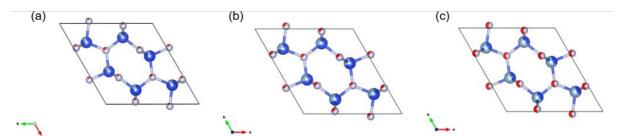
Distinguishing between Structural Models of β' -sialons using a Combined Solid-State NMR, Powder XRD and Computational Approach

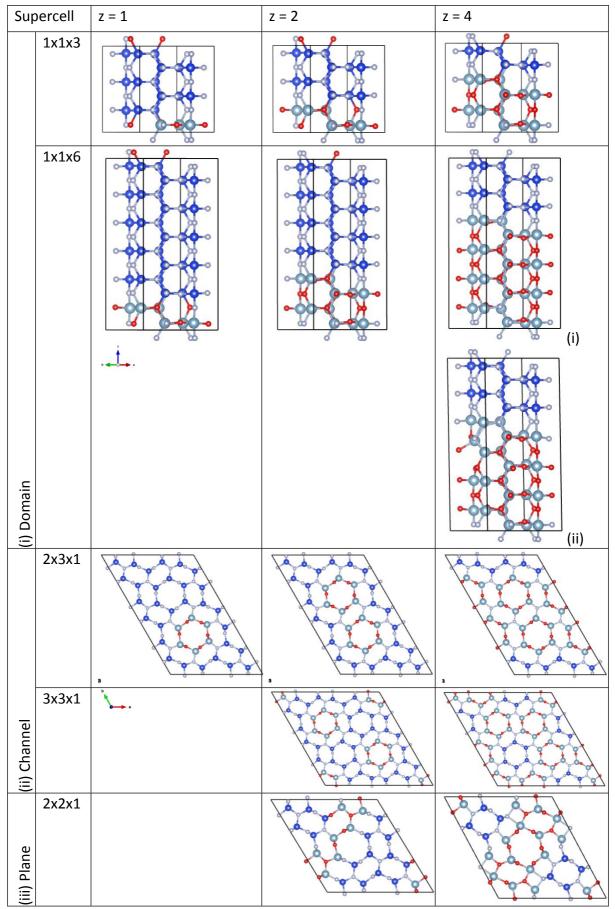
V. R. Seymour^{1,2} and M. E. Smith^{1,3}

- 1. Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
- 2. Materials Science Institute, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
- 3. Vice-Chancellor's Office, University House, Lancaster University, Bailrigg, Lancaster, LA1 4YW, UK.

Supporting Information


- S1. Structural parameters from diffraction and models for β' -sialons in the literature
- S2. Previously reported solid-state NMR observations from β' -sialons
- S3. Powder X-ray diffraction patterns
- S4. Reference shieldings for DFT (CASTEP) calculations
- S5. ²⁹Si MAS NMR spectra
- S6. ²⁷AI MAS NMR spectra, 3Q projections and summary of 1D MAS NMR parameters
- S7. Experimental and calculated cell parameters and volumes as a function of z in β' -sialons
- S8. Calculated ²⁷Al NMR interaction parameters for each individual model, their positions superimposed on 3Q MAS NMR and simulations of the MAS NMR spectra for possible different layer thicknesses
- **S9.** Example SIMPSON input files
- S10. References

S1. Structural parameters from diffraction and models for β' -sialons in the literature


A structure for the parent β -Si₃N₄¹ and structures for Si_{6-z}Al_zO_zN_{8-z} (z = 1, 2, and 4) were obtained from the literature.^{2,3} The unit cell parameters are given in Table S1 and the unit cells for the β' -sialons are shown in Figure S1. These show the limitation of the diffraction methods used, where the site occupancy of the Al/Si and N/O atoms is averaged over the unit cell. The model β' -sialon structures of this work were based on the β -Si₃N₄ unit cell of Ref. 1. The models are named in reference to their Al/O distribution, and the composition of parent unit cells used to create the supercell required to accommodate the distribution. Domain 113 and Domain 116 are domain models with supercells of 1 x 1 x 3 and 1 x 1 x 6, respectively; Plane 221 is a plane model with a supercell of 2 x 2 x 1; Channel 231 and Channel 331 are channel models with supercells of 2 x 3 x 1 and 3 x 3 x 1, respectively. The models are shown in Figure S3.

	Expt. parameters		Unit cell lengths (Å)		Angles (°)		Volume (ų)	Ref	% difference from β -Si ₃ N ₄		
z	Temp.	Туре	а	с	α	γ	v	(ICSD Code)			
	Т	X/N							а	С	V
0	RT	Х	7.5950	2.9023	90	120	144.986794	Ref. 1 (8263)			
1	RT	Ν	7.6072	2.9274	90	120	146.710907	Ref. 2 (39496)	0.16	0.86	1.19
2	4.2 K	Ν	7.6430	2.9450	90	120	148.985380	Ref. 3 (34288)	0.63	1.47	2.76
4	4.2 K	Ν	7.6920	2.9900	90	120	153.207619	Ref. 3 (34287)	1.28	3.02	5.67
2	300 K	Ν	7.649	2.950	90	120	149.472740	Ref. 3	0.71	1.64	3.09
4	300 K	Ν	7.695	2.995	90	120	153.583553	Ref. 3	1.32	3.19	5.93

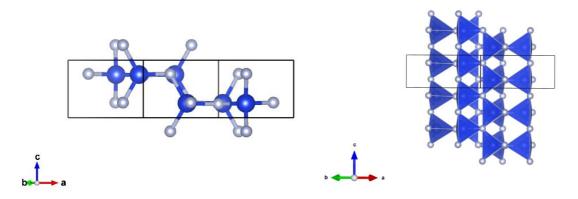

Table S1: Experimental unit cell parameters taken from the literature for β' -sialon structures. (X = X-ray diffraction data, N = Neutron diffraction data)

Figure S1: Crystal structures of β' -sialons shown as unit cells with atoms (AI (light blue), Si (blue), O (red) and N (grey)) depicted as pie charts indicating site occupancy, averaged over the structure, (a) z = 1,² (b) z = 2 and (c) z = 4.³ Unit cell figures were created using VESTA.⁴

Figure S2: Unit cells of β' -sialon models, showing distribution of Al (light blue), Si (blue), O (red) and N (grey).

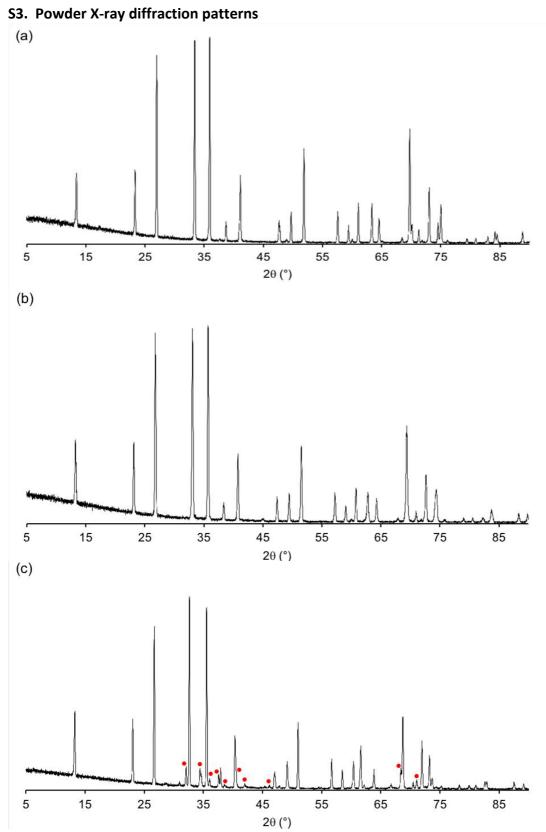


Figure S3: Unit cell of β -Si₃N₄, showing the definition of a layer for the domain models. Layer = one unit cell of β -Si₃N₄ (which contains Si₆N₈).

S2. Previously reported solid-state NMR observations from β' -sialons

	NMR Reference
β -Si ₃ N ₄	¹⁵ N ⁵ , ²⁹ Si ⁶⁻⁸
β'-, z = 0.05, 0.075, 0.125	²⁷ Al ⁹
β'-sialon, z = 0.25	²⁷ Al ¹⁰
β'-sialon, z = 0.6, 0.9	¹⁵ N ¹⁰ , ²⁹ Si ¹⁰
β '-sialon, z = 1	²⁷ Al ^{11,12} , ²⁹ Si ⁶
β '-sialon, z = 2	²⁷ Al ^{11,12}
β '-sialon, z = 2.7	²⁷ Al ¹⁰ , ²⁹ Si ¹⁰
β '-sialon, z = 4	²⁷ Al ^{11,12} , ²⁹ Si ⁶

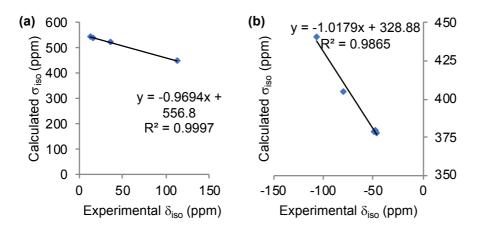

Table S2. Summary of references of previous reports of solid-state NMR from β' -sialons.

Figure S4: XRD of β' -sialon materials, Si_{6-z}Al_zO_zN_{8-z}, (a) z = 1, (b) z = 2, and (c) z = 4. Red dots in (c) indicate impurity peaks. The impurity in the z = 4 sample is identified by XRD and solid-state NMR as 15R polytypoid.

S4. Reference shieldings for DFT (CASTEP) calculations

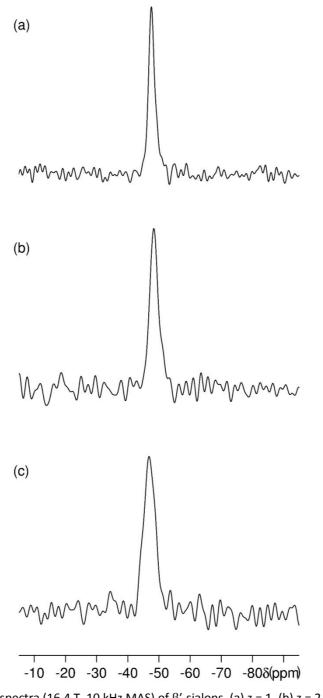
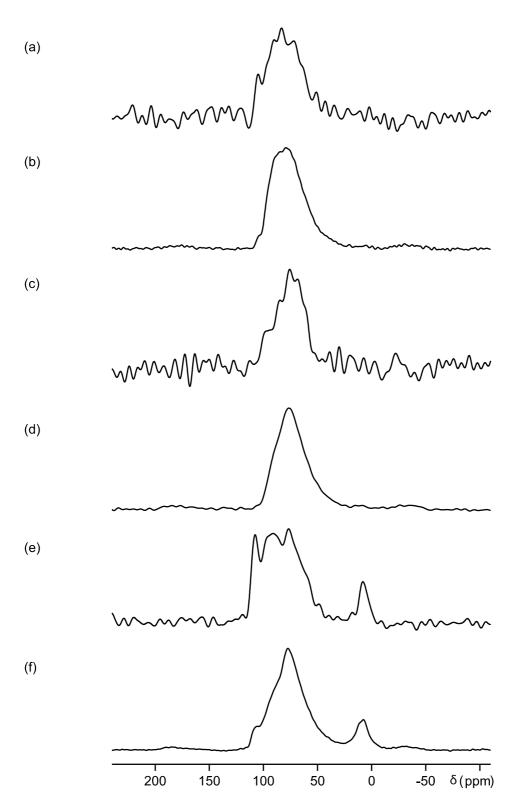

Reference shielding, σ_{ref} , values were determined using model compounds and comparing calculated NMR parameters to literature NMR parameters.^{6,11,13} For ²⁷Al: AlN (wurtzite), Al₂O₃ (corundum), and Al₂SiO₅ (andalusite) were used (ICSD codes: 54697, 73724, and 172725, respectively). For ²⁹Si: SiO₂ (quartz), β -Si₃N₄, α -Si₃N₄, and Al₂SiO₅ (andalusite) were used (ICSD codes: 41412, 8263, 90146, and 73724, respectively). The isotropic chemical shift, δ_{iso} , is obtained from $-(\sigma_{iso} - \sigma_{ref})$.

Figure S5: Plot of calculated (CASTEP) σ_{iso} vs experimental (literature) δ_{iso} for a sets of model systems for (a) ²⁷Al and (b) ²⁹Si.

S5. ²⁹Si MAS NMR spectra

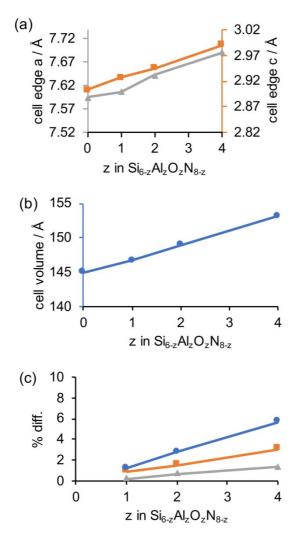
The ^{29}Si MAS NMR spectra for the β' -sialons are shown in Figure S6. These show a peak position of approximately –48 ppm.

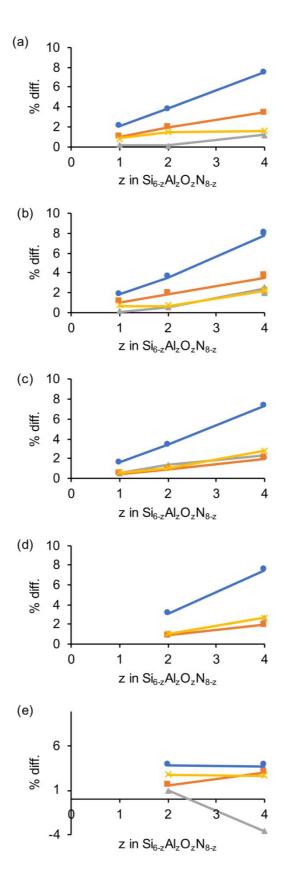

Figure S6: ²⁹Si MAS NMR spectra (16.4 T, 10 kHz MAS) of β '-sialons, (a) z = 1, (b) z = 2, and (c) z = 4.

S6. ²⁷AI MAS NMR spectra, 3Q projections and summary of 1D MAS NMR parameters

 $^{\rm 27}AI$ MAS NMR spectra and corresponding projections from the $^{\rm 27}AI$ MQMAS spectra are shown in Figure S7.

	16.4 T		20.0 T		
	Peak max.	Full width at half max.	Peak max.	Full width at half max.	
	(ppm)	in ppm, (in Hz)	(ppm)	in ppm, (in Hz)	
	(±0.5)	±1.0/(~100)	(±0.5)	±1.0/(~100)	
z = 1	72.9	43.3 (7900)	79.3	36.1 (8000)	
z = 2	70.1	37.9 (6900)	74.9	30.3 (6700)	
z = 4	70.7	31.5 (5750)	77.5	32.0 (7100)	


 Table S3: Position of peak maxima and full width at half maximum of ²⁷Al MAS NMR spectra.


Figure S7: ²⁷Al spectra (20.0 T, 25 kHz MAS) for (a,b) z = 1, (c,d) z = 2, and (e,f) z = 4. (a,c,e) 1D sum projections from MQ MAS spectra and (b,d,f) 1D MAS NMR spectra.

S7 Experimental and calculated cell parameters and volumes as a function of z in $\beta^\prime\mbox{-sialons}$

The experimental unit cell parameters were compared to the geometry-optimised model structures. Figure S8 shows the trend in experimental unit cell parameters; the unit cell lengths, and volume, increase across the series as the content of Al/O increases. Figure S9 shows the change in unit cell parameters (as a % difference from the parent β -Si₃N₄) for the geometry-optimised structures of the different models. For z = 4, two domain 116 models were examined (labelled i and ii), with variation at the interface region. As can be seen in Figure S2, the domain 116ii model distorted after geometry optimisation, resulting in an AlO₃N₂ site. The geometry optimisation for this model was rerun using the geometry-optimised domain 116i model as the starting structure, but again a defect structure was obtained. The NMR parameters for the former version of this model are reported in this work. For z = 4, another defect occurred in the geometry-optimised structure of the plane 221 model, AlO₄N.

Figure S8: Experimental unit cell information from across the β' -sialon series studied in this work.¹⁻³ (a) Unit cell lengths, a and c, (b) unit cell volume, and (c) % difference of β' -sialon unit cell parameters compared to the parent β -Si₃N₄. Blue circles: volume; gray triangles: cell length a; orange squares: cell length c.

Figure S9: Unit cell (lengths and volume) changes (% compared to parent β -Si₃N₄) for the various models (geometry-optimised structures) used in the computational study; (a) domain 113, (b) domain 116, (c) channel 231, (d) channel 331, (e) plane 221. Blue circles: volume; gray triangles: cell length a; yellow crosses: cell length b; orange squares: cell length c.

S8 Calculated ²⁷Al NMR interaction parameters for each individual model, their positions superimposed on 3Q MAS NMR and simulations of the MAS NMR spectra for possible different layer thicknesses

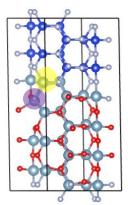
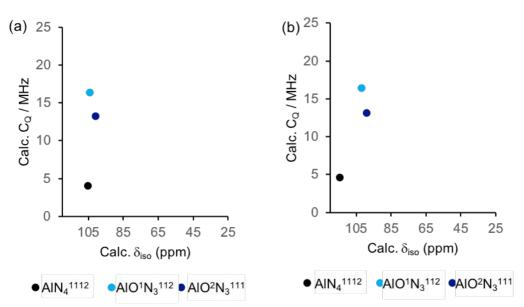
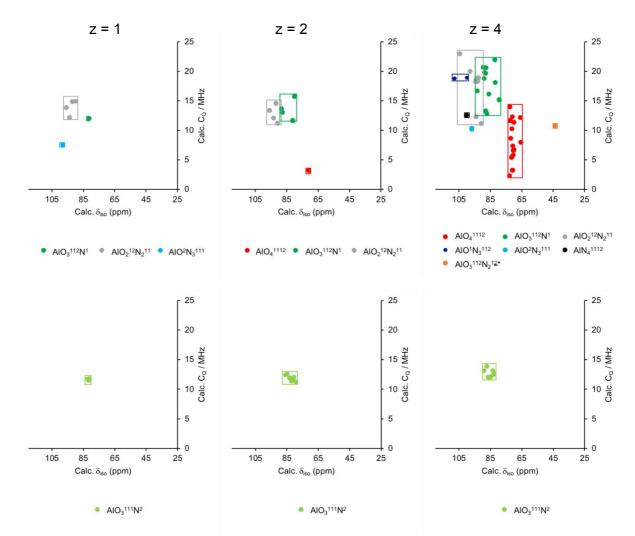
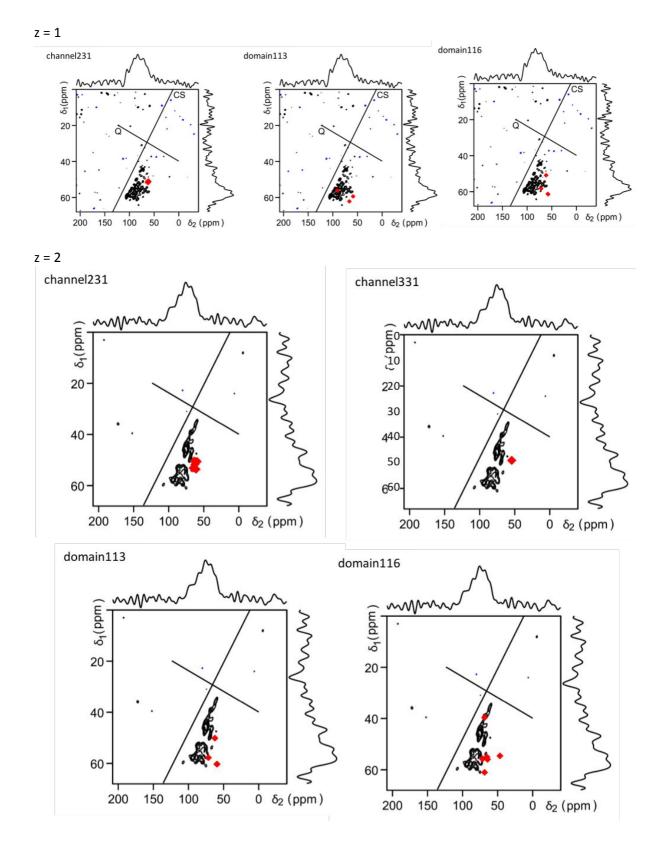
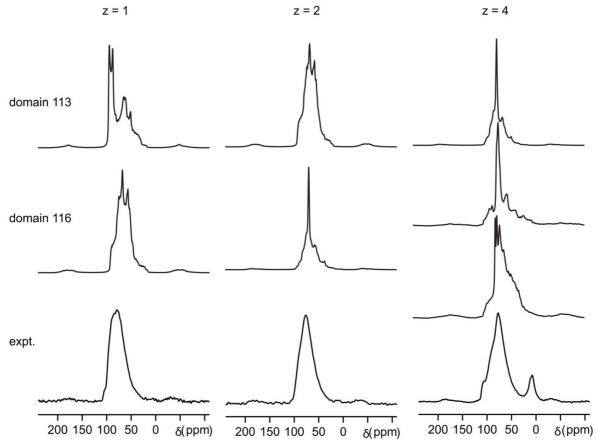




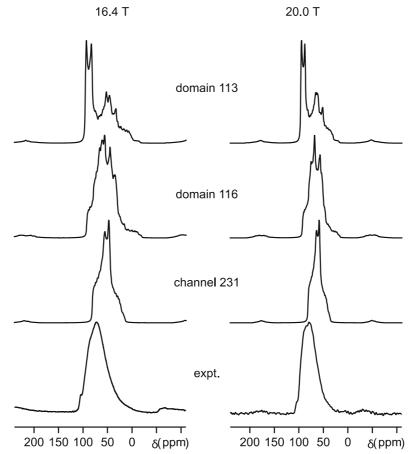
Figure S10: AlN₄ site highlighted in yellow. Defect site highlighted in purple.

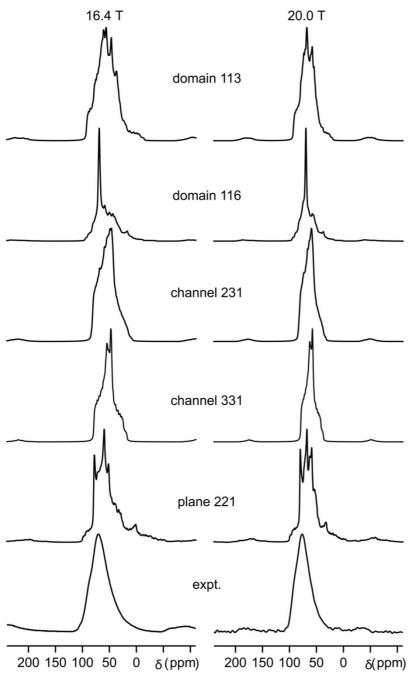
Figure S11: Plot of calculated (CASTEP) ²⁷Al NMR parameters for isolated defects within a 2 x 2 x 2 unit cell of β -Si₃N₄, as studied in Ref. 9, a single Al/O substitution corresponding to β '-sialon with z = 0.125. Geometry optimisation carried out by: (a) atomic coordinates relaxed within a unit cell lattice parameters fixed to those of z = 0.075, following the computational method in Ref. 9, and (b) both atomic coordinates and unit cell allowed to relax, following the method of the present work.


A single Al/O substitution into the 2 x 2 x 2 supercell of β -Si₃N₄ corresponds to β' sialon with z = 0.125. The calculated ²⁷Al NMR parameters are shown in the plot above. The C_Q values are similar to those reported in the plot in Ref. 9. For an isolated AlN₄ site a C_Q of <5 MHz is obtained. The C_Q calculated for AlN₄ in one of the models for z = 4 is large due to its through bond connectivity to an unintended defect site, obtained after geometry optimisation.


Figure S12: Plot of calculated (CASTEP) 27 Al NMR parameters for (top) domain models, and (bottom) channel models, for z = 1, z = 2, and z = 4.

Model	Local Al	Calculated ranges of $^{\rm 27}Al~C_Q$ /		
Widder	Environment	MHz		
z = 1				
Channel	$AIO_3^{111}N^2$	11.5 - 11.8		
Domain	AIO ² N ₃ ¹¹¹	7.6		
	$AIO_2^{12}N_2^{11}$	12.2 - 14.9		
	$AIO_3^{112}N^1$	12.0		
z = 2				
Channel	$AIO_3^{111}N^2$	11.2 - 12.6		
Domain	$AIO_2^{12}N_2^{11}$	11.2 - 14.6		
	$AIO_3^{112}N^1$	11.6 - 15.7		
	AIO ₄ ¹¹¹²	3.2		
z = 4				
Channel	AIO ₃ ¹¹¹ N ²	12.0 - 13.9		
Domain	AIN4 ¹¹¹²	12.6		
	AIO ¹ N ₃ ¹¹²	18.7 - 18.9		
	AIO ² N ₃ ¹¹¹	10.4		
	$AIO_2^{12}N_2^{11}$	11.1 - 22.9		
	$AIO_3^{112}N^1$	12.9 - 22.0		
	AIO4 ¹¹¹²	2.3 - 14		
	$AIO_{3}^{112}N_{2}^{12}*$	10.8		


Table S4: Calculated ranges of ²⁷Al C_Q values. The AlN₄¹¹¹² site, from model domain116ii, is connected, viaN² to the AlO₃¹¹²N₂¹²*defect site after geometry optimisation (Figure S10), resulting in the large C_Q.


Figure S13: Comparison of 3Q MAS NMR data (20.0 T) with the expected position of the intensity for z = 1 and $z = 2 \beta'$ -sialons for different structural models. Red diamonds = MQMAS centre-of-gravity of CASTEP calculated ²⁷Al NMR parameters. Spread of data supports single layer thickness for z = 1 (domain 116 model).

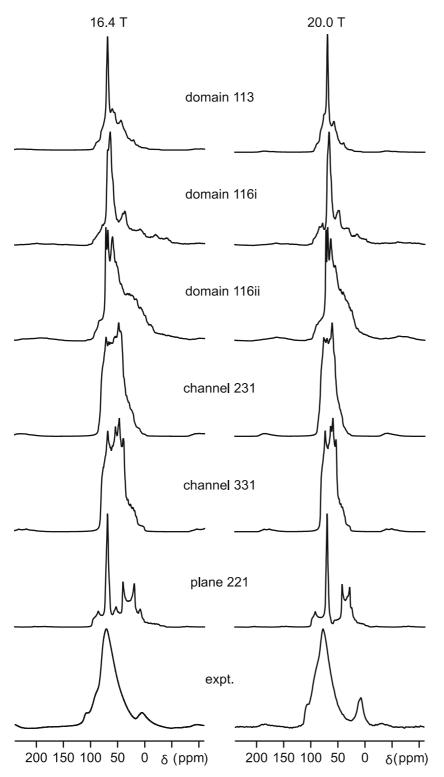

Figure S14: Experimental and simulated spectra (20.0 T, 25 kHz MAS) for z = 1, 2, and 4. Spectra were simulated using SIMPSON, using the NMR parameters calculated by CASTEP for the domain models. The two domain 116 models correspond to those shown in Figure S2.

Figure S15: Experimental and simulated spectra (16.4 T, 30 kHz MAS; 20.0 T, 25 kHz MAS) for z = 1. Spectra were simulated using SIMPSON, using the NMR parameters calculated by CASTEP for the domain and channel models.

Figure S16: Experimental and simulated spectra (16.4 T, 30 kHz MAS; 20.0 T, 25 kHz MAS) for z = 2. Spectra were simulated using SIMPSON, using the NMR parameters calculated by CASTEP for the domain, channel and plane models.

Figure S17: Experimental and simulated spectra (16.4 T, 30 kHz MAS; 20.0 T, 25 kHz MAS) for z = 4. Spectra were simulated using SIMPSON, using the NMR parameters calculated by CASTEP for the domain, channel and plane models.

S9. Example SIMPSON input files

SIMPSON simulations (SIMPSON version 4.2.1)¹⁴ were carried out for the CASTEP-calculated NMR parameters (chemical shift and quadrupolar parameters, C_Q and η_Q) for each of the models. Example SIMPSON input files are given below. The first is for the channel model of z = 1 at 16.4 T with 30 kHz MAS (z1_channel231_700_30.in), and the second is for a domain model of z = 1 at 20.0 T with 25 kHz MAS (z1_domain116_850_25.in), similar to experimental conditions. The zcw4180 crystal file was used for imitating the powder averaging.

Efficient simultation of MAS quadrupole and CSA spectrum of several independent

nuclei.

Initial density operator is Ix, i.e., ideal excitation assumed.

Only the central transition is 'observed'.
#

The parameters for each nucleus are set in the 'proc main {} { .. }' section of the input file.

The relative contribution of each nucleus to the spectrum is specified by the weight parameter.# The relative orientation of the CSA and

quadrupole coupling tensors is specified by taking the

quadrupole tensor as coincident with the crystal frame and only specifying the chemical shift tensor orientation.

spinsys {
 channels 27Al
 nuclei 27Al
 shift 1 \$par(CSiso) \$par(CSaniso) \$par(CSeta)
 \$par(alpha) \$par(beta) \$par(gamma)
 quadrupole 1 2 \$par(CQ) \$par(etaQ) 0
 0
 0
}

par {

start_operator I1x detect_operator I1c spin_rate 30000 gamma_angles 40 sw 300000 crystal_file zcw4180 np 1024 proton_frequency 700e6 verbose 111

variable tdwell 1.0e6/sw

proc pulseq {} {
 global par

}

reset acq for {set i 1} {\$i < \$par(np)} {incr i} {

delay \$par(tdwell) acq } } proc main {} { global par # create a dataset of zeros set f [fcreate -np \$par(np) -sw \$par(sw)] # C_Q eta_Q CSiso CSaniso CSeta a b g weight foreach Spin pars {{11.51e6 0.7 14913.816 0 0 0 002{11.76e6 0.72 14853.61344 0 0 0 0 0 2} {11.71e6 0.74 15001.38336 0 0 0 0 0 2}} { # Note the position of the brackets at the end of the above line. There must be a single # space between two braces otherwise the foreach command doesn't work. Strange! # set par(CQ) [lindex \$Spin pars 0] set par(etaQ) [lindex \$Spin_pars 1] set par(CSiso) [lindex \$Spin pars 2] set par(CSaniso) [lindex \$Spin_pars 3] set par(CSeta) [lindex \$Spin pars 4] set par(alpha) [lindex \$Spin pars 5] set par(beta) [lindex \$Spin pars 6] set par(gamma) [lindex \$Spin pars 7] set par(weight) [lindex \$Spin_pars 8] # run the simulation for each site [fsimpson] set g # weight each site as required fexpr \$g \$par(weight)*\\$re \$par(weight)*\\$im # add the sites together fadd \$f\$g } fsave \$f \$par(name).fid fzerofill \$f 8192 faddlb \$f 300 0 fft \$f fsave \$f \$par(name).spe

S2

}

Efficient simultation of MAS quadrupole and CSA spectrum of several independent # nuclei.

#

Initial density operator is Ix, i.e., ideal excitation assumed.

Only the central transition is 'observed'.
#

The parameters for each nucleus are set in the 'proc main {} { .. }' section of the input file.

The relative contribution of each nucleus to the spectrum is specified by the weight parameter.# The relative orientation of the CSA and

quadrupole coupling tensors is specified by taking the

quadrupole tensor as coincident with the crystal frame and only specifying the chemical shift tensor orientation.

spinsys {
 channels 27Al
 nuclei 27Al
 shift 1 \$par(CSiso) \$par(CSaniso) \$par(CSeta)
 \$par(alpha) \$par(beta) \$par(gamma)
 quadrupole 1 2 \$par(CQ) \$par(etaQ) 0
 0
 0
}

par {

```
start_operator I1x
detect_operator I1c
spin_rate 25000
gamma_angles 40
sw 300000
crystal_file zcw4180
np 1024
proton_frequency 850e6
verbose 111
```

variable tdwell 1.0e6/sw

```
proc pulseq {} {
  global par
```

}

reset acq for {set i 1} {\$i < \$par(np)} {incr i} { delay \$par(tdwell) acq }

}

proc main {} { global par

create a dataset of zeros
 set f [fcreate -np \$par(np) -sw \$par(sw)]

C Q eta Q CSiso CSaniso CSeta a b # g weight foreach Spin_pars {{14.88e6 0.85 20406.14604 0 00001{12.00e6 0.48 18042.55965 0 0 0 0 0 1} {12.19e6 0.7 20758.35807 0 0 0 0 1} {14.88e6 0.86 20401.7157 0 0 0 0 0 1} {12.00e6 0.48 18046.98999 0 0 0 0 0 1} {12.18e6 0.69 20760.57324 0 0 0 0 0 1}} # Note the position of the brackets at the end of the above line. There must be a single # space between two braces otherwise the foreach command doesn't work. Strange! # set par(CQ) [lindex \$Spin pars 0] set par(etaQ) [lindex \$Spin_pars 1] set par(CSiso) [lindex \$Spin pars 2] set par(CSaniso) [lindex \$Spin pars 3] set par(CSeta) [lindex \$Spin pars 4] set par(alpha) [lindex \$Spin pars 5] set par(beta) [lindex \$Spin pars 6] set par(gamma) [lindex \$Spin_pars 7] set par(weight) [lindex \$Spin_pars 8] # run the simulation for each site [fsimpson] set g # weight each site as required fexpr \$g \$par(weight)*\\$re \$par(weight)*\\$im # add the sites together fadd \$f \$g } fsave \$f \$par(name).fid

fzerofill \$f 8192 faddlb \$f 300 0

fsave \$f \$par(name).spe

fft \$f

}

S10. References

[1] Gruen, R. The crystal structure of beta-Si₃N₄; structural and stability considerations between alpha- and beta-Si₃N₄. *Acta Crystallographica, Section B: Structural Crystallography and Crystal Chemistry* **1979**, *35*, 800-804.

[2] Khvatinskaya, D.Y.; Em, VV.T.; Loryan, E.; Smirnov, K.L. A neutron diffraction study on the structure of β' -sialon. *Inorg. Mater.* **1991**, *27*, 1805-1807.

[3] Gillott, L.; Cowlam, N.; Bacon, G.E. A neutron diffraction investigation of some β' -sialons, *J. Mater. Sci.* **1981**, *16*, 2263-2268.

[4] Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. *J. Appl. Crystallogr.*, **2011**, *44*, 1272-1276.

[5] Harris, R.K.; Leach, M.J.; Thompson D.P. Synthesis and magic-angle spinning nuclear magnetic resonance of ¹⁵N-enriched silicon nitrides. *Chem. Mater.* **1990**, *3*, 320-323.

[6] Dupree, R.; Lewis, M.H.; Leng-Ward, G.; Williams, D.S. Coordination of Si atoms in siliconoxynitrides determined by magic-angle-spinning NMR. *J. Mater. Sci. Lett.* **1985**, *4*, 393-395.

[7] Carduner, K.R.; Carter, R.O.; Millberg M.E.; Crosbie, G.M. Determination of phasecomposition of silicon-nitride powders by ²⁹Si magic angle spinning nuclear-magneticresonance spectroscopy. *Anal. Chem.* **1987**, *59*, 2794-2797.

[8] Carduner, K.R.; Blackwell, C.S.; Hammond, W.B.; Reidinger, F.; Hatfield, G.R. ²⁹Si NMR characterization of α -silicon and β -silicon nitride. *J. Am. Chem. Soc.* **1990**, *112*, 4676-4679.

[9] Cozzan, C.; Griffith, K.J.; Laurita, G.; Hu, J.G.; Grey, C.P.; Seshadri, R. Structural Evolution and Atom Clustering in β -SiAlON: β -Si_{6-z}Al_zO_zN_{8-z} *Inorg. Chem.* **2017**, *56*, 2153-2158.

[10] Sjöberg, J.; Harris R.K.; Apperley D.C. ²⁹Si, ²⁷Al and ¹⁵N magic-angle spinning nuclear magnetic resonance of O'-sialons and some related phases. *J. Mater. Chem.* **1992**, *2*, 433-438.

[11] Dupree, R.; Lewis M.H.; Smith, M.E. Structural characterization of ceramic phases with high-resolution ²⁷Al NMR. *J. Appl. Cryst.* **1988**, *21*, 109-116.

[12] Smith, M.E. Observation of mixed Al(O,N)₄ structural units by ²⁷Al magic angle spinning NMR. *J. Phys. Chem.* **1992**, *96*, 1444-1448.

[13] (a) Rocha, J. Direct observation of highly distorted hexa-coordinated aluminium in andalusite by very fast Al-27 MAS NMR. *Chem. Commun.* **1998**, 2489-2490. (b) . Harris, R.K.; Leach, M.J.; Thompson, D.P. Synthesis and magic-angle-spinning nuclear-magnetic resonance of ¹⁵N-enriched silicon nitrides. *Chem. Mater.* **1990**, *2*, 320-323. (c) Jakobsen, H.J.; Skibsted, J.; Bildsøe, H.; Nielsen, N.C. Magic-angle spinning NMR spectra of satellite transitions for quadrupolar nuclei in solids. *J. Magn. Reson.* **1989**, *85*, 173-180. (d) Smith, J.V.; Blackwell, C.S. Nuclear magnetic resonance of silica polymorphs. *Nature* **1983**, *303*, 223-225. (e) Profeta, M.; Mauri,F.; Pickard, C.J. Accurate first principles prediction of O-17 NMR parameters in SiO₂: Assignment of the zeolite ferrierite spectrum. *J. Am. Chem. Soc.* **2003**, *125*, 541-548.

[14] Bak, M.; Rasmussen, J.T.; Nielsen, N.C. SIMPSON: A General Simulation Program for Solid-State NMR Spectroscopy, *J. Magn. Reson.*, **2000**, *147*, 296.