Supplementary Information

Structural Basis of Inhibitor Selectivity in Human Indoleamine 2,3-Dioxygenase 1 and Tryptophan Dioxygenase

Khoa N. Pham, Ariel Lewis-Ballester, and Syun-Ru Yeh* Department of Physiology and Biophysics Albert Einstein College of Medicine Bronx, NY 10461, USA.

Table S1. Crystallographic data collection and refinement statistics. Values in parenthesis are for highest resolution shell.

	hIDO1-IPD / hIDO1-IPD ₂	hTDO-IPD ^a	hTDO-IPD ₂
PDB Code	6PZ1	6PYZ	6PYY
Data collection			
X-ray source	APS 31-ID-D	APS 31-ID-D	APS 31-ID-D
Wavelength (Å)	0.97931	0.97931	0.97931
Space group	P2 ₁ 2 ₁ 2 ₁	P21212	P2 ₁ 2 ₁ 2
Unit cell dimensions			
a, b, c (Å)	87.5, 97.8, 132.0	143.6, 154.2, 87.9	144.2, 154.0, 88.0
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 90, 90
Resolution (Å)	78.61-2.65	29.86-2.02	29.90-2.40
No of unique reflections	33561 (4816)	127544 (18361)	77243 (11127)
R_{merge} (%)	13.3 (179)	10.9 (213)	14.8 (127)
$R_{pim}(\%)$	8.0 (107)	4.2 (82.9)	8.9 (78.1)
I/σ(I)	7.4 (1.0)	11.3 (1.1)	7.8 (1.4)
CC _{1/2}	0.99 (0.54)	1.00 (0.39)	1.00 (0.39)
Completeness (%)	99.8 (100.0)	99.5 (99.1)	99.9 (99.9)
Redundancy	7.1 (7.2)	7.5 (7.5)	7.2 (7.0)
Refinement			
Resolution (Å)	40.00-2.65	29.86-2.02	29.90-2.40
No of reflections	31777	121109	73360
R_{work}/R_{free}	0.2201/0.2698	0.1893/0.2428	0.1911/0.2374
No of atoms			
Protein	5963	11593	11436
Ligand/Ions	167	304	308
Water	188	1074	412
B factor (mean) (Å ²)	83.5	50.4	53.3
R.m.s. deviations			
Bond lengths (Å)	0.003	0.005	0.008
Bond angles (°)	1.416	1.355	1.692

^{a.} The S_{exo} site is occupied by α -methyl tryptophan that is present in the crystallization solution.

Figure S1. Difference spectra obtained following the titration of ferric hIDO1 with 0-1.2 mM IPD. The spectra were calculated by using the IPD-free spectrum as a reference; only representative spectra are shown here for clarity. The expanded view of the visible bands are shown in the inset.

Figure S2. 2Fo-Fc maps (grey) and Polder maps (magenta) of IPD bound in the S_a and S_i sites in hIDO1. The structure is based on the hIDO1-IPD complex (PDB code: 6PZ1), where only the S_a site is occupied by IPD in subunit A (A), while both the S_a and S_i sites are occupied by IPD in subunit B (B). The electron density maps of IPD bound in the S_a site in both subunits are best modeled with the R enantiomer (see the main text), while that in the S_i site in subunit B can be fitted with either the R or S enantiomer due to the weaker electron density. Here only the R enantiomer is shown. The 2Fo-Fc maps and Polder maps are contoured at 1.0 σ and 5.0 σ , respectively.

Figure S3. 2Fo-Fc maps (grey) and Polder maps (magenta) of IPD bound in the S_a site (A-B) and S_{exo} site (C-D) in hTDO. hTDO is a homo tetramer made up by a dimer of dimers. The electron density maps of IPD bound in the S_a sites (or S_{exo} sites) in all four subunits are comparable. Here we show the electron density maps of IPD bound in the subunit A and B as examples. The electron density maps of IPD bound in the S_a site in (A-B) are taken from the hTDO-IPD complex (PDB code: 6PYZ) with a resolution of 2.02 Å, where only the S_a site is occupied by IPD in each of the four subunits. They are best modeled with the S enantiomer. The right inset in (B) shows the improper fitting of the electron density maps associated with the distal water are shown in blue. The electron density maps of IPD bound in the S_a and S_{exo} sites are occupied by IPD in each of the four subunit in the S_{exo} site in (C-D) are taken from the hTDO-IPD₂ complex (PDB code: 6PYY), where both the S_a and S_{exo} sites are occupied by IPD in each of the four subunits. The electron density maps associated with the distal water are shown in blue. The electron density maps of IPD bound in the S_{exo} sites are occupied by IPD in each of the four subunits. The electron density maps of IPD code: 6PYY), where both the S_a and S_{exo} sites are occupied by IPD in each of the four subunits. The electron density maps are modeled with the S enantiomer. The 2Fo-Fc maps and Polder maps are contoured at 1.0 σ and 5.0 σ , respectively, while the Fo-Fc map in (B) is contoured at 3.0 σ .