## **SUPPLEMENTARY INFORMATION**

## Beyond Ceria: Theoretical Investigation of Isothermal and Near-Isothermal Redox Cycling of Perovskites for Solar Thermochemical Fuel Production

Richard J. Carrillo<sup>a</sup> and Jonathan R. Scheffe<sup>a,\*</sup>

<sup>a</sup>Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville,

Florida, 32611, USA

\*Corresponding author. Phone: +1 352-392-0839; Email Address: jscheffe@ufl.edu.



Figure S1. Partial molar enthalpy change per mole of monoatomic oxygen versus nonstoichiometry for each of the materials considered.



Figure S2. Equilibrium oxygen content of LSMA6464 versus  $pO_2$  at 1473-1773 K. The markers indicate measured data extracted from Takacs *et al.* The solid lines represent defect model fits considering (1) production of doubly ionized oxygen vacancies and reduction of Mn<sup>4+</sup> to Mn<sup>3+</sup> and (2) disproportionation of Mn<sup>3+</sup> to Mn<sup>4+</sup> and Mn<sup>2+</sup>.



Figure S3. Logarithm of the equilibrium constants of oxygen vacancy formation (K<sub>1</sub>) and disproportionation (K<sub>2</sub>) versus inverse temperature for LSMA6464. Markers represent the extracted value at a single temperature and the solid lines represent linear fits.



Figure S4. Equilibrium oxygen content of LCM40 versus  $pO_2$  at 1473-1773 K. The markers indicate measured data extracted from Takacs *et al.* The solid lines represent defect model fits considering (1) production of doubly ionized oxygen vacancies and reduction of Mn<sup>4+</sup> to Mn<sup>3+</sup> and (2) disproportionation of Mn<sup>3+</sup> to Mn<sup>4+</sup> and Mn<sup>2+</sup>.



Figure S5. Logarithm of the equilibrium constants of oxygen vacancy formation (K<sub>1</sub>) and disproportionation (K<sub>2</sub>) versus inverse temperature for LCM40. Markers represent the extracted value at a single temperature and the solid lines represent linear fits.



Figure S6. Equilibrium oxygen content of LCMA6464 versus  $pO_2$  at 1473-1773 K. The markers indicate measured data extracted from Takacs *et al.* The solid lines represent defect model fits considering (1) production of doubly ionized oxygen vacancies and reduction of Mn<sup>4+</sup> to Mn<sup>3+</sup> and (2) disproportionation of Mn<sup>3+</sup> to Mn<sup>4+</sup> and Mn<sup>2+</sup>.



Figure S7. Logarithm of the equilibrium constants of oxygen vacancy formation (K<sub>1</sub>) and disproportionation (K<sub>2</sub>) versus inverse temperature for LCMA6464. Markers represent the extracted value at a single temperature and the solid lines represent linear fits.



Figure S8. Solar-to-fuel energy conversion efficiencies for H<sub>2</sub>O splitting versus operating temperature for isothermal redox cycles using ceria. The reduction  $pO_2$  was  $10^{-6}$  atm and the geometric concentration ratio was 3000. The gas-to-gas heat recovery effectiveness was varied from 0.80 to 0.95. The reduction  $pO_2$  was controlled via (a) inert gas sweeping, (b) a mechanical vacuum pump, (c) an electrochemical oxygen pump, or (d) a thermochemical oxygen pump.

![](_page_8_Figure_0.jpeg)

Figure S9. Solar-to-fuel energy conversion efficiencies for  $H_2O$  splitting versus temperature swing for nonisothermal redox cycles using ceria. The reduction  $pO_2$  was  $10^{-6}$  atm, zero solid-to-solid heat recovery was considered, and the geometric concentration ratio was 3000. The gas-to-gas heat recovery effectiveness was varied from 0.80 to 0.95. The reduction  $pO_2$  was controlled via (a) inert gas sweeping, (b) a mechanical vacuum pump, (c) an electrochemical oxygen pump, or (d) a thermochemical oxygen pump.

![](_page_9_Figure_0.jpeg)

Figure S10. Sensitivity analysis showing  $\eta_{\text{solar-to-fuel}}$  versus an assumed percent decrease in  $\delta_{\text{red}}$  for TSRC with LCM40 and LSMA6464.