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S1. Experimental materials and instruments 

All the solvents and chemical reagents were used directly as received from the commercial 

sources without further purification unless otherwise stated. Porcine liver esterase (PLE) was 

purchased from Sigma-Aldrich (lyophilized powder, ≥15 units/mg solid; Unit definition: One 

unit will hydrolyze 1.0 mole of ethyl butyrate to butyric acid and ethanol per min at pH 8.0 at 

25 ℃). All conjugates were purified with Agilent 1100 Series Liquid Chromatography system, 

equipped with an XTerra C18 RP column and Variable Wavelength detector. The LC-MS 

spectra were obtained with a Waters Acquity Ultra Performance LC with Waters MICROMASS 

detector. 1H NMR spectra were obtained on Varian Unity Inova 400, and TEM images on a 

Morgagni 268 transmission electron microscope.  

 

S2. Synthesis and characterizations 

We synthesized CLsu by acidifying the commercially available chloramphenicol succinate 

sodium. Chloramphenicol succinate sodium (150 mg) was dissolved in distilled water (3 mL), 

and HCl (1 M) was added dropwise until the pH of the mixture was adjusted to 2.0. The 

precipitate was washed several times with distilled water and dried for further use.  

We used solid phase peptide synthesis (SPPS)26 for the synthesis of all pepetide-conjugated 

prodrugs. 2-Chlorotrityl chloride resin (500 mg, 0.5 mmol) was swelled in 10 mL of DCM for 20 

min. The attachment of the first Fmoc protected amino acid (0.5 mmol) to the resin was achieved 

by adding N,N-diisopropylethylamine (DIPEA) (413 L, 2.5 mmol) to the beads in the reaction 

vessel, which was allowed to shake at room temperature for 1 h. After that, the reaction solution 

was drained, followed by washing with DMF (10 mL × 3) and DCM (10 mL × 3). The unreacted 

2-chlorotrityl chloride moieties were capped with a solution of methanol/DIPEA/DCM (v/v/v: 
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3/1/16) for 30 min. The beads were washed with DMF (10 mL × 3). The Fmoc group was 

removed by treating beads with 20% piperidine/DMF (v/v) solution for 20 min at room 

temperature. The solution was drained and washed with DMF (10 mL × 3). The beads were 

reacted with next Fmoc protected amino acid or CLsu (0.5 mmol) by adding HBTU (190 mg, 0.5 

mmol) and N,N-diisopropylethylamine (DIPEA) (413 L, 2.5 mmol) to the beads in the reaction 

vessel, which was allowed to shake at room temperature for 1 h, and the solution was drained. 

Then the product was cleaved from resin with 10 mL of trifluoroacetic acid for 2 h. The solution 

was collected, and the remaining beads were washed with 5 mL of trifluoroacetic acid three 

times. All the solution was combined and trifluoroacetic acid was removed with the N2 flow. The 

residue was then precipitated with diethyl ether. The crude product was purified by reverse phase 

HPLC using HPLC grade acetonitrile and water with supplement of 0.1% trifluoroacetic acid as 

the eluents. 

Synthesis of compound 4b. CLsu was dissolved in DCM. After that, bromotrimethylsilane 

(TMSBr) was added dropwise to afford compound 4b, which was purified by reversed phase 

HPLC using HPLC grade acetonitrile and water with supplement of 0.1% trifluoroacetic acid as 

the eluents. 

Synthesis of compound 4c. CLsu (0.1 mmol), HBTU (0.11 mmol) and DIEA (0.5 mmol) were 

dissolved in DMF (1 mL). The mixture was stirred at room temperature for 30min. Followed by, 

taurine (0.2 mmol) was added to the stirring mixture and stirred continually at room temperature 

for overnight. The solvent was removed by air dry, and then final product was purified by 

reversed phase HPLC using HPLC grade acetonitrile and water with supplement of 0.1% 

trifluoroacetic acid as the eluents. 
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Synthesis of compound 4d. CLsu (0.1 mmol), HBTU (0.11 mmol) and DIEA (0.5 mmol) were 

dissolved in DMF (1 mL). The mixture was stirred at room temperature for 30min. Followed by, 

o-phosphorylethanolamine (0.2 mmol) was added to the stirring mixture and stirred continually 

at room temperature for overnight. The solvent was removed by air dry, and then final product 

was purified by reversed phase HPLC using HPLC grade acetonitrile and water with supplement 

of 0.1% trifluoroacetic acid as the eluents. 

 

S3. Hydrolysis assay 

Wild-type E. coli strains (K12) were harvested by centrifugation and the cell pellets were lysed 

using a sonic device. After centrifugation, the supernatant was collected and the proteinase 

inhibitor was added in the E.coli lysate. The concentration of E. coli lysate was normalized by 

the fluorescence intensity of 5-carboxyfluorescein diacetate (CFDA). Briefly, different 

concentrations of CES (4 U/mL, 2 U/mL, 1 U/mL, 0.5 U/mL, 0.25 U/mL, 0.125 U/mL, 0.0625 

U/mL, 0.03125 U/mL, 0.015625 U/mL and 0 U/mL) and different amount of E. coli lysates were 

prepared in PBS buffer. Followed by, 25 M of CFDA was added in and incubated at room 

temperature for 1 h. Then the fluorescence was tested to draw a fluorescence-concentration 

dependent curve for figuring out the concentration of E. coli lysates. Solutions of CLsuGG (3) 

(200 M) were prepared in pH 7.4 PBS buffer. CES and E. coli lysate (0.1 U/mL) were added 

and incubated with above solutions at 37 ℃ for 24 h. At different time points, the solution was 

taken out, extracted with an equal volume of butanol, concentrated to dryness, and resuspended 

with butanol for HPLC analysis. 
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S4. TEM sample preparation 

In this paper, we used negative staining technique to study the TEM images. We first glowed 

discharge the 400 mesh copper grids coated with continuous thick carbon film (~ 35 nm) prior to 

use to increase the hydrophilicity. After loading samples (7 μL) on the grid, we then rinsed grid 

by dd-water for twice or three times. Immediately after rinsing, we stained the grid containing 

sample with 2.0 % w/v uranyl acetate for three times. Afterwards, we allowed the grid to dry in 

air.  

 

S5. Light scattering sample preparation 

The static light scattering experiments were performed by using an ALV (Langen, Germany) 

goniometer and correlator system with a 22 mW HeNe ( = 633 nm) laser and an avalanche 

photodiode detector. All samples were dissolved in PBS buffer. The addition of PLE to the 

solution of the conjugates for 24 h, we obtained corresponding enzymatic hydrolyzed samples. 

The SLS tests were carried out at room temperature, and the angles of light scattering we chose 

were 30o, 60o, 90o and 120o, respectively. The resulting intensity ratios are proportional to the 

amount of aggregates in the samples.  

 

S6. Bacteria culture and inhibitory activity assay 

Single esterase (bioH, yjfP, frsA, ybfF, yfbB, yqiA, yeiG, or ypfH) deletion mutants, bacterial 

transporter (ydgR, fepA and ompF) deletion mutants and the efflux pump (acrA) deletion mutant 

were all purchased from Dharmacon Horizon Discovery (Cambridge, United Kingdom). The 

K12 wild-type E. coli strain (MG1655) was cultured in autoclaved LB medium (25 g/L LB 

broth/water) in a shaker-incubator overnight to stationary growth phase, and then sub-cultured in 
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the same medium after dilution to OD600 of 0.05. Compounds were added at different 

concentrations. The mixture of bacteria and compounds were placed (200 L/well) into 96-well 

clear flat bottom plates. In all plates, the OD600 was measured before and after 16 h incubation at 

37 ℃.2  

 

S7. Cell culture and cell viability assay 

All cell lines were purchased from the American Type Culture Collection (ATCC, Manassas, 

VA, USA). The HS-5 cells were propagated in Dulbecco’s Modified Eagle’s Medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS) and 1% antibiotics in a fully humidified 

incubator containing 5% CO2 at 37 oC, HepG2 and HEK293 cells in Eagle’s Minimum Essential 

Media (MEM) supplemented with 10% FBS and 1% antibiotics in a fully humidified incubator 

containing 5% CO2 at 37 oC.  

Cells in exponential growth phase were seeded in a 96 well plate at a concentration of 1 × 104 

cell/well, and were allowed to attach to the well for 24 h at 37oC, 5% CO2. The culture medium 

was removed and 100 L culture medium containing corresponding compounds (immediately 

diluted from fresh prepared stock solution) at gradient concentrations (0 M as the control) was 

placed into each well. After culturing at 37 oC, 5% CO2 for 24h, 48h and 72h, each well was 

added with 10 L of 5 mg/mL MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide), and the plated cells were incubated at dark for 4h. 100 L 10% SDS with 0.01M HCl 

was added to each well to stop the reduction and to dissolve the purple. After incubation of the 

cells at 37 oC for overnight, the OD at 595 nm of the solution was measured in a microplate 

reader. Data represent the mean ± standard deviation of three independent experiments.  
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S8. Supplemental figures 

 

 

Scheme S1. Synthesis of peptide conjugated chloramphenicol by SPPS. 

 

 

Scheme S2. Synthesis of CLsu-OMe (4b). 
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Scheme S3. Synthesis of CLsu-Tau (4c). 
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Scheme S4. Synthesis of CLsu-ep (4d). 
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Figure S1. 1H NMR of 1a in DMSO-d6. 

 

 

Figure S2. 1H NMR of 1b in DMSO-d6. 
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Figure S3. 1H NMR of 1c in DMSO-d6. 

 

 

Figure S4. 1H NMR of 1d in DMSO-d6. 
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Figure S5. 1H NMR of 1e in DMSO-d6. 

 

 

Figure S6. 1H NMR of 1f in DMSO-d6. 
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Figure S7. 1H NMR of 1g in DMSO-d6. 

 

 

Figure S8. 1H NMR of 1h in DMSO-d6. 
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Figure S9. 1H NMR of 1i in DMSO-d6. 

 

 

Figure S10. 1H NMR of 1j in DMSO-d6. 
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Figure S11. 1H NMR of 1k in DMSO-d6. 

 

 

Figure S12. 1H NMR of 1l in DMSO-d6. 
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Figure S13. 1H NMR of 1m in DMSO-d6. 

 

 

Figure S14. 1H NMR of 1n in DMSO-d6. 
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Figure S15. 1H NMR of 1o in DMSO-d6. 

 

 

Figure S16. 1H NMR of 1p in DMSO-d6. 
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Figure S17. 1H NMR of 1q in DMSO-d6. 

 

 

Figure S18. 1H NMR of 2a in DMSO-d6. 
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Figure S19. 1H NMR of 2b in DMSO-d6. 

 

 

Figure S20. 1H NMR of 2c in DMSO-d6. 
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Figure S21. 1H NMR of 2d in DMSO-d6. 

 

 

Figure S22. 1H NMR of 2e in DMSO-d6. 
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Figure S23. 1H NMR of 2f in DMSO-d6. 

 

 

Figure S24. 1H NMR of 2g in DMSO-d6. 
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Figure S25. 1H NMR of 2h in DMSO-d6. 

 

 

Figure S26. 1H NMR of 2i in DMSO-d6. 
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Figure S27. 1H NMR of 2j in DMSO-d6. 

 

 

Figure S28. 1H NMR of 3a in DMSO-d6. 

 



S26 
 

 

Figure S29. 1H NMR of 3b in DMSO-d6. 

 

 

Figure S30. 1H NMR of 3c in DMSO-d6. 
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Figure S31. 1H NMR of 4a in DMSO-d6. 

 

 

Figure S32. 1H NMR of 4b in DMSO-d6. 
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Figure S33. 1H NMR of 4c in DMSO-d6. 

 

 

Figure S34. 1H NMR of 4d in DMSO-d6. 
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Table S1. LC-MS purities of compound 1a-4d. 

Compound 
Purity (based on LC-MS) 

(%) 
Retention time 

(min) 
Calculated 

mass  
Observed 

mass 
1a 95.33 2.02 592.13 591.27 
1b 98.80 1.74 550.09 549.28 
1c 95.21 1.64 566.08 565.27 
1d 97.16 1.60 566.08 565.27 
1e 95.86 1.60 549.10 548.20 
1f 99.29 1.77 650.11 649.20 
1g 97.86 1.80 564.10 563.35 
1h 98.64 1.77 564.10 563.06 
1i 98.41 1.77 635.14 634.30 
1j 96.19 1.74 635.14 634.30 
1k 95.45 2.10 683.14 682.30 
1l 94.90 2.01 683.14 682.39 

1m 96.89 2.01 683.14 682.17 
1n 97.54 2.08 683.14 682.30 
1o 97.62 2.25 830.21 829.29 
1p 98.76 2.27 830.21 829.29 
1q 99.70 1.63 707.14 706.22 
2a 94.89 1.18 736.25 733.43 
2b 97.50 1.06 680.23 677.27 
2c 95.91 1.11 680.23 677.42 
2d 97.60 1.87 1030.38 1027.59 
2e 99.50 1.64 974.37 971.37 
2f 97.60 1.38 608.15 606.33 
2g 97.74 1.66 680.11 679.23 
2h 99.26 1.63 652.08 651.15 
2i 99.60 1.62 652.08 651.25 
2j 97.22 1.66        594.08 593.32 
3a 98.28 2.47 716.17 715.39 
3b 98.33 2.82 913.25 912.45 
3c 97.26 2.60 1027.29 1026.49 
4a 97.64 1.84 493.07 492.29 
4b 98.94 2.18 436.04 435.15 
4c 95.79 1.50, 1.57, 1.62 529.03 528.25 
4d 97.21 1.47 545.04 544.24 
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Figure S35. The ultra-performance LC (top) and Mass (bottom) spectrum of 1a, [M-H]- at m/z 

591.27. 



S31 
 

 

Figure S36. The ultra-performance LC (top) and Mass (bottom) spectrum of 1b, [M-H]- at m/z 

549.28. 
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Figure S37. The ultra-performance LC (top) and Mass (bottom) spectrum of 1c, [M-H]- at m/z 

565.27. 
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Figure S38. The ultra-performance LC (top) and Mass (bottom) spectrum of 1d, [M-H]- at m/z 

565.27. 
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Figure S39. The ultra-performance LC (top) and Mass (bottom) spectrum of 1e, [M-H]- at m/z 

548.20. 
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Figure S40. The ultra-performance LC (top) and Mass (bottom) spectrum of 1f, [M-H]- at m/z 

649.20. 
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Figure S41. The ultra-performance LC (top) and Mass (bottom) spectrum of 1g, [M-H]- at m/z 

563.35. 
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Figure S42. The ultra-performance LC (top) and Mass (bottom) spectrum of 1h, [M-H]- at m/z 

563.06. 
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Figure S43. The ultra-performance LC (top) and Mass (bottom) spectrum of 1i, [M-H]- at m/z 

634.30. 
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Figure S44. The ultra-performance LC (top) and Mass (bottom) spectrum of 1j, [M-H]- at m/z 

634.30. 



S40 
 

 

Figure S45. The ultra-performance LC (top) and Mass (bottom) spectrum of 1k, [M-H]- at m/z 

682.30. 
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Figure S46. The ultra-performance LC (top) and Mass (bottom) spectrum of 1l, [M-H]- at m/z 

682.39. 
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Figure S47. The ultra-performance LC (top) and Mass (bottom) spectrum of 1m, [M-H]- at m/z 

682.17. 
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Figure S48. The ultra-performance LC (top) and Mass (bottom) spectrum of 1n, [M-H]- at m/z 

682.30. 
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Figure S49. The ultra-performance LC (top) and Mass (bottom) spectrum of 1o, [M-H]- at m/z 

829.29. 
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Figure S50. The ultra-performance LC (top) and Mass (bottom) spectrum of 1p, [M-H]- at m/z 

829.29. 
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Figure S51. The ultra-performance LC (top) and Mass (bottom) spectrum of 1q, [M-H]- at m/z 

706.22. 
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Figure S52. The ultra-performance LC (top) and Mass (bottom) spectrum of 2a, [M-H]- at m/z 

733.43. 
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Figure S53. The ultra-performance LC (top) and Mass (bottom) spectrum of 2b, [M-H]- at m/z 

677.27. 
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Figure S54. The ultra-performance LC (top) and Mass (bottom) spectrum of 2c, [M-H]- at m/z 

677.42. 
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Figure S55. The ultra-performance LC (top) and Mass (bottom) spectrum of 2d, [M-H]- at m/z 

1027.59. 
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Figure S56. The ultra-performance LC (top) and Mass (bottom) spectrum of 2e, [M-H]- at m/z 

971.37. 
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Figure S57. The ultra-performance LC (top) and Mass (bottom) spectrum of 2f, [M-H]- at m/z 

606.33. 
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Figure S58. The ultra-performance LC (top) and Mass (bottom) spectrum of 2g, [M-H]- at m/z 

679.23. 
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Figure S59. The ultra-performance LC (top) and Mass (bottom) spectrum of 2h, [M-H]- at m/z 

651.15. 
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Figure S60. The ultra-performance LC (top) and Mass (bottom) spectrum of 2i, [M-H]- at m/z 

651.25. 
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Figure S61. The ultra-performance LC (top) and Mass (bottom) spectrum of 2j, [M-H]- at m/z 

593.32. 
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Figure S62. The ultra-performance LC (top) and Mass (bottom) spectrum of 3a, [M-H]- at m/z 

715.39. 
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Figure S63. The ultra-performance LC (top) and Mass (bottom) spectrum of 3b, [M-H]- at m/z 

912.45. 
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Figure S64. The ultra-performance LC (top) and Mass (bottom) spectrum of 3c, [M-H]- at m/z 

1026.49. 
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Figure S65. The ultra-performance LC (top) and Mass (bottom) spectrum of 4a, [M-H]- at m/z 

492.29. 
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Figure S66. The ultra-performance LC (top) and Mass (bottom) spectrum of 4b, [M-H]- at m/z 

435.15. 
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Figure S67. The ultra-performance LC (top) and Mass (bottom) spectrum of 4c, [M-H]- at m/z 

528.25. 
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Figure S68. The ultra-performance LC (top) and Mass (bottom) spectrum of 4d, [M-H]- at m/z 

544.24. 
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Table S2. The stability of CLsu, 1c, 1d, 1k, 1o, 2b, 2c and 2f in human serum.a 

Compound 
Compounds remaining (%) 

0 h 2 h 24 h 
CLsu 100 96.2 87.0 

1c 100 0 0 
1d 100 16.7 0 
1k 100 0 0 
1o 100 7.2 0 
2b 100 52.9 0 
2c 100 49.2 0 
2f 100 0 0 

a. All compounds were incubated in human serum (from human male AB plasma) at the 
concentration at 200 M, 37 ℃ for 2 h and 24 h, respectively.  
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Figure S69. 13C NMR of 1a in DMSO-d6. 

 

 

Figure S70. 13C NMR of 1b in DMSO-d6. 
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Figure S71. 13C NMR of 1c in DMSO-d6. 

 

 

Figure S72. 13C NMR of 1d in DMSO-d6. 
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Figure S73. 13C NMR of 1e in DMSO-d6. 

 

 

Figure S74. 13C NMR of 1f in DMSO-d6. 
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Figure S75. 13C NMR of 1g in DMSO-d6. 

 

 

Figure S76. 13C NMR of 1h in DMSO-d6. 
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Figure S77. 13C NMR of 1i in DMSO-d6. 

 

 

Figure S78. 13C NMR of 1j in DMSO-d6. 
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Figure S79. 13C NMR of 1k in DMSO-d6. 

 

 

Figure S80. 13C NMR of 1l in DMSO-d6. 
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Figure S81. 13C NMR of 1m in DMSO-d6. 

 

 

Figure S82. 13C NMR of 1n in DMSO-d6. 
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Figure S83. 13C NMR of 1o in DMSO-d6. 

 

 

Figure S84. 13C NMR of 1p in DMSO-d6. 
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Figure S85. 13C NMR of 1q in DMSO-d6. 

 

 

Figure S86. 13C NMR of 2a in DMSO-d6. 
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Figure S87. 13C NMR of 2b in DMSO-d6. 

 

 

Figure S88. 13C NMR of 2c in DMSO-d6. 
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Figure S89. 13C NMR of 2d in DMSO-d6. 

 

 

Figure S90. 13C NMR of 2e in DMSO-d6. 
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Figure S91. 13C NMR of 2f in DMSO-d6. 

 

 

Figure S92. 13C NMR of 2g in DMSO-d6. 
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Figure S93. 13C NMR of 2h in DMSO-d6. 

 

 

Figure S94. 13C NMR of 2i in DMSO-d6. 
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Figure S95. 13C NMR of 2j in DMSO-d6. 

 

 

Figure S96. 13C NMR of 3a in DMSO-d6. 
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Figure S97. 13C NMR of 3b in DMSO-d6. 

 

 

Figure S98. 13C NMR of 3c in DMSO-d6. 
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Figure S99. 13C NMR of 4a in DMSO-d6. 

 

 

Figure S100. 13C NMR of 4b in DMSO-d6. 
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Figure S101. 13C NMR of 4c in DMSO-d6. 

 

 

Figure S102. 13C NMR of 4d in DMSO-d6. 

 


