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I. Methods 

A. CCSD and DFT calculation.  

The CCSD calculation for H2, HeH+, He2, linear H3
+, and He–H–H–He2+ is carried out using the 

PySCF package.1 The aug-cc-pVQZ basis set is used. Before calculating densities on real space 

grids, the outputted CCSD single-particle density matrices under molecular orbital basis set are 

transformed to density matrices under atomic orbital basis set. The KS-DFT calculation with the 

B3LYP functional used the same aug-cc-pVQZ basis set. A level 3 Lebedev-Laikov quadrature,2 

same as the one used in KS-DFT/NN SCF calculation, is used to evaluate the xc potential of 

B3LYP functional. 

 

B. OEP procedure.  

We employ the Wu-Yang method3 to calculate the effective potential corresponding to the 

CCSD/aug-cc-pVQZ electron density. In the Wu-Yang method, the entire effective potential is 

expanded as: 

𝑣(𝒓) =  𝑣ext(𝒓) + 𝑣0(𝒓) + ∑ 𝑏𝑡𝑔𝑡(𝒓)

𝑡

                                             (S1)  

where 𝑣ext(𝒓) is the external potential due to the nuclei, 𝑣0(𝒓) is fixed reference potential, and 

rest part of 𝑣(𝒓), denoted as 𝑣bg(𝒓), is constructed by a linear combination of a set of Gaussian 

basis functions {𝑔𝑡(𝒓)} with expansion coefficients {𝑏𝑡}. The reference potential 𝑣0(𝒓) we use 

consists of the Hartree term and the exchange term of the Hartree-Fock potential (HFX), which 

accounts for the major part of the KS effective potential, and ensures the correct 1/𝑟 asymptotic 

behavior for the xc potential. The same Gaussian type basis set for wave function calculation, aug-

cc-pVQZ, is applied to the expansion of 𝑣bg(𝒓) = ∑ 𝑏𝑡𝑔𝑡(𝒓)𝑡 . The optimization is carried out with 

a globally convergent Newton method,4 and the truncated singular-value decomposition (TSVD) 

method with a cut-off of 5 × 10−6 (for H2 and HeH+) and 10−6 (for He2) is used to finding the 

pseudo-inverse of the Hessian matrix. The CCSD densities and expanded potentials 𝑣bg(𝒓) are 

used to construct the dataset for neural network. 

 

C. Architecture of the 3D-CNN 

To map the quasi-local electron density to the local xc potential, we employ a three-dimensional 

convolutional neural network (3D-CNN) as shown in Figure S1. The input or descriptors to the 
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3D-CNN are the quasi-local electron densities and their gradients centered at a spatial point 𝒓𝑖 as 

depicted in Figure 1a; and the output is the value of the xc potential at 𝒓𝑖, 𝑣bg(𝒓𝑖). The grey cube 

is dissected into 9 × 9 × 9 grids. The electron densities and their gradients along x-, y-, and z- 

directions form four 9 × 9 × 9 tensors which are represented by the four cubes at the input layer 

of the 3D-CNN (see first column of Figure S1). 𝒓𝑖 is chosen according to the Lebedev-Laikov 

quadrature. The coordinates of the grids in the cube are arranged as follows: 

(𝑥𝑝
𝑖 , 𝑦𝑞

𝑖 , 𝑧𝑟
𝑖 ) = [𝑥0

𝑖 + (𝑝 − 5) d𝑎, 𝑦0
𝑖 + (𝑞 − 5) d𝑎, 𝑧0

𝑖 + (𝑟 − 5) d𝑎]           (S2) 

where 𝑝, 𝑞, 𝑟 ∈  [1, 9] are the x, y and z indices of the grid, respectively. (𝑥0
𝑖 , 𝑦0

𝑖 , 𝑧0
𝑖 ) = 𝒓𝑖 is the 

centre of the cube, and da is the distance between two adjacent grids, equaling to 1/8 of the side 

length of the cube. 

 

The four tensors at the input layer have in total 2916 elements, and are convoluted twice by two 

convolution kernels, leading to two convolutional layers, respectively. Each convolutional kernel 

is itself a tensor whose elements are determined through training. This is followed by a max-

pooling procedure and resulted in a feature map which are represented by sixteen 2 × 2 × 2 

tensors. The feature map is then flattened into a vector of dimension 128, which is followed by 

three fully connected hidden layers of dimensions 64, 32 and 16, respectively. The final output is 

the value of the local xc potential at the center of the cube. The “exponential linear unit” (ELU)5 

activation function is applied to each convolutional layer and fully connected layer to provide non-

linearity. 
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Figure S1. The architecture of three-dimensional convolutional neural network that maps the 

quasi-local density to local xc potential. 

 

D. Training the 3D-CNN 

The construction and training of neural network is carried out within PyTorch framework6 on a 

NVIDIA GeForce GTX 1080 GPU. Minibatch stochastic gradient descent (SGD) with batch size 

of 200 data points is used during the training. The loss function of the 3D-CNN involves the mean-

square-error (MSE) and a penalty function: 

𝐿 =
1

𝑁
∑ [

𝑣̃+(𝒓𝑖) + 𝑣̃−(𝒓𝑖)

2
− 𝑣(𝒓𝑖)]

2

+ [𝑣̃+(𝒓𝑖) − 𝑣̃−(𝒓𝑖)]2

𝑁

𝑖=1

               (S3) 

where 𝑣(𝒓𝑖) is the target potential value on the quadrature point 𝒓𝑖; the tilde values are the output 

from the 3D-CNN. The second term is the penalty term which ensures the invariance with respect 

to the index ordering of sampling points. For each quasi-local density sample 𝜌Ω(𝒓𝑖) (denoted as 

𝜌Ω
+(𝒓𝑖)), a correspondent sample 𝜌Ω

−(𝒓𝑖) centered at the same quadrature point is generated with 

the coordinates of its sampling points re-arranged as: 

(𝑥𝑝
𝑖 , 𝑦𝑞

𝑖 , 𝑧𝑟
𝑖 ) = [𝑥0

𝑖 + (𝑝 − 5) d𝑎, 𝑦0
𝑖 + (𝑞 − 5) d𝑎, 𝑧0

𝑖 − (𝑟 − 5) d𝑎]           (S4) 

The corresponding predictions of the two inputs, 𝑣̃+(𝒓𝑖) and 𝑣̃−(𝒓𝑖), are averaged to compute the 

MSE loss, i.e., the first term of Eq. (S4), and their difference leads to the non-negative penalty 

term. During the training process, the penalty term is minimized along with the total loss function. 

The invariant of the 3D-CNN with respect to the ordering of the sampling points along z-direction 
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in the input is thus ensured. Similar terms can be added to ensure that the mapping 𝜌Ω(𝒓𝑖) → 𝑣(𝒓𝑖) 

is invariant with respect to symmetry operations on the quasi-local density inputs. 

 

II. Detailed I values and electron density differences compared to the CCSD benchmarks 

A. H2/HeH+ system 

To investigate the consistency of electron densities obtained via the KS-DFT/NN calculation, we 

performed a series of SCF calculations using different initial values. The convergent electron 

densities are compared to each other and to the CCSD benchmark using the I values. Typical 

results of INN-X,NN-Y and INN-X,CCSD (where X and Y denotes the method to get initial value for KS-

DFT/NN SCF calculation and can be LDA, PBE, B3LYP, and CCSD) for equilibrium H2 and 

HeH+ structure are summarized in Table S1. The extreme small INN-X,NN-Y values around 10-16 

confirm the consistency of convergent density distribution starting from different initial values, 

indicating that the KS-DFT/NN SCF calculation can start with less computationally intensive 

functionals (e.g., LDA) as the initial guess. 

Table S1. I values between KS-DFT/NN densities using different initial values and the CCSD 

benchmarks for equilibrium H2 and HeH+ 

Mol. Method NN-LDA NN-PBE NN-B3LYP NN-CCSD* CCSD 

H2 

NN-LDA 0 3.53110-16 1.36310-16 9.24210-16 2.34410-7 

NN-PBE 3.53110-16 0 7.54910-17 1.37410-16 2.34410-7 

NN-B3LYP 1.36310-16 7.54910-17 0 3.93310-16 2.34410-7 

NN-CCSD* 9.24210-16 1.37410-16 3.93310-16 0 2.34410-7 

CCSD 2.34410-7 2.34410-7 2.34410-7 2.34410-7 0 

HeH+ 

NN-LDA 0 2.68210-17 6.70010-17 1.65210-17 4.11410-7 

NN-PBE 2.68210-17 0 2.19910-17 3.94510-17 4.11410-7 

NN-B3LYP 6.70010-17 2.19910-17 0 7.15510-17 4.11410-7 

NN-CCSD* 1.65210-17 3.94510-17 7.15510-17 0 4.11410-7 

CCSD 4.11410-7 4.11410-7 4.11410-7 4.11410-7 0 

* Using CCSD density as initial guess is for comparison purpose only. 
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Typical IB3LYP,CCSD and INN,CCSD values of 201 H2 and HeH+ structures with internuclear distance 

ranging from 0.5 Å to 0.9 Å are summarized in Table S2. The INN,CCSD are approximately one 

order of magnitude smaller than IB3LYP,CCSD for test structures.  

Table S2. Selected I values between density and the CCSD benchmarks (10-5) for H2 and HeH+ 

Mol. Method 0.500 Å 0.600 Å 0.700 Å 0.800 Å 0.900 Å Equilibrium* 

H2 
B3LYP 4.524 5.284 6.037 6.547 6.646 6.294 

KS-DFT/NN 0.233 0.115 0.013 0.232 1.747 0.023 

HeH+ 
B3LYP 3.473 4.255 4.850 5.259 5.528 5.170 

KS-DFT/NN 0.162 0.008 0.016 0.056 0.153 0.041 

*Equilibrium distance determined from CCSD calculation: H2 0.7420 Å and HeH+ 0.7748 Å 

 

B. Van der Waals interaction: He2 from H2/HeH+ system 

The 3D-CNN model trained with H2/HeH+ dataset is applied to the He2 molecule. Typical 

IB3LYP,CCSD and INN,CCSD values of He2 structures with internuclear distance ranging from 2.0 Å to 

3.2 Å is summarized in Table S3. The INN,CCSD are smaller than IB3LYP,CCSD, but the improvement 

is not as significant, indicating that current 3D-CNN can recognize only partial vdW interaction 

from the H2/HeH+ dataset. More comprehensive dataset and training process will be required to 

further improve the accuracy of He2 densities. 

Table S3. Selected I values compared to the CCSD benchmarks for He2 using H2/HeH+ dataset 

Mol. Method 2.00 Å 2.40 Å 2.80 Å 3.20 Å Equilibrium* 

He2 
B3LYP (10-5) 4.522 4.527 4.520 4.514 4.516 

KS-DFT/NN (10-5) 1.541 1.233 1.139 1.116 1.123 

* Equilibrium distance determined from CCSD calculation: He2 3.01 Å 

 

C. Transferability: linear H3
+

 structures 

Currently, our approach can only deal with linear systems. The density difference compared to the 

CCSD benchmark is plotted in Figure S2. Representative results of H3
+ structures with shortest 

(0.6 Å), medium (0.7 Å) and longest (0.8 Å) H–H distance show clearly that the electron density 

obtained via KS-DFT/NN calculation is more accurate than B3LYP results, especially at nuclear 
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sites.. The I values of all 441 structures are exhibits in Figure S3. The average I value is 8.53 ×

10−5 for IB3LYP,CCSD and 4.67 × 10−5 for INN,CCSD. 

 

Figure S2. Differences between calculated densities and the CCSD benchmarks for a variety of 

linear H–H–H+ structures along the internuclear direction using H2/HeH+ dataset. The right and 

left H–H distances are (a) 0.60 Å, 0.60 Å; (b) 0.60 Å, 0.70 Å; (c) 0.60 Å, 0.80 Å; (d) 0.70 Å, 0.60 

Å; (e) 0.70 Å, 0.70 Å; (f) 0.70 Å, 0.80 Å; (g) 0.80 Å, 0.60 Å; (h) 0.80 Å, 0.70 Å; (i) 0.80 Å, 0.80 

Å. 
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Figure S3. Normalized squared differences compared to the CCSD benchmark for 441 linear H3
+ 

structures using H2/HeH+ dataset. Left part shows IB3LYP,CCSD computed using B3LYP electron 

densities. Right part shows INN,CCSD computed using electron densities from KS-DFT/NN 

calculation. 

 

D. Transferability: He–H–H–He2+ structures 

The density difference compared to the CCSD benchmark is plotted in Figure S4. We choose only 

symmetric structures (i.e., two He–H distances are identical). Representative results of He–H–H–

He2+  structures with shortest (0.6 Å), medium (0.7 Å) and longest (0.8 Å) H–H and He–H distance 

show clearly that the electron density obtained via KS-DFT/NN calculation is more accurate than 

B3LYP results, especially at nuclear sites. The I values of all 441 structures are exhibits in 

Figure S5. The average value is 8.00 × 10−5 for IB3LYP,CCSD and 1.57 × 10−5 for INN,CCSD. 
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Figure S4. Differences between calculated densities and the CCSD benchmarks for a variety of 

He–H–H–He2+ structures along the internuclear direction using H2/HeH+ dataset. The He–H and 

H–H distances are (a) 0.60 Å, 0.60 Å; (b) 0.60 Å, 0.70 Å; (c) 0.60 Å, 0.80 Å; (d) 0.70 Å, 0.60 Å; 

(e) 0.70 Å, 0.70 Å; (f) 0.70 Å, 0.80 Å; (g) 0.80 Å, 0.60 Å; (h) 0.80 Å, 0.70 Å; (i) 0.80 Å, 0.80 Å. 
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Figure S5. Normalized squared differences compared to the CCSD benchmark for 441 He–H–H–

He2+ structures using H2/HeH+ dataset. Left part shows IB3LYP,CCSD computed using B3LYP 

electron densities. Right part shows INN,CCSD computed using electron densities from KS-DFT/NN 

calculation. 

 

E. Van der Waals interaction: He2 system 

Typical IB3LYP,CCSD and INN,CCSD values of 61 He2 structures with internuclear distance ranging 

from 2.0 Å to 3.2 Å is summarized in Table S4. The 𝐼NN,CCSD are more than three orders of 

magnitude smaller than IB3LYP,CCSD. 

Table S4. Selected I values between density and the CCSD benchmarks for He2 

Mol. Method 2.00 Å 2.40 Å 2.80 Å 3.20 Å Equilibrium* 

He2 
B3LYP (10-5) 4.522 4.527 4.520 4.514 4.516 

KS-DFT/NN (10-8) 3.757 0.545 0.574 0.695 0.641 

* Equilibrium distance determined from CCSD calculation: He2 3.01 Å 

 

F. H2/HeH+/He2 system 

Representative results of density difference of symmetric He–H–H–He2+ structures compared to 

the CCSD benchmark is plotted in Figure S6. Similar to the H2/HeH+ cases, Figure S6 shows 

clearly that the electron density obtained via KS-DFT/NN calculation is more accurate than 
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B3LYP results, especially at nuclear sites.. The I values of all 441 structures are exhibited in 

Figure S7. The average I value is 8.00 × 10−5 for IB3LYP,CCSD and 1.86 × 10−5 for INN,CCSD. 

 

Figure S6. Differences between calculated densities and the CCSD benchmarks for a variety of 

He–H–H–He2+ structures along the internuclear direction using H2/HeH+/He2 dataset. The He–H 

and H–H distances are (a) 0.60 Å, 0.60 Å; (b) 0.60 Å, 0.70 Å; (c) 0.60 Å, 0.80 Å; (d) 0.70 Å, 

0.60 Å; (e) 0.70 Å, 0.70 Å; (f) 0.70 Å, 0.80 Å; (g) 0.80 Å, 0.60 Å; (h) 0.80 Å, 0.70 Å; (i) 0.80 Å, 

0.80 Å. 
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Figure S7. Normalized squared differences compared to the CCSD benchmark for 441 He–H–H–

He2+ structures using H2/HeH+/He2 dataset. Left part shows IB3LYP,CCSD computed using B3LYP 

electron densities. Right part shows INN,CCSD computed using electron densities from KS-DFT/NN 

calculation. 
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