Direct Transformation of N-protected α , B-Unsaturated γ -Amino Amides into γ -Lactams through a Base Mediated Molecular Rearrangement

Mothukuri Ganesh Kumar,[#] Kuruva Veeresh,[#] Sachin A. Nalawade, Raj V. Nithun and Hosahudya N. Gopi*

Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008. E-mail: <u>hn.gopi@iiserpune.ac.in</u>

Table of content

1	ORTEP diagrams	S2
2	Crystallographic information	S7
3	List of organic and inorganic bases used for the rearrangement	S12
4	¹ H and ¹³ C NMR of all compounds	S13

1. ORTEP diagrams:

Fig. S1: ORTEP diagram of compound **2a.** H-atoms are omitted for clarity. Ellipsoids are drawn at 50% probability (CCDC no 1498002).

Fig. S2: ORTEP diagram of compound **2b.** H-atoms are omitted for clarity. Ellipsoids are drawn at 50% probability (CCDC no 1498003)

Fig S3: ORTEP diagram of compound **2e.** H-atoms are omitted for clarity. Ellipsoids are drawn at 50% probability (CCDC no 1498004).

Fig S4: ORTEP diagram of compound **2f.** H-atoms are omitted for clarity. Ellipsoids are drawn at 50% probability (CCDC no 1498005).

Fig S5: ORTEP diagram of compound **2h.** H-atoms are omitted for clarity. Ellipsoids are drawn at 50% probability (CCDC no 1498006).

Fig S6: ORTEP diagram of compound **2i.** H-atoms are omitted for clarity. Ellipsoids are drawn at 50% probability (CCDC no 1498007).

Fig S7: ORTEP diagram of compound **2j.** H-atoms are omitted for clarity. Ellipsoids are drawn at 50% probability (CCDC no 1498008).

Fig S8: ORTEP diagram of compound **2m.** H-atoms are omitted for clarity. Ellipsoids are drawn at 50% probability (CCDC no 1498009).

Fig S9: ORTEP diagram of compound **5c.** H-atoms are omitted for clarity. Ellipsoids are drawn at 50% probability (CCDC no1871180).

Fig S10: ORTEP diagram of compound **3j.** H-atoms are omitted for clarity. Ellipsoids are drawn at 50% probability (CCDC no 14980010).

Fig S11: ORTEP diagram of compound **4j.** H-atoms are omitted for clarity. Ellipsoids are drawn at 50% probability (CCDC no 14980011).

2. Crystallographic Information:

Compound 2a: Crystals of **2a** were grown by slow evaporation from a solution of EtOAc. A single crystal ($0.2 \times 0.1 \times 0.08$ mm) was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 100K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K_a radiation ($\lambda = 0.71073$ Å), ω -scans ($2\theta = 57.04$), for a total of 12065 independent reflections. Space group P12(1)1, a = 6.639 (3), b = 8.413 (3), c = 36.816 (16), $\beta = 90.173$ (10), V = 2065.3 (16) Å³, Monoclinic, Z = 4 for chemical formula C23 H28 N2 O3, with two molecules in asymmetric unit; ρ calcd = 1.229 gcm⁻³, $\mu = 0.081$ mm⁻¹, F (000) = 816, R_{int}= 0.0529. The structure was obtained by intrinsic methods using SHELXS-97.The final R value was 0.0620 (wR2 = 0.1167) 8305 observed reflections ($F_0 \ge 4\sigma$ ($|F_0|$)) and 511 variables, S = 0.973.

Compound 2b: Crystals of **2b** were grown by slow evaporation from a solution of EtOAc. A single crystal ($0.15 \times 0.1 \times 0.05$ mm) was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 100K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K_{α} radiation ($\lambda = 0.71073$ Å), ω -scans ($2\theta = 66.65$), for a total of 20711

independent reflections. Space group C 2, a = 14.9637(5), b = 11.3042(4), c = 21.2771(9), β = 110.4360(10), V = 3372.6 (2) Å³, Monoclinic, Z = 8 for chemical formula C17 H24 N2 O3, with two molecule in asymmetric unit; ρ calcd = 1.199 gcm⁻³, μ = 0.665 mm⁻¹, F (000) = 1312, R_{int}= 0.0243. The structure was obtained by intrinsic methods using SHELXS-97.The final R value was 0.055 (wR2 = 0.2125) 5783 observed reflections ($F_0 \ge 4\sigma$ ($|F_0|$)) and 405 variables, S = 2.070.

Compound 2e: Crystals of **2e** were grown by slow evaporation from a solution of EtOAc. A single crystal ($0.1 \times 0.05 \times 0.03$ mm) was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 100K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K_a radiation ($\lambda = 0.71073$ Å), ω -scans ($2\theta = 66.39$), for a total of 9955 independent reflections. Space group P1, a = 6.8272 (3), b = 8.0949 (3), c = 42.0284 (15), $\beta = 89.977$ (2), V = 2322.72(16) Å³, triclinic, Z = 4 for chemical formula C26 H31 N3 O3, with four molecule in asymmetric unit; ρ calcd = 1.240 gcm⁻³, $\mu = 0.652$ mm⁻¹, F (000) = 1012, R_{int}= 0.0950. The structure was obtained by intrinsic methods using SHELXS-97.The final R value was 0.0664 (wR2 = 0.1056) 14782 observed reflections ($F_0 \ge 4\sigma$ ($|F_0|$)) and 1165 variables, S = 1.263.

Compound 2f: Crystals of **2f** were grown by slow evaporation from a solution of aqueous methanol. A single crystal ($0.15 \times 0.1 \times 0.05$ mm) was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 100K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K_a radiation ($\lambda = 0.71073$ Å), ω -scans ($2\theta = 50.48$), for a total of 15144 independent reflections. Space group P21, a = 6.696(2), b = 13.783(4), c = 10.694(4), $\beta = 102.690(8)$, V = 962.8(5) Å³, monoclinic, Z = 2 for chemical formula C20 H30 N2 O3, with one molecule in asymmetric unit; ρ calcd = 1.195 gcm⁻³, $\mu = 0.080$ mm⁻¹, F (000) = 376, R_{int}= 0.0551. The structure was obtained by intrinsic methods using SHELXS-97.The final R value was 0.0599 (wR2 = 0.1470) 4750 observed reflections ($F_0 \ge 4\sigma$ ($|F_0|$)) and 231 variables, S = 1.026.

Compound 2h: Crystals of **2h**were grown by slow evaporation from a solution of EtOAc. A single crystal (0.1 × 0.07 × 0.05 mm) was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 100K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K_α radiation ($\lambda = 0.71073$ Å), ω -scans ($2\theta = 57.358$), for a total of 34755 independent reflections. Space group C 2/c, a = 28.90(4), b = 10.508(13), c = 13.397(17), $\beta = 106.42(3)$, V = 3902(9) Å³, monoclinic, Z = 8 for chemical formula C20 H29 N2 O3, with one molecule in asymmetric unit; ρ calcd = 1.176 gcm⁻³, $\mu = 0.079$ mm⁻¹, F (000) = 1480, R_{int}= 0.0719. The structure was obtained by intrinsic methods using SHELXS-97.The final R value was 0.1511 (wR2 = 0.3044) 4863 observed reflections ($F_0 \ge 4\sigma$ ($|F_0|$)) and 230 variables, S = 1.308. Author comment on check CIF: The investigated single crystal was a small-sized, brittle and poorly diffracting. Numerous datasets were collected on singlecrystals from different batches, whereof the one of the highest quality is reported herein.

Compound 2i: Crystals of **2i**were grown by slow evaporation from a solution of EtOAc. A single crystal (0.15 × 0.1 × 0.05 mm) was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 100K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K_a radiation ($\lambda = 0.71073$ Å), ω -scans ($2\theta = 50.48$), for a total of 52510 independent reflections. Space group P -1, a = 6.8063(18), b = 13.002(4), c = 13.629(4), $\beta = 92.523(7)$, V = 1106.6(5) Å³, triclinic, Z = 2 for chemical formula C22 H30 N3 O3, with one molecule in asymmetric unit; ρ calcd = 1.154 gcm⁻³, $\mu = 0.077$ mm⁻¹, F (000) = 484, R_{int}= 0.2621. The structure was obtained by intrinsic methods using SHELXS-97.The final R value was 0.0841 (wR2 = 0.1747) 5554 observed reflections ($F_0 \ge 4\sigma$ ($|F_0|$)) and 257 variables, S = 1.017. Author comment on check CIF: The investigated single crystal was a small-sized, brittle and poorly diffracting.

Numerous datasets were collected on single crystals from different batches, whereof the one of the highest quality is reported herein.

Compound 2j: Crystals of **2j**were grown by slow evaporation from a solution of aqueous methanol. A single crystal (0.15 × 0.1 × 0.05 mm) was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 100K temperature on a Bruker APEX(II) DUO CCD diffractometer using Cu K_a radiation ($\lambda = 1.54178$ Å), ω -scans (2 θ = 66.765), for a total of 34755 independent reflections. Space group P 21/n, a = 6.7044(10), b = 28.659(4), c = 11.4082(18), β = 91.966(9), V = 2190.7(6) Å³, monoclinic, Z = 4 for chemical formula C25 H29 N3 O3, with one molecule in asymmetric unit; ρ calcd = 1.272 gcm⁻³, μ = 0.675 mm⁻¹, F (000) = 816, R_{int}= 0.0721. The structure was obtained by intrinsic methods using SHELXS-97.The final R value was 0.0712 (wR2 = 0.1771) 3756 observed reflections ($F_0 \ge 4\sigma$ (|F₀|)) and 283 variables, S = 1.090.

Compound 2m: Crystals of **2m** were grown by slow evaporation from a solution of EtOAc. A single crystal ($0.12 \times 0.1 \times 0.06$ mm) was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 100K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K_a radiation ($\lambda = 0.71073$ Å), ω -scans ($2\theta = 50.48$), for a total of 47013 independent reflections. Space group P 21/c, a = 12.367(5), b = 16.811(7), c = 19.201(8), $\beta = 90.00$, V = 3992(3) Å³, monoclinic, Z = 8 for chemical formula C22 H26 N2 O3, with two molecule in asymmetric unit; ρ calcd = 1.219 gcm⁻³, $\mu = 0.081$ mm⁻¹, F (000) = 1706, R_{int}= 0.077. The structure was obtained by intrinsic methods using SHELXS-97.The final R value was 0.0407 (wR2 = 0.1008) 6229 observed reflections ($F_0 \ge 4\sigma$ ($|F_0|$)) and 491 variables, S = 0.665.

Compound 5c: Crystals of **5c** were grown by slow evaporation from a solution of EtOAc. A single crystal (0.13 × 0.1 × 0.05 mm) was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 100K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K_{α} radiation ($\lambda = 0.71073$ Å), ω -scans (2 $\theta = 57.172$), for a total of 11092independent reflections. Space group P-1, *a*=6.6014(15), *b* = 9.469(2), *c*= 35.287(8) α = 93.454(5) β =93.826(5) γ =98.649(5), V = 2170.3(8) Å³, monoclinic, Z = 2 for chemical formula C₂₀ H₂₂ N₂ O₂, C H Cl₃, with two molecule in asymmetric unit; ρ calcd = 1.352 gcm⁻³, μ = 0.442 mm⁻¹, F (000) = 918.0, The structure was obtained by intrinsic methods using SHELXS-97.The final R value was 0.0913, wR2 =0.3006 (11029) observed reflections ($F_{\theta} \ge 4\sigma$ ([F₀])) and 507 variables, S = 0.781.

Compound 3j: Crystals of **3j**were grown by slow evaporation from a solution of EtOAc. A single crystal ($0.2 \times 0.1 \times 0.08 \text{ mm}$) was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 100K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K_a radiation ($\lambda = 0.71073$ Å), ω -scans ($2\theta = 50.48$), for a total of 15583 independent reflections. Space group P -1, a = 6.5787(11), b = 9.2449(14), c = 14.324(2), $\beta = 77.982(4)$, V = 822.4(2) Å³, triclinic, Z = 4 for chemical formula C20 H21 N3 O, with one molecule in asymmetric unit; ρ calcd = 1.290 gcm⁻³, $\mu = 0.081$ mm⁻¹, F (000) = 364, R_{int}= 0.0273. The structure was obtained by intrinsic methods using SHELXS-97.The final R value was 0.0523 (wR2 = 0.1857) 4106 observed reflections ($F_0 \ge 4\sigma$ ($|F_0|$)) and 217 variables, S = 1.563. Author comment on check CIF: It is possible that shorter D-H..H-D distances are an artifact of refinement.

Compound 4j: Crystals of **4j** were grown by slow evaporation from a solution of EtOAc. A single crystal ($0.18 \times 0.1 \times 0.06$ mm) was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 100K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K_a radiation ($\lambda = 0.71073$ Å), ω -scans ($2\theta = 50.48$), for a total of 34755 independent

reflections. Space group Cc, a = 6.9007(11), b = 25.211(4), c = 13.042(2), β = 101.886(4), V = 2220.2(6) Å³, monoclinic, Z = 4 for chemical formula C25 H29 N3 O2, with one molecule in asymmetric unit; ρ calcd = 1.207 gcm⁻³, μ = 0.077 mm⁻¹, F (000) = 968, R_{int}= 0.0412. The structure was obtained by intrinsic methods using SHELXS-97.The final R value was 0.0361 (wR2 = 0.0975) 11452 observed reflections ($F_0 \ge 4\sigma$ ($|F_0|$)) and 635 variables, S = 0.761.

3) List of organic and inorganic bases used for the rearrangement

Base	Solvent	Conversion	Time
LiOH (1 <i>N</i>)	THF	-	2 d
NaOH (1 <i>N</i>)	THF	40 %	2 d
CsOH (1 <i>N</i>)	THF/DMF	50%	2 d
DBU(up to 3.0 equvi)	THF/DCM	-	2d
n-BuLi (1.0 equvi)	THF	-	1 d
KO ^t Bu (up to 3.0 equvi)	THF	100%	8 h

Table S1: List of organic and inorganic bases used for the rearrangement

4) ¹H and ¹³C NMR of all compounds

