The effect of a shading mesh on the metabolic, nutritional and defense profiles of greenhouse harvested organic tomato fruits and leaves revealed by NMR metabolomics

Ana Cristina Abreu,^a Patricia Marín,^b Luis Manuel Aguilera-Sáez,^a Ana Isabel Tristán,^a Araceli Peña,^b Isabel Oliveira,^c Manuel Simões,^c Diego Valera^b and Ignacio Fernández^{a,*}

- ^a Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería (Spain)
- ^b Department of Engineering, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería (Spain)
- ^c Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto (Portugal)

*Corresponding author: ifernan@ual.es

Telephone number: +34 950214465; E-mail address: ifernan@ual.es

Table of Contents

Analysis of fatty acids content

Analysis of carotenoids content

Figure S1. (a) Organic tomato variety DELYCA; (b) image of the shading mesh.

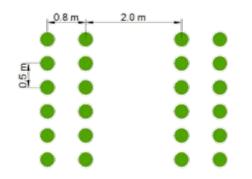
Figure S2. Scheme of the greenhouse.

Figure S3. (a) OPLS and (b) OPLS-DA scores plots applied.

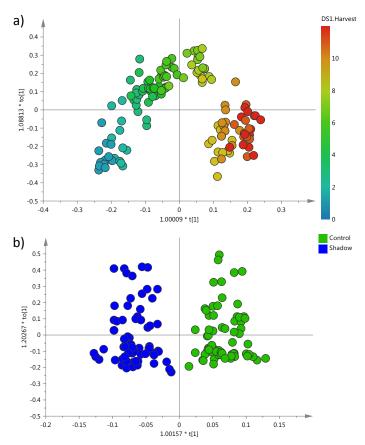
Figure S4. HPLC-DAD quantification of lycopene and β -carotene.

Table S1. Chemical shifts (ppm), multiplicity and coupling constants (Hz) for the metabolites identified.

 Table S2. GC-FID fatty acid profile.


Table S3. Chemical shifts (ppm), multiplicity and coupling constants (Hz) for the metabolites identified on methanolic extracts of tomato leaves (EtOAc fractions).

Analysis of fatty acids content. The fatty acid content and profile in tomato samples were determined by gas chromatography (Agilent Technologies 6890 N Series Gas Chromatograph, Santa Clara, CA, USA) after direct transesterification as described by Rodríguez-Ruiz et al.¹


Analysis of carotenoids content. The analysis of carotenoids was performed as described by Cerón-García et al.² Briefly, 20 mg of dry tomato was placed in glass Pyrex tubes and 1 ml of monophasic tricomponent solution was added. The tricomponent solution was composed of ethanol:hexane:water in a proportion of 77:17:6 v/v/v and contained 0–60% d.w. potassiumhydroxide (KOH) ((g KOH/g dry biomass) × 100).). The tube was submerged in a water bath with a preset temperature of 45 °C, where it was left for 5 min. After this, the tube was taken out and vortexed for 30 s and left to cool for 1 h at room temperature. Subsequently, it was centrifuged at 12000 rpm for 2 min (Mini Spin Plus, Eppendorf) and the supernatant transferred into a vial. The carotenoid content and profile were determined using a photodiode-array HPLC (HPLC-DAD) apparatus (Shimadzu SPDM10AV). All the measurements were carried out by duplicate.

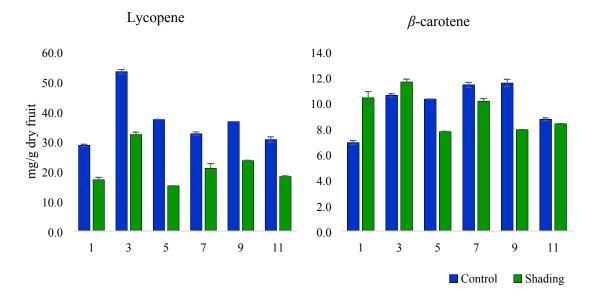

Figure S1. (a) Organic tomato variety DELYCA; (b) image of the shading mesh (polypropylene, gray, 50% reduction in light intensity) applied in an area of the plantation.

Figure S2. Scheme of the greenhouse: the crop was planted in paired lines, spaced 0.8 **m** part, the separation between lines was 2 m and the separation between plants was 0.5 m. Each line contained 16 plants. The planting framework used is 1.43 plants m^{-2} .

Figure S3. (a) OPLS and (b) OPLS-DA scores plots applied to ¹H NMR data of a total of 144 CD₃OD: D₂O KH₂PO₄ buffer (80:20, v/v) extracts of tomatoes to discriminate tomatoes according to harvest date and shading regime, respectively. Both models were used to build the SUS-plot presented in Figure 5. Scaling was done to pareto. (a): R²X =0.862, R²Y=0.974, Q² = 0.961, *p* (CV-ANOVA) = 0 (< 0.00001); (b): R²X =0.897, R²Y=0.880, Q² = 0.768, *p* (CV-ANOVA) = 2.66 × 10⁻³⁰.

Figure S4. HPLC-DAD quantification of lycopene and β -carotene for shaded and non-shaded (control) tomatoes collected every two weeks.

Table S1. Chemical shifts (ppm), multiplicity and coupling constants (Hz) for the	
metabolites identified on methanol and phosphate buffer (80:20, v/v) extracts of tomato	
fruits	

Meta	abolite	Peak assignments	
Amir	10 acids		
1	Valine	1.01 (d, $J = 7.2$ Hz), 1.06 (d, $J = 7.1$ Hz)	
2	Isoleucine	0.95 (t, <i>J</i> = 7.4 Hz), 1.02 (d, <i>J</i> = 7.2 Hz)	
3	Leucine	0.97 (d, J = 6.3 Hz), 0.98 (d, J = 6.3 Hz)	
4	Threonine	1.33 (d, $J = 6.7$ Hz)	
5	Alanine	1.47 (d, $J = 7.2$ Hz)	
6	GABA	1.91 (quint, $J = 7.3$ Hz), 2.39 (t, $J = 7.3$ Hz), 2.99 (t, $J = 7.3$	
		Hz)	
7	Lysine	1.51 (m), 1.72 (m), 1.92 (m)	
8	Arginine	1.69 (m), 1.88 (m)	
9	Glutamate	2.07 (m), 2.09 (m), 2.50 (m)	
10	Glutamine	2.15 (m), 2.48 (m)	
11	Aspartate	2.69 (dd, <i>J</i> = 17.5, 9.0 Hz), 2.87 (dd, <i>J</i> = 17.5, 3.8 Hz)	
12	Asparagine	2.80 (dd, <i>J</i> = 17.0, 8.7 Hz), 2.94 (dd, <i>J</i> = 17.0, 3.9 Hz)	
13	Tyrosine	6.80 (d, $J = 8.5$ Hz), 7.15 (d, $J = 8.5$ Hz)	
14	Phenylalanine	7.29 (m), 7.32 (m), 7.36 (m)	
15	Tryptophan	7.06 (m), 7.14 (m), 7.23 (s), 7.40 (d, <i>J</i> = 8.0 Hz), 7.70 (d, <i>J</i>	
		8.0 Hz)	
16	Histidine	7.27 (d, $J = 1.2$ Hz), 8.28 (d, $J = 1.2$ Hz)	

Organic acids

17	Acetate	1.98 (s)
18	Malate	2.57 (dd, <i>J</i> = 16.0, 7.6 Hz), 2.79 (dd, <i>J</i> = 16.0, 5.0 Hz), 4.32
		(dd, J = 7.6, 5.0 Hz)
19	Citrate	2.70 (d, <i>J</i> = 15.7 Hz), 2.80 (d, <i>J</i> = 15.7 Hz)
20	Fumarate	6.66 (s)
21	Formate	8.41 (s)

Sugars

22	Fructose	4.05 (m)
23	Glucose	4.52 (d, J = 8.3 Hz), 5.14 d, J = 3.7 Hz)

24	Galactose	4.52 (d, J = 7.8 Hz), 5.28 (d, J = 3.7 Hz)
25	Sucrose	5.41 (d, J = 3.7 Hz)

Nucleosides/tides

26	Adenosine	5.99 (d, <i>J</i> = 6.4 Hz), 8.20 (s), 8.33 (s)
27	Uridine	5.79 (d, J = 8.1 Hz), 5.89 (d, J = 4.7 Hz), 7.97 (d, J = 8.1 Hz)
28	Adenosine-like	6.10 (d, <i>J</i> = 5.9 Hz), 8.22 (s), 8.55 (s)
29	Uridine-like	5.87 (d, <i>J</i> = 7.6 Hz), 8.04 (d, <i>J</i> = 8.2 Hz)

Phenylpropanoids and phenolic compounds

30	Cinnamic acid derivative 1	6.31 (d, J = 15.8 Hz), 7.58 (d, J = 15.8 Hz)
31	Cinnamic acid derivative 2	6.33 (d, J = 15.7 Hz), 7.53 (d, J = 15.7 Hz)
32	Cinnamic acid derivative 3	6.38 (d, J = 15.6 Hz), 7.61 (d, J = 15.6 Hz)
33	Cinnamic acid derivative 4	6.40 (d, J = 15.8 Hz), 7.64 (d, J = 15.8 Hz)
34	Rutin	6.27 (d, J=1.8 Hz), 6.48 (d, J=1.8 Hz), 6.90 (d, J=8.7 Hz),
		7.63 (dd, <i>J</i> = 8.7, 2.0 Hz), 7.66 (d, <i>J</i> = 2.0 Hz)
35	Quercetin-like	6.25 (d, <i>J</i> =2.0 Hz), 6.46 (d, <i>J</i> =2.0 Hz), 6.87 (d, <i>J</i> =8.4 Hz),
		7.54 (dd, <i>J</i> = 8.4, 2.1 Hz), 7.67 (d, <i>J</i> = 2.1 Hz)

Others

36	Ascorbate	4.68 (d, J = 2.2 Hz)
37	Choline	3.21 (s)
38	Trigonelline	8.08 (dd, J = 8.0; 6.1 Hz), 8.86 (d, J = 6.1 Hz), 8.89 (d, J =
		8.0 Hz), 9.17 (s)
39	Nicotinurate	8.31 (m), 9.03 (m), 9.38 (s)
40	1-Methylnicotinamide	9.59 (s), 9.33 (m), 9.04 (m)
41	Sterols	0.65-0.75 (s)
42	Fatty acids*	0.87 (-CH ₃ , for all FA except n-3), 0.96 (-CH ₃ , for n-3),
		1.24-1.36 (-(CH ₂)n-), 1.60 (-CH ₂ -CH ₂ -COOR), 2.04 (-
		CH ₂ -CH=CH-, for UFA), 2.34 (-CH ₂ -COOR), 2.78 (=CH-
		CH ₂ –CH=, for PUFA), 5.34 (–CH=CH–, for UFA)

* characterization of fatty acids by GC-FID is presented in Table S2. Acronyms: FA: fatty acids, UFA, unsaturated fatty acids, PUFA, polyunsaturated fatty acids, n-3: omega-3.

Fatty acid		Conc. (mg/ g dried tomato)	%
C8:0	Caprylic acid	7.9 ± 3.3	5.2
C10:0	Capric acid	9.7 ± 3.4	6.5
C12:0	Lauric acid	4.8 ± 2.4	3.2
C16:0	Palmitic acid	25.8 ± 5.2	17.1
C18:0	Stearic acid	8.9 ± 2.1	5.9
C16:1n7	Palmitoleic acid	2.0 ± 1.0	1.3
C18:1n9	Oleic	19.3 ± 7.4	12.8
C18:2n6	Linoleic	63.0 ± 9.9	41.8
C18:3n3	α-Linolenic	9.3 ± 3.8	6.2

Table S2. GC-FID fatty acid profile and concentration regarding dried tomato

Table S3. Chemical shifts (ppm), multiplicity and coupling constants (Hz) for the

 metabolites identified on methanolic extracts of tomato leaves (EtOAc fractions)

	Assigned	Peak assignments
	metabolites	
1	Quercetin-like	6.19 (d, J=2.1 Hz), 6.38 (d, J=2.1 Hz), 6.85 (d, J=8.3 Hz), 7.61 (dd, J
		= 8.3, 2.2 Hz), 7.64 (d, $J = 2.2$ Hz)
2	Cinnamic acid	6.27 ppm (d, <i>J</i> = 15.8 Hz), 7.54 ppm (d, <i>J</i> = 15.8 Hz)
3	Trigonelline	8.01 (dd, <i>J</i> = 7.3.0; 5.9 Hz), 8.82 (d, <i>J</i> = 5.9 Hz), 8.87 (d, <i>J</i> = 7.3 Hz),
		9.17 (s)
4	Formate	8.70 (s)
5	Phenylalanine	7.27 (m), 7.30 (m)
6	Tyrosine	6.71 (d, J = 8.5 Hz), 7.03 (d, J = 8.5 Hz)
7	Tryptophan	7.05 (m), 7.21 (m), 7.22 (s), 7.37 (d, <i>J</i> = 8.0 Hz), 7.63 (d, <i>J</i> = 8.0 Hz)

REFERENCES

¹ Rodríguez-Ruiz, J.; Belarbi, E.-H.; Sánchez, J. L. G.; Alonso, D. L. Rapid simultaneous lipid extraction and transesterification for fatty acid analyses. *Biotechnol. Tech.* **1998**, *12* (9), 689-691.

² Cerón-García, M. C.; González-López, C. V.; Camacho-Rodríguez, J.; López-Rosales,
L.; García-Camacho, F.; Molina-Grima, E. Maximizing carotenoid extraction from
microalgae used as food additives and determined by liquid chromatography (HPLC). *Food Chem.* 2018, 257, 316-324.