Supporting Information

Pressure-Induced Structural Phase Transformation and Yield Strength of AlN

Hong Yu[†], Fang Peng^{*,†}, Hao Liang[†], Shixue Guan[†], Lijie Tan^{†, ‡}, Zhengbi Xiong[†], Xiaojun Xiang[†], Qingze Li[†], Li Lei[†], and Duanwei He[†] [†] Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, People's Republic of China

[‡]Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai

*Corresponding author: fangpeng18@yahoo.com

Line-width analysis

The synchrotron radiation X-ray diffraction line profiles from the polycrystalline sample under nonhydrostatic uniaxial compression in a DAC exhibit broadening with increasing pressure. This broadening is attributed to two main factors: the reduction in grain size results in diffraction line broadening that varies with $1/\cos\theta$, where θ is the diffraction angle; the broadening produced by the presence of micro-strains varies with tan θ . The theory of diffraction line broadening proposed earlier was derived from deformed metal and extended for the analysis of high pressure data at present¹⁻³. The following formula describes the relation between the grain size and strain dependencies of diffraction line width:

$$(2\omega_{hkl}\cos\theta_{hkl})^2 = (\lambda/d)^2 + \eta_{hkl}^2\sin^2\theta_{hkl},$$
(1)

where $2\omega_{hkl}$ is the full-width at half-maximum (FWHM) of the diffraction profile. The symbles λ , d, η_{hkl} denote the X-ray wavelength, sample grain size, and the microscopic deviatoric strain, respectively. The micro-strains can be obtained from the following relation:

$$\eta_{hkl}^2 = \left[(2\omega_{hkl}\cos\theta_{hkl})^2 - (\lambda/d)^2 \right] / \sin^2\theta_{hkl}, \tag{2}$$

The expression for the (*hkl*)-dependence of η_{hkl} was made under the assumption that all of the stresses between 0 and p_{max} in the crystallite are possibly equal. The relation proposes that η_{hkl} depends on E(hkl), so the Young's modulus values are in conformity to the following relation in the direction [h k l]:

$$\eta_{hkl} = 4p_{max}/E(h\ k\ l),\tag{3}$$

The p_{max} could be calculated by η_{hkl} using Eq. (3) when the elastic moduli of single crystals are known. The aggregate *E* can be obtained from the bulk modulus *K* and the shear modulus *G* by the following relation:

$$E = 9KG/(3K+G). \tag{4}$$

Many other materials^{3, 4} suggest that *t* obtained from the line-shift analysis and p_{max} obtained from the line-width analysis satisfy the relation $2p_{max} \cong t$. Both *t* and $2p_{max}$ are taken as measures of compressive strength. The yield strength *Y* can thus be obtained from the following relation:

$$Y = t = \varepsilon E. \tag{5}$$

where ε is the average value of η_{hkl} .

References

(1) Leineweber, A.; Dinnebier, R. E., Anisotropic microstrain broadening of minium, Pb₃O₄, in a high-pressure cell: interpretation of line-width parameters in terms of stress variations. *J. Appl. Crystallogr* **2010**, *43*, 17–26.

(2) Liang, H.; Chen, H.; Peng, F.; Liu, L.; Li, X.; Liu, K.; Liu, C.; Li, X., High-pressure strength and compressibility of titanium diboride (TiB2) studied under non-hydrostatic compression. *J. Phys. Chem. Solids* **2018**, *121*, 256-260.

(3) Singh, A. K.; Liermann, H. P.; Saxena, S. K., Strength of magnesium oxide under high pressure: evidence for the grain-size dependence. *Solid State Commun* **2004**, *132*, 795-798.

(4) Chen, J.; Weidner, D. J.; Vaughan, M. T., The strength of Mg_{0.9}Fe_{0.1}SiO₃ perovskite at high pressure and temperature. *Nature* **2002**, *419*, 824-6.