.22 \mathrm{~g}(7.89 \%)$ based on $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Elemental analysis (\%) calcd: $\mathrm{C}, 4.15 ; \mathrm{H}, 1.83 ; \mathrm{N}, 0.81 ; \mathrm{W}, 52.99$; Ge , 2.09; Fe, 3.22; La, 4.0o. Found: C, 4.35; H, 1.93; N, 0.71; W, $52.78 ; \mathrm{Ge}, 1.84 ; \mathrm{Fe}, 3.37$; La, 4.18. IR (KBr, cm^{-1}): 3426 (s), 1636 (s), 1602 (s), 1477 (w), 1369 (m), 1297(w), 948 (s), 806 (s), 695 (m), 648 (m) (Figure Si7).

Preparation of $\left[\mathrm{Ce}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2} \mathrm{H}_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\text { pic }_{4}\right)_{4} \mathrm{Ge}_{2} \mathrm{~W}_{20} \mathrm{O}_{72}\right] \cdot 34 \mathrm{H}_{2} \mathrm{O}(2)$. The synthetic procedure of $\mathbf{2}$ is similar to 1 except that $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was replaced by $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.084 \mathrm{~g}, 0.193 \mathrm{mmol})$. Yellow block crystals of 2 were obtained. Yield: ca. $0.18 \mathrm{~g}\left(6.72\right.$ \%) based on $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Elemental analysis (\%) calcd: $\mathrm{C}, 4.15 ; \mathrm{H}, 1.83 ; \mathrm{N}$, o.81; W, 52.97; Ge, 2.09; Fe, 3.22; Ce, 4.04. Found: C, $4.40 ; \mathrm{H}, 1.95 ; \mathrm{N}, 0.66, \mathrm{~W}, 52.70 ; \mathrm{Ge}, 1.80 ; \mathrm{Fe}, 3.32$; Ce, 4.12 . IR (KBr, cm¹): 3433 (s , $1632(\mathrm{~s}), 1601(\mathrm{~s}), 1474(\mathrm{w}), 1374(\mathrm{~m}), 1295(\mathrm{w}), 948(\mathrm{~s}), 806(\mathrm{~s}), 701(\mathrm{~m}), 643(\mathrm{~m})$ (Figure S17).

Preparation of $\left[\mathrm{Nd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2} \mathrm{H}_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\text { pic })_{4} \mathrm{Ge}_{2} \mathrm{~W}_{20} \mathrm{O}_{72}\right] \cdot 34 \mathrm{H}_{2} \mathrm{O}(3)$. The synthetic procedure of 3 is similar to 1 except that $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was replaced by $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.085 \mathrm{~g}$, 0.194 mmol$)$. Yellow block crystals of 3 were obtained. Yield: $0.25 \mathrm{~g}(9.72 \%)$ based on $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Elemental analysis (\%) calcd: C, $4.15 ; \mathrm{H}, 1.83 ; \mathrm{N}, 0.81$; W, 52.91; Ge, 2.09; Fe, 3.21; Nd, 4.15. Found: C, 4.31; H, 1.89; N, o.70, W, 52.72; Ge, 1.89; Fe, 3.35; Nd, 4.30. IR (KBr, cm^{-1}): $3343(\mathrm{~s}), 1632(\mathrm{~s}), 1601(\mathrm{~s}), 1474(\mathrm{w}), 1374(\mathrm{~m}), 1295(\mathrm{w}), 953(\mathrm{~s}), 806(\mathrm{~s}), 695(\mathrm{~m}), 648(\mathrm{~m})$ (Figure Si7).

Preparation of $\left[\mathrm{Sm}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2} \mathrm{H}_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\text { pic })_{4} \mathrm{Ge}_{2} \mathrm{~W}_{20} \mathrm{O}_{77}\right] \cdot 34 \mathrm{H}_{2} \mathrm{O}(4)$. The synthetic procedure of 4 is similar to 1 except that $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was replaced by $\mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.087 \mathrm{~g}$, 0.196 mmol$)$. Yellow block crystals of 4 were obtained. Yield: $0.38 \mathrm{~g}(13.93 \%)$ based on $\mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Elemental analysis (\%) calcd: $\mathrm{C}, 4.14 ; \mathrm{H}, 1.82 ; \mathrm{N}$, o.80; W, 52.82 ; Ge, 2.09; Fe, 3.21; Sm, 4.32. Found: C, $4.37 \mathrm{H}, 1.86$; N, o.66, W, 52.65 ; Ge, 1.93; Fe, 3.37; Sm, 4.22 . IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3396 (s , 1638 (s), $1601(\mathrm{~s}), 1480(\mathrm{w}), 1369(\mathrm{~m}), 1295(\mathrm{w}), 948(\mathrm{~s}), 801(\mathrm{~s}), 695(\mathrm{~m}), 643$ (m) (Figure Si7).

Preparation of $\left[\mathrm{Gd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2} \mathrm{H}_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{pic})_{4} \mathrm{Ge}_{2} \mathrm{~W}_{20} \mathrm{O}_{72}\right] \cdot 34 \mathrm{H}_{2} \mathrm{O}(5)$. The synthetic procedure of 5 is similar to $\mathbf{1}$ except that $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was replaced by $\mathrm{Gd}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (0.084 g , 0.188 mmol). Yellow block crystals of 5
were obtained. Yield: $0.32 \mathrm{~g}(12.2 \%)$ based on $\mathrm{Gd}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Elemental analysis (\%) calcd: $\mathrm{C}, 4.13 ; \mathrm{H}, 1.82 ; \mathrm{N}, 0.8 \mathrm{o}$; W, 52.71 ; Ge, 2.08; Fe, 3.20; Gd, 4.51. Found: C, 4.29; H, 1.90; N, o.70, W, 22.59 ; Ge, 1.89 ; Fe, 3.41; Gd, 4.38. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3480(\mathrm{~s}), 1638(\mathrm{~s}), 1601(\mathrm{~s}), 1474(\mathrm{w}), 1369(\mathrm{~m}), 1295(\mathrm{w}), 953(\mathrm{~s}), 801(\mathrm{~s}), 695(\mathrm{~m}), 643(\mathrm{~m})$ (Figure S17).

Preparation of $\left[\mathrm{Tb}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2} \mathrm{H}_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\text { pic }_{4}\right)_{4} \mathrm{Ge}_{2} \mathrm{~W}_{20} \mathrm{O}_{72}\right] \cdot 34 \mathrm{H}_{2} \mathrm{O}(6)$. The synthetic procedure of $\mathbf{6}$ is similar to 1 except that $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was replaced by $\mathrm{Tb}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.086 \mathrm{~g}, 0.188 \mathrm{mmol})$. Yellow block crystals of 6 were obtained. Yield: $0.43 \mathrm{~g}(16.39 \%)$ based on $\mathrm{Tb}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Elemental analysis (\%) calcd: $\mathrm{C}, 4.13 ; \mathrm{H}, 1.82 ; \mathrm{N}, 0.80$; W, 52.69 ; Ge, 2.08 ; Fe, 3.20 ; Tb, 4.55 . Found: C, $4.33 ;$ H, 1.87 ; N, $0.65, \mathrm{~W}, 52.53$; Ge, $1.84 ; \mathrm{Fe}, 3.27 ; \mathrm{Tb}, 4.46$. IR (KBr, cm^{-1}): $3380(\mathrm{~s}), 1632(\mathrm{~s}), 1601(\mathrm{~s}), 1474(\mathrm{w}), 1404(\mathrm{~m}), 1295(\mathrm{w}), 953(\mathrm{~s}), 806(\mathrm{~s}), 695(\mathrm{~m}), 643(\mathrm{~m})$ (Figure Si7).

Preparation of $\left[\mathrm{Dy}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2} \mathrm{H}_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\text { pic })_{4} \mathrm{Ge}_{2} \mathrm{~W}_{20} \mathrm{O}_{7}\right] \cdot 34 \mathrm{H}_{2} \mathrm{O}(7)$. The synthetic procedure of 7 is similar to $\mathbf{1}$ except that $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was replaced by $\mathrm{Dy}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.087 \mathrm{~g}$, 0.188 mmol$)$. Yellow block crystals of 7 were obtained. Yield: 0.28 g (10.66 \%) based on Dy $\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Elemental analysis (\%) calcd: C, 4.13; H, 1.82; N, o.80; W, 52.63; Ge, 2.08; Fe, 3.20; Dy, 4.65. Found: C, 4.29; H, 1.93; N, o.69, W, 52.60; Ge, 1.90; Fe, 3.33; Dy, 4.44. IR (KBr, cmri): 3417 (s), 1632 (s), 1601 (s), 1480(w), 1389(m), 1295(w), 953 (s), 806 (s), $701(\mathrm{~m}), 643$ (m) (Figure S17).

Preparation of $\left[E r\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2} \mathrm{H}_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\text { pic })_{4} \mathrm{Ge}_{2} \mathrm{~W}_{20} \mathrm{O}_{72}\right] \cdot 34 \mathrm{H}_{2} \mathrm{O}$ (8). The synthetic procedure of $\mathbf{8}$ is similar to 1 except that $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was replaced by $\mathrm{Er}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (0.065 g , 0.14 mmol). Yellow block crystals of 8 were obtained. Yield: $0.42 \mathrm{~g}(21.27 \%)$ based on $\mathrm{Er}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Elemental analysis (\%) calcd: $\mathrm{C}, 4.12 ; \mathrm{H}, 1.82 ; \mathrm{N}$, o.80; W, 52.56; Ge, 2.07; Fe, 3.19; Er, 4.78. Found: C, 4.26; H, 1.99; N, o.62, W, 52.44; Ge,1.87; Fe, 3.31; Er, 4.55 . IR (KBr, cm^{-1}): $3389(\mathrm{~s}), 1633(\mathrm{~s}), 1597(\mathrm{~s}), 1476(\mathrm{w}), 1374(\mathrm{~m}), 1295(\mathrm{w}), 955(\mathrm{~s}), 802(\mathrm{~s}), 701(\mathrm{~m}), 640(\mathrm{~m})$ (Figure Si7).

Preparation of $\left[\mathbf{T m}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2} \mathrm{H}_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{pic})_{4} \mathrm{Ge}_{2} \mathrm{~W}_{20} \mathrm{O}_{72}\right] \cdot \mathbf{3 4}_{4} \mathrm{H}_{2} \mathrm{O}(\mathbf{9})$. The synthetic procedure of $\mathbf{9}$ is similar to 1 except that $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was replaced by $\mathrm{Tm}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (0.065 g , 0.140 mmol). Yellow block crystals of 9 were obtained. Yield: $0.33 \mathrm{~g}(16.84 \%)$ based on $\mathrm{Tm}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Elemental analysis (\%) calcd: C, $4.12 ; \mathrm{H}$, 1.81; N, o.80; W, 52.54; Ge, 2.08; Fe, 3.19; Tm, 4.83. Found: C, 4.33 ; H, 1.94; N, o.72, W, 52.44; Ge, 1.93; Fe, 3.27; Tm, 4.69. IR (KBr, cmri): 3359 (s), 1633 (s), 1600 (s), 1478(w), 1374(m), 1295(w), $952(\mathrm{~s}), 799(\mathrm{~s}), 701(\mathrm{~m}), 640(\mathrm{~m})$ (Figure Si7).

Preparation of $\left[\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{2} \mathrm{H}_{2}\left[\mathrm{Fe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\text { pic })_{4} \mathrm{Ge}_{2} \mathrm{~W}_{20} \mathrm{O}_{72}\right] \cdot 36 \mathrm{H}_{2} \mathrm{O}(10)$. The synthetic procedure of $\mathbf{1 0}$ is similar to 1 except that $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was replaced by $\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($\left.0.085 \mathrm{~g}, 0.190 \mathrm{mmol}\right)$. Yellow block crystals of 10 were obtained. Yield: $0.40 \mathrm{~g}(24.1 \%)$ based on $\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Elemental analysis (\%) calcd: C, 4.12; H, 1.87; N , o.80; W, 52.52; Ge, 2.08; Fe, 3.19; Eu, 4.34. Found: C, 4.36; H, 1.94; N, o.77, W, 52.61 ; Ge, 1.89; Fe, 3.06; Eu, 4.26 .

X-ray crystallography. Single-crystal X-ray diffraction data of 1-10 were collected on a Bruker APEX-II CCD detector at 150 K with Mo K α radiation ($\lambda=0.71073 \AA$). Direct methods were used to solve their structures and locate the heavy atoms using the SHELXTL-97 program package. The remaining atoms were found from successive full-matrix least-squares refinements on F^{2} and Fourier syntheses. Lorentz polarization and SADABS corrections were applied. ${ }^{4}$ All hydrogen atoms attached to carbon and nitrogen atoms were geometrically placed and refined isotropically as a riding model using the default SHELXTL parameters. 5^{-6} No hydrogen atoms associated with water molecules were located from the difference Fourier map. All non-hydrogen atoms were refined anisotropically. In the refinement of $\mathbf{1 - 9}$, eight lattice water molecules per molecule of 1-9 and eighteen lattice water molecules per molecule of $\mathbf{1 0}$ were found from the Fourier maps. However, there are still solvent accessible voids accessible solvent
voids in the check cif reports of crystal structures, suggesting that some water molecules should exist in the structures, which can't be found from the weak residual electron peaks. These water molecules are highly disordered and attempts to locate and refine them were unsuccessful. The SQUEEZE program performed in PLATON was further used to calculate and evaluate the possible numbers of the disordered solvent water molecules in the accessible voids of their crystal structures. Based on the electron count and void volume, twenty-six water molecules were directly added to each molecular formula of $\mathbf{1 - 9}$ in the revised paper. Similarly, eighteen water molecules were directly added to each molecular formula of $\mathbf{1 0}$ in the revised paper, which are basically consistent with the results of elemental analyses and TG analyses. The crystallographic data and structure refinement parameters for $\mathbf{1 - 1 0}$ are demonstrated in Table S1. Crystallographic data and structure refinements for $\mathbf{1 - 1 0}$ reported in this paper have been deposited in the Cambridge Crystallographic Data Centre with CCDC 1941771-1941777, 1955082-1955083, 1941778. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc. cam.ac.uk/data_request/cif.

1 Haraguchi N.; Okaue Y.; Isobe T.; Matsuda Y.; Stabilization of Tetravalent Cerium upon Coordination of Unsaturated Heteropolytungstate Anions, Inorg. Chem. 1994, 33, 1015-1020.

2 Bi L. H.; Kortz U.; Nellutla S.; Stowe A. C.; Tol J. v.; Dalal N. S.; Structure, electrochemistry, and magnetism of the Iron(III)-substituted Keggin dimer, $\left[\mathrm{Fe}_{6}(\mathrm{OH})_{3}\left(\mathrm{~A}-\alpha-\mathrm{GeW}_{9} \mathrm{O}_{34}(\mathrm{OH})_{3}\right)_{2}\right]^{\text {T- }}$. Inorg. Chem. 2005, 44, 896-903.

3 Nsouli N. H.; Bassil B. S.; Dickman M. H.; Kortz U.; Keita B.; Nadjo L. Synthesis and structure of dilacunary decatungstogermanate, $\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right]^{8-}$. Inorg. Chem. 2006, 45, 3858-3860.

4 Sheldrick, G. M. SADABS: Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen: Göttingen, Germany, 1996.

5 Sheldrick, G. M. SHELXL97, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1997.
6 Sheldrick, G. M. SHELXS97, Program for Crystal Structure Solution; University of Göttingen: Göttingen, Germany, 1997.

Figure S1. Comparison of PXRD patterns for 1 (a), 3 (b), 4 (c), 6 (d), 7 (e) and 10 (f) with simulated X-ray diffraction patterns from single-crystal structural analyses.

Figure S2. (a) Polyoxoanionic skeleton for 10. (b-d) Coordination spheres of Eu1 ${ }^{3^{+}}$, $\mathrm{Fe}^{3^{+}}$and $\mathrm{Fe}^{2+}{ }^{3+}$ ions in 10.

In Eu1 ${ }^{3^{+}}$coordination polyhedron in $\mathbf{1 0}$, three side faces of the triangular prism are constituted by the $\mathrm{O} 8 \mathrm{~W}-\mathrm{O}_{7} \mathrm{~W}-\mathrm{O}_{5} \mathrm{~W}-\mathrm{O}_{10} \mathrm{~W}, \mathrm{O}_{5} \mathrm{~W}-\mathrm{O}_{10} \mathrm{~W}-\mathrm{O}_{29}-\mathrm{O}_{3} \mathrm{~W}$, and $\mathrm{O} 8 \mathrm{~W}-\mathrm{O}_{7} \mathrm{~W}-\mathrm{O}_{3} \mathrm{~W}-\mathrm{O}_{29}$ groups with standard deviations of $0.0926 \AA, 0.3052 \AA$ and $0.1336 \AA$ from their least-square planes, and the dihedral angles between adjacent side faces are $81.2^{\circ}, 44.8^{\circ}$ and 55.0°. The distance between the Eu1 ${ }^{++}$ion and the above-mentioned three side faces are $0.7963 \AA, 1.2589 \AA$ and $0.6336 \AA$, respectively. O6W, O4W, and $\mathrm{O}_{9} \mathrm{~W}$ are located at the three cap positions over $\mathrm{O} 8 \mathrm{~W}-\mathrm{O}_{7} \mathrm{~W}-\mathrm{O}_{5} \mathrm{~W}-\mathrm{O} 10 \mathrm{~W}, \mathrm{O}_{5} \mathrm{~W}-\mathrm{O}_{10} \mathrm{~W}-\mathrm{O}_{29}-\mathrm{O}_{3} \mathrm{~W}$, and $\mathrm{O} 8 \mathrm{~W}-\mathrm{O}_{7} \mathrm{~W}-\mathrm{O}_{3} \mathrm{~W}-\mathrm{O}_{29}$ groups and the distances from three cap positions to the corresponding side planes are $1.6447 \AA, 1.2126 \AA$ and $1.7779 \AA$, respectively (Figure 2i, S2b). Notably, the $\mathrm{O}_{5} \mathrm{~W}-\mathrm{O}_{7} \mathrm{~W}-\mathrm{O}_{3} \mathrm{~W}$ group and the O8W-O1oW-O29 group define two bottom faces of the trigonal prism.

Figure S3. (a) Space packing for 1 with a regular $-A B A B-$ fashion in ab plane. (b) Simplified packing for 1. (c) Layer A in bc plane. (d) Simplified layer A. (e) Layer B in bc plane. (f) Simplified layer B. (g-h) Representations of 3D stacking for $\mathbf{1}$ in bc plane. (i) Simplified 3D stacking for $\mathbf{1}$ in bc plane.

Figure S4. (a) Space packing for 10 with a regular - ABAB -fashion in ab plane. (b) Simplified packing for 10. (c) Layer A in bc plane. (d) Simplified layer A. (e) Layer B in bc plane. (f) Simplified layer B. (g-h) Representations of 3D stacking for $\mathbf{1 0}$ in bc plane. (i) Simplified 3D stacking for $\mathbf{1 0}$ in bc plane.

Figure \mathbf{S}_{5}. Solid-state excitation spectrum for $3\left(\lambda_{\mathrm{em}}=1056 \mathrm{~nm}\right)$ at room temperature.

Figure S6. Solid-state excitation spectrum for $4\left(\lambda_{\mathrm{em}}=642 \mathrm{~nm}\right)$ at room temperature.

Figure S $_{7}$. Solid-state excitation spectrum for $6\left(\lambda_{\mathrm{em}}=543 \mathrm{~nm}\right)$ at room temperature.

Figure S8. Solid-state excitation spectrum for $10\left(\lambda_{\mathrm{em}}=616 \mathrm{~nm}\right)$ at room temperature.

Figure S9. (a) Solid-state emission spectrum for $\mathrm{K}_{8}\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($\lambda_{\text {ex }}=403 \mathrm{~nm}$) at room temperature. (b) Luminescence decay profile for $\mathrm{K}_{8}\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ taken through supervising 47 nm emission.

Figure Sio. (a) Solid-state emission spectrum for $\mathrm{K}_{8}\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($\lambda_{\text {ex }}=379 \mathrm{~nm}$) at room temperature. (b) Luminescence decay profile for $\mathrm{K}_{8}\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ taken through supervising 47 nm emission.

Figure Sin. (a) Solid-state emission spectrum for $\mathrm{K}_{8}\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($\lambda_{\text {ex }}=464 \mathrm{~nm}$) at room temperature. (b) Luminescence decay profile for $\mathrm{K}_{8}\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ taken through supervising 530 nm emission.

Figure S12. (a) Solid-state emission spectra for $\mathrm{K}_{8}\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(\lambda_{\text {ex }}=265 \mathrm{~nm}\right)$ at room temperature.
(b) Solid-state excitation spectrum for $\mathrm{K}_{8}\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(\lambda_{\text {ex }}=520 \mathrm{~nm}\right)$ at room temperature. (c)

Solid-state emission spectrum for Hpic ligand ($\lambda_{\text {ex }}=265 \mathrm{~nm}$) at room temperature.

Figure S13. Excitation spectrogram for $10\left(\lambda_{\mathrm{em}}=616 \mathrm{~nm}\right)$.

Figure S14. (a) The variation tendency of the intensity of emission peaks at 480 nm and 584 nm in the decay time range of 9.0 to $16.5 \mu \mathrm{~s}$. (a) The variation tendency of the intensity of emission peaks at 48 onm and 616 nm in the decay time range of 9.0 to $16.5 \mu \mathrm{~s}$.

Figure S15. Temperature evolution of the inverse magnetic susceptibility for 7 between o and 300 K . The red solid line was generated from the best fit by the Curie-Weiss expression.

Figure S16. Temperature evolution of the inverse magnetic susceptibility for $\mathbf{1 0}$ between o and 300 K . The red solid line was generated from the best fit by the Curie-Weiss expression.

Figure S17. IR spectra of $\mathbf{1 - 1 0}, \mathrm{K}_{8} \mathrm{Na}_{2}\left[\mathrm{~A}-\alpha-\mathrm{GeW}_{9} \mathrm{O}_{34}\right] \cdot 25 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{K}_{8}\left[\gamma-\mathrm{GeW}_{10} \mathrm{O}_{36}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$.

IR spectra

The IR spectra of $\mathbf{1 - 1 0}$ in the range of $4000-400 \mathrm{~cm}^{-1}$ have been recorded using solid samples palletized with KBr (Figure S17). Four characteristic peaks at 953, 806, 695 and $643 \mathrm{~cm}^{-1}$ are respectively attributed to $v\left(W-\mathrm{O}_{\mathrm{t}}\right), v(\mathrm{Ge}-\mathrm{O}), v\left(\mathrm{~W}-\mathrm{O}_{\mathrm{b}}\right)$ and $v\left(\mathrm{~W}-\mathrm{O}_{\mathrm{c}}\right)$ of the GT fragments. In addition, the absorption bands at $1638-1021 \mathrm{~cm}^{-1}$ can be regarded as characteristic peaks of pic ligands. Furthermore, as a rule, the carboxylic group is anticipated to show intense absorption bands from asymmetric ($1640-1520 \mathrm{~cm}^{-1}$) and symmetric (1480-1340 cm^{-1}) stretching vibrations. Obviously, the absorption bands observed at $1602-1595 \mathrm{~cm}^{-1}$ and $1411-1369 \mathrm{~cm}^{-1}$ are attributed to the asymmetric $\left[\mathrm{vas}_{\mathrm{as}}\left(\mathrm{CO}^{2-}\right)\right]$ and symmetric $\left[\mathrm{v}_{\mathrm{sy}}\left(\mathrm{CO}^{2-}\right)\right.$] stretching vibrations of carboxylic groups of pic ligands, respectively. ${ }^{1-2}$ In the high wavenumber region, the broad absorption band at around $3250 \mathrm{~cm}^{-1}$ can be regarded as a feature of the lattice and coordinated water molecules.

1 An H. Y.; Han Z. B.; Xu T. Q. Three-dimensional architectures based on lanthanide-substituted double Keggin-type polyoxometalates and lanthanide cations or lanthanide-organic complexes. Inorg. Chem. 2010, 49, 11403-11414;

2 Li C. H.; Huang K. L.; Chi Y. N.; Liu X.; Han Z. G.; Shen L.; Hu C. W. Lanthanide-organic cation frameworks with zeolite gismondine topology and large cavities from intersected channels templated by polyoxometalate counterions. Inorg. Chem. 2009, 48, 2010-2017.

Figure S18. TG curves of $\mathbf{1 - 1 0}$.

TG Analyses

For the sake of exploring the thermal stability of $\mathbf{1 - 1 0}$, TG measurements were carried out from 25 to $700{ }^{\circ} \mathrm{C}$ under a N_{2} atmosphere at a heating rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$. The TG curves suggest that $\mathbf{1}-\mathbf{9}$ undergo a two-step weight loss (Figure S18). For 1-9, the first weight loss from 25 to $320{ }^{\circ} \mathrm{C}$ of 13.95% (calcd. 14.27 \%) for 1, 13.90% (calcd. 14.26%) for $\mathbf{2}, 13.82 \%$ (calcd. 14.25%) for 3, 13.05% (calcd. 14.22%) for 4, 13.24% (calcd. 14.19%) for 5, 12.65% (calcd. 14.19%) for 6, 12.85% (calcd. 14.17%) for 7, 13.89% (calcd. 14.15%) for 8 and 13.45% (calcd. 14.15%) for 9 is attributed to the liberation of thirty-four lattice water molecules, twenty coordinate water molecules and the dehydration of two protons. The first weight loss 13.88% (calcd. 14.65%) from 25 to $320^{\circ} \mathrm{C}$ for 10 is attributed to the liberation of thirty-six lattice water molecules, twenty coordinate water molecules and the dehydration of two protons. Upon heating to $700{ }^{\circ} \mathrm{C}$, the second weight loss of 20.54 \% (calcd. 21.36 \%) for $\mathbf{1}, 20.00$ \% (calcd. 21.35%) for $\mathbf{2}, 20.10$ \% (calcd. 21.33 \%) for 3, 19.19 \% (calcd. 21.29%) for 4, 21.11% (calcd. 21.25%) for 5, 19.66% (calcd. 21.24%) for 6, 19.49 \% (calcd. 21.22 \%) for 7, 19.77 \% (calcd. 21.18 \%) for 8 and 20.27% (calcd. 21.19%) for 9 is attributed to four pic ligands. Upon heating to $700{ }^{\circ} \mathrm{C}$, the second weight loss of 19.91% (calcd. $\mathbf{2 1 . 6 9} \%$) for 10 is attributed to four pic ligands.

Table S1. Crystallographic Data and Structure Refinements for 1-10.

	1	2	3	4	5
Empirical formula	$\begin{aligned} & \mathrm{C}_{24} \mathrm{H}_{122} \mathrm{Ge}_{2} \mathrm{Fe}_{4} \mathrm{La}_{2} \\ & \mathrm{~N}_{4} \mathrm{O}_{134} \mathrm{~W}_{20} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{24} \mathrm{H}_{126} \mathrm{Ge}_{2} \mathrm{Fe}_{4} \mathrm{Ce}_{2} \\ & \mathrm{~N}_{4} \mathrm{O}_{134} \mathrm{~W}_{20} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{24} \mathrm{H}_{126} \mathrm{Ge}_{2} \mathrm{Fe}_{4} \mathrm{Nd}_{2} \\ & \mathrm{~N}_{4} \mathrm{O}_{134} \mathrm{~W}_{20} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{24} \mathrm{H}_{126} \mathrm{Ge}_{2} \mathrm{Fe}_{4} \mathrm{Sm}_{2} \\ & \mathrm{~N}_{4} \mathrm{O}_{134} \mathrm{~W}_{20} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{24} \mathrm{H}_{126} \mathrm{Ge}_{2} \mathrm{Fe}_{4} \mathrm{Gd}_{2} \\ & \mathrm{~N}_{4} \mathrm{O}_{124} \mathrm{~W}_{20} \end{aligned}$
Formula weight	6938.68	6941.10	6949.34	6961.56	$6975 \cdot 36$
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	C2/m	C2/m	$\mathrm{C}_{2} / \mathrm{m}$	$\mathrm{C}_{2} / \mathrm{m}$	C2/m
a, \AA	27.0401(6)	26.9373(11)	26.9043(8)	26.8026(6)	26.8102(5)
b, Å	14.8180(3)	14.7422(6)	14.7275(4)	14.6343 (3)	14.6561(3)
c, Å	20.1643 (8)	20.1339(16)	20.1635(5)	20.1356(4)	20.1777 (7)
α, deg	90	90	90	90	90
β, deg	124.3240(10)	124.2020(10)	124.1850(10)	124.0180(10)	124.0330(10)
γ, deg	90	90	90	90	90
V, \AA^{-3}	6672.5(3)	6612.7(7)	6609.1(3)	6546.3(2)	6570.5(3)
Z		2	2		2
μ, mm^{-1}	18.773	18.985	19.902	19.379	19.424
F (ooo)	6264	6268	6276.0	6284.0	6292.0
$D_{c}, \mathrm{~g} \mathrm{~cm}^{-3}$	3.454	3.486	3.492	3.532	3.526
T, K	150	150	150	150	150
	$-32 \leq h \leq 32$	-32<= $h<=32$	-32 <= $h<=26$	-31<= $h<=29$	$-31 \leq h \leq 31$
Limiting indices	$-17 \leq k \leq 17$	$-16 \leq k \leq 17$			
	$-24 \leq 1 \leq 24$	$-24<=l<=24$	$-24<=l<=24$	$-24<=l<=23$	$-23 \leq 1 \leq 24$
Reflections collected/unique	$38658 / 6147$	$29903 / 6081$	30979 / 6081	29555 / 6014	41430 / 6046
$R_{\text {int }}$	0.0458	0.0501	0.0357	0.0604	0.0624
Data/restrains/parameters	$6147 / 12 / 385$	6081/ o / 389	$6081 / \mathrm{o} / 388$	6014 / $13 / 388$	6046 / o / 388
GOF on F^{2}	1.040	1.038	1.037	0.989	1.043
$R_{1}, w R_{2}(I>2 \sigma(I))^{\text {a }}$	0.0292, 0.0791	0.0266, 0.0689	0.0244, 0.0627	0.0320, 0.0679	0.0216, 0.0529
$R_{1}, w R_{2}$ (all data)	0.0306, 0.0801	0.0293, 0.0702	0.0263, 0.0638	0.0429, 0.0715	0.0252, 0.0539
	6	7	8	9	10
Empirical formula	$\begin{aligned} & \mathrm{C}_{24} \mathrm{H}_{126} \mathrm{Ge}_{2} \mathrm{Fe}_{4} \mathrm{~Tb}_{2} \\ & \mathrm{~N}_{4} \mathrm{O}_{134} \mathrm{~W}_{20} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{24} \mathrm{H}_{126} \mathrm{Ge}_{2} \mathrm{Fe}_{4} \mathrm{Dy}_{2} \\ & \mathrm{~N}_{4} \mathrm{O}_{134} \mathrm{~W}_{20} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{24} \mathrm{H}_{126} \mathrm{Ge}_{2} \mathrm{Fe}_{4} \mathrm{Tm}_{2} \\ & \mathrm{~N}_{4} \mathrm{O}_{134} \mathrm{~W}_{20} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{24} \mathrm{H}_{126} \mathrm{Ge}_{2} \mathrm{Fe}_{4} \mathrm{Er}_{2} \\ & \mathrm{~N}_{4} \mathrm{O}_{134} \mathrm{~W}_{20} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{24} \mathrm{H}_{130} \mathrm{Ge}_{2} \mathrm{Fe}_{4} \mathrm{Eu}_{2} \\ & \mathrm{~N}_{4} \mathrm{O}_{136} \mathrm{~W}_{20} \end{aligned}$
Formula weight	6978.70	6985.86	6998.72	6995.18	7000.81
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	C2/m	C2/m	C2/m	$\mathrm{C}_{2} / \mathrm{m}$	$\mathrm{P}_{2}(1) / \mathrm{c}$
a, \AA	26.8034(10)	26.838(2)	26.8454 (7)	26.9313(8)	$15.2869(4)$
b, Å	14.6355(6)	14.6163(12)	14.6001(4)	13.8212(5)	16.7796 (4)
c, \AA	20.1830 (7)	20.215 (3)	20.2286(5)	20.2797 (8)	25.9984(6)
α, deg	90	90	90	90	90
β, deg	123.9320(10)	123.898(2)	124.0100(10)	123.0180(10)	97.0860(10)
γ, deg	90	90	90	90	90
V, \AA^{-3}	6569.1(4)	6582.0(12)	6572.3(3)	6329.5(4)	6617.9(3)
Z	2	2	2	2	2
μ, mm^{-1}	19.495	19.517	19.759	20.441	19.232
F (ooo)	6216	6300.0	6312.0	6308.0	6328.0
$D_{c}, \mathrm{~g} \mathrm{~cm}^{-3}$	3.428	3.525	3.537	3.670	3.513
T, K		150	150	150	150
	$-31 \leq h \leq 31$	$-26 \leq h \leq 32$	$-26 \leq h \leq 32$	$-32 \leq h \leq 32$	$-18 \leq h \leq 18$
Limiting indices	$-14 \leq k \leq 17$	$-17 \leq k \leq 15$	$-17 \leq k \leq 15$	$-16 \leq k \leq 16$	$-20 \leq k \leq 19$
	$-24 \leq l \leq 23$	$-24 \leq l \leq 24$	$-24 \leq l \leq 24$	$-19 \leq l \leq 24$	$-31 \leq l \leq 31$
Reflections collected/unique	22669 / 6038	$26121 / 6055$	23204/5989	24940 / 5712	69954 / 11459
$R_{\text {int }}$	0.0461	0.0619	0.0407	0.0530	0.0468
Data/restrains/parameters	6038 / o / 388	6055 / 55 / 425	5989 / o / 384	5712 / 6 / 376	11459 / o / 742
GOF on F^{2}	1.020	1.063	1.069	1.056	1.038
$R_{1}, w R_{2}(I>2 \sigma(I))^{\text {a }}$	0.0372, 0.0920	0.0627, 0.1755	0.0326, 0.0798	0.0402, 0.0927	0.0279, 0.0621
$R_{1}, w R_{2}$ (all data)	0.0416, 0.0944	0.0704, 0.1816	0.0381, 0.0819	0.0576, 0.0988	0.0308, 0.0633

Table S2. Bond Valence Sum (BVS) Calculations of All the W, Fe, Ge and Ln Atoms in $\mathbf{1}$ and $\mathbf{1 0}$.

Atom	La	W_{1}	$\mathrm{~W}_{2}$	$\mathrm{~W}_{3}$	$\mathrm{~W}_{4}$	$\mathrm{~W}_{5}$	W 6	Ge	Fe

BVS(1)	3.18	6.05	6.15	6.18	6.18	6.13	6.08	4.03	2.95
Atom	Eu	W_{1}	$\mathrm{~W}_{2}$	$\mathrm{~W}_{3}$	$\mathrm{~W}_{4}$	$\mathrm{~W}_{5}$	W 6		
$\operatorname{BVS}(\mathbf{1 0})$	3.07	6.12	6.21	6.14	6.14	6.13	6.13		
Atom	W_{7}	W 8	W 9	W 10	$\mathrm{Fe1}$	Fe 2	$\mathrm{Ge1}$		
$\operatorname{BVS}(\mathbf{1 0})$	6.11	6.10	6.13	6.11	3.11	3.10	4.03		

