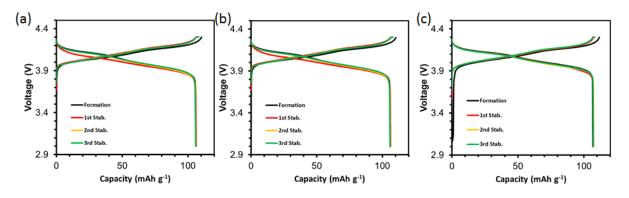
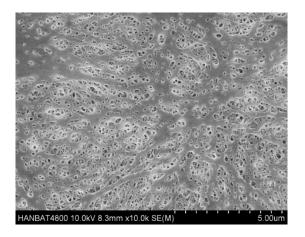

Supporting Information

Surface Reinforcing Balloon Trick-Inspired Separator/Li metal Integrated Assembly to Improve Electrochemical Performance of Li Metal Batteries

Junyoung Choi[†], Dahee Jin^{†,‡}, Yong Min Lee^{‡,**}, and Myung-Hyun Ryou^{†*}

† Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon, 34158, Republic of Korea
‡Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-Daero, Daegu 42988, Republic of Korea


*E-mail: mhryou@hanbat.ac.kr. (M.-H.R.).


Figure S1. Scanning electron microscope (SEM) image of (a) a bare Li metal surface. SEM images of the PVdF protection layer dried under vacuum for (b) 12 h and (c) 24 h.

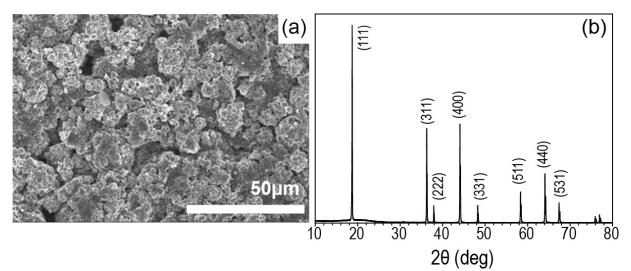

Figure S2. Schematics describing three different types of Li metal/LMO (LiMn₂O₄) half cells based on (a) bare Li metal, (b) a protection layer, and (c) separator/Li metal integrated assembly.

Figure S3. Potential profiles of Li metal/LMO (LiMn₂O₄) half cells based on (a) bare Li metal, (b) a protection layer, and (c) separator/Li metal integrated assembly during precycling.

Figure S4. The PE separator of the separator/Li metal integrated assembly was gently removed by hand, and the surface structure of the PE side was monitored using SEM.

Figure S5. (a) a SEM image and (b) X-ray diffractograms of LiMn₂O₄ electrode used in this study. XRD data were collected at $2\theta = 10-80^{\circ}$. The well-defined reflection peaks include eight lattice planes at (111), (311), (222), (400), (311), (511), (440) and (531).

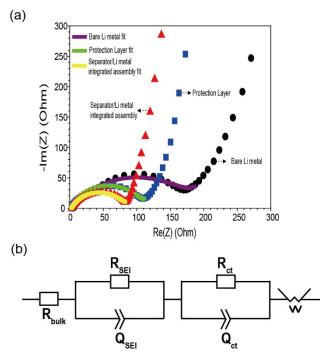


Figure **S6**. An equivalent circuit used in Figure 7 and data fitting results using the circuit.