Supporting Information

Enantioselective Indole N-H Functionalization Enabled by Addition of Carbene Catalyst to Indole Aldehyde at Remote Site

Xing Yang,^{[b], +} Guoyong Luo,^{[a], +} Liejin Zhou,^[b] Bin Liu,^[c] Xiaolei Zhang,^[b] Hui Gao,^[d] Zhichao Jin,^[c] and Yonggui Robin Chi^{*, [b,c]}

^a School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China

^b Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

^c Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,Guizhou University Huaxi District, Guiyang 550025, China

^d Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China

E-mail: robinchi@ntu.edu.sg

Contents

General methods	S2
Optimization of reaction conditions	S3
General procedure for the asymmetric N-H functionalization	S4
Mechanim studies	S5
Characterization data of the catalytic reaction products	S7
X-ray structure of 3k, 5a and 7	S28
¹ H, ¹³ C, and ¹⁹ F NMR spectra and HPLC charts	S29
Computational details	.S122
References	.8154

General methods

All reactions and manipulations involving air-sensitive compounds were carried out using standard Schlenk techniques. Anhydrous toluene, hexane, Et₂O and THF were distilled from sodium benzophenone ketyl. Anhydrous CH₂Cl₂ and CHCl₃ were distilled from CaH₂ under an atmosphere of nitrogen. All reactions were monitored by TLC. TLC analysis was performed by illumination with a UV lamp (254 nm). All flash chromatography was packed with silica-gel as the stationary phase. ¹H NMR spectra were recorded on a Bruker Avance (300 or 500 MHz) or Bruker BBFO (400 MHz) instrument, and chemical shifts were reported in ppm downfield from internal TMS with the solvent resonance as the internal standard (CDCl₃, $\delta = 7.26$ ppm). ¹³C NMR (126 MHz) spectra were recorded on a Bruker BBFO (101 MHz) instrument, and chemical shifts were reported in ppm downfield from TMS with the solvent resonance as the internal standard (CDCl₃, $\delta = 77.2$ ppm). ¹⁹F NMR spectra were recorded on a Bruker Avance 300 (282 MHz) or Bruker BBFO (377 MHz) instrument. IR spectra were recorded on a Shimadzu IR Prestige-21FT-IR spectrometer. Optical rotations were measured on a Jasco P-1030 polarimeter. High resolution mass spectra (HRMS) (EI+) were recorded on an a Finnigan MAT 95 XP mass spectrometer. The indole-7-carbaldehydes^[1] and fluorinated ketones^[2] were synthesized according to the literature procedure.

Optimization of reaction conditions

Table S-1: Optimization of the asymmetric N-H functionalization of 1a with isatin 4a^[a]

	CHO 1a	+ N 4a Bn	NHC precatalys DQ (1.2 base (1.0 solvent	st (20 mol%) equiv) equiv) , rt, t	N O O O N-Bn 5a	
entry	NHC	solvent	base	t/h	yield [%] ^b	er [%]
1	Α	THF	K ₂ CO ₃	12	64	80.5:19.5
2	В	THF	K ₂ CO ₃	12	63	85:15
3	С	THF	K ₂ CO ₃	12	64	82.5:7.5
4	D	THF	K ₂ CO ₃	12	84	89:11
5	Е	THF	K ₂ CO ₃	12	64	93:7
6	G	THF	K ₂ CO ₃	12	trace	-
7	н	THF	K ₂ CO ₃	12	57	87:13
8	I	THF	K ₂ CO ₃	12	trace	-
9	J	THF	K ₂ CO ₃	12	79	76.5:23.5
10	к	THF	K ₂ CO ₃	12	trace	-
11	L	THF	K ₂ CO ₃	12	trace	-
12	D	Et ₂ O	K ₂ CO ₃	12	58	89:11
13	D	CH ₂ Cl ₂	K ₂ CO ₃	12	58	92:8
14	D	EA	K ₂ CO ₃	12	90	89.5:10.5
15	D	Toluene	K ₂ CO ₃	12	34	92:8
16	D	^t BuOMe	K ₂ CO ₃	12	53	91.5:8.5
17	D	CH ₂ Cl ₂	Cs_2CO_3	2	90	92:8
18	D	CH_2CI_2	DBU	12	trace	-
19	D	CH ₂ Cl ₂	DABCO	3	63	92:8
20	D	CH_2CI_2	DIEA	16	93	92:8
21	Е	CH_2CI_2	DIEA	24	85	97:3

[a] reaction conditions: **1a** (0.12 mmol), **4a** (0.1 mmol), solvent (1.0 mL); [b] Isolated yield.

CHO 1a	+ NPG R ¹ R ² 6	NHC precataly DQ (1.2 DIEA (1. CH ₂ C	st D (20 mol%) 2 equiv) .0 equiv) I ₂ , rt, t	$ \begin{array}{c} $
entry	imines	t/h	yield [%] ^b	er [%]
1	6a	1	95	83:17
2	6b	24	NR	-
3	6c	24	trace	-
4	6d	24	NR	-
5	6e	24	trace	-
6	6f	24	NR	-
7	6g	24	trace	-

Table S-2: Investigation of the asymmetric N-H functionalization of 1a with imines [a]

[a] Reaction conditions: **1a** (0.12 mmol), **6** (0.1 mmol), CH₂Cl₂ (1.0 mL);

[b] Isolated yield;

[c] NR = No reaction.

General procedure for the asymmetric N-H functionalization

To an dried 3 mL test tube with a stir bar was added the carbene catalyst (20 mol %), indole-7carbaldehydes (0.15 mmol, 1.5 equiv) and DQ (0.12 mmol, 1.2 equive). Then trifluoromethyl ketones (0.1 mmol), isatins (0.1 mmol) or imines (0.1 mmol), anhydrous CH_2Cl_2 (1.0 mL) and DIEA (0.1 mmol, 1.0 equive) was added at r.t. The reaction mixture was stirred at rt for the time indicated in the table, then directly subjected to the preparative thin layer chromatography (Hexane/DCM/EA = 20:20:1).

Mechanism studies

There are two possible pathways for our reaction, one is asymmetric [4+2] annulation pathway, the other is dynamic kinetic resolution (DKR) pathway.

(1) Asymmetric [4+2] annulation pathway:

The proposed [4+2] annulation pathway is shown in Figure S-1. On the basis of known information for NHC catalyzed transformations,^[3] we know that the addition of NHC to aldehyde **1a** will form intermediate **INT-1**, which undergoes proton transfer to form Breslow intermediate. Breslow intermediate is then converted to azolium ester intermediate **I** via oxidation. After deprotonation of intermediate **I**, the analogous *aza-o*-QMs intermediate (**II**) is formed. Finanlly, a formal [4+2] annulation reaction between intermediate **II** and trifluoroacetophone **2a** provides the desired product **3a** and regenerates the NHC catalyst.

Figure S-1. Asymmetric [4+2] annulation pathway

(2) Dynamic kinetic resolution pathway:

The dynamic kinetic resolution pathway is illustrated in Figure S-2. First, indole-7carbaldehyde **1a** reacts with trifluoroacetophone **2a** to form racemic compound **4** and **5**. Then the addition of NHC catalyst to (R)-**4** is kinetically favored over (S)-**4** to give intermediate **I**', which undergoes hydride shift to form Breslow intermediate. After oxidation reaction, intermediate **II**' is formed. Finally, intramoleculer esterification of intermediate **II**' affords the target product **3a** and regenerates the NHC catalyst.

Figure S-2. Dynamic kinetic resolution pathway

In order to provide theoretical insight to support the preferred reaction pathway, we performed some DFT calculations by using Gaussian 09 program (Figure S-3). For the [4+2] annulation pathway, the calculated energy barrier for the first step is 18.1 kcal/mol. We found that there are hydrogen bond interaction between C=O and N-H group and π - π stacking interaction between the C₆F₅ group on NHC and indole ring. In contrast, the calculated energy barrier for the first step in DKR pathway is 30.4 kcal/mol, which is too high for a room temperature reaction to happen. Therefore, the [4+2] annulation pathway is more reasonable than DKR pathway. Moreover, the transformation from intermediate **I** to analogous aza-o-QMs intermediate is energetically feasible (energy barrier is 14.0 kcal/mol). We also calculated Mulliken atomic charges for intermediate **II** and found that the O and N atoms have partial negative charges of -0.481 and -0.631, respectively (Table S-2). These fractional charges imply that **II** cannot be described as either of the two extreme resonance structures depicted in Figure S-1. The real state of analogous *aza-o*-QMs intermediate should lie somewhere in between.

M062X/6-311++G(2df,p)//M062X/6-31G(d,p)

Figure S-3. Key results for DFT calculations

Table	c .	Var	MIllian		ahawaaa	f		diate	тт
lable	5-2:	ĸey	Mulliken	atomic	cnarges	IOL	interme	ediate	Ш

Group	Mulliken Charge		
+NHC	0.690		
C1	0.376	0.376 0.63	1
0	- 0.481		
Ν	- 0.631	- 0.481 0.690	

Characterization data of the catalytic reaction products

(*R*)-3-phenyl-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)-one (3a): slightly yellow oil, 31.0 mg, 99% yield

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.91 (dd, *J* = 7.9, 0.7 Hz, 1H), 7.84 (d, *J* = 7.5 Hz, 1H), 7.54 – 7.34 (m, 6H), 7.29 (t, *J* = 7.7 Hz, 1H), 6.78 (d, *J* = 3.4 Hz, 1H); ¹³<u>C NMR</u> (101 MHz, CDCl₃) δ 158.5, 137.7, 133.6, 131.2, 129.1, 128.3, 127.1, 126.7, 126.3, 123.4, 122.3 (q, *J* = 289.3 Hz), 122.2, 108.6, 106.2, 93.4 (q, *J* = 33.6 Hz); ¹⁹<u>F NMR</u> (377 MHz, CDCl₃) δ -78.2; HRMS (ESI, m/z): calcd. for [M+H]⁺: 318.0736, found: 318.0742;

<u>**HPLC analysis**</u>: 95.5:4.5 er, (CHIRALCEL OJ-H column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 0.5 mL/min, λ = 220 nm, t_{minor} = 15.3 min, t_{major} = 28.5 min), $[\alpha]_D^{25}$ = +41.82 (c = 1.0, CHCl₃).

Note: reproduced by the co-author Dr. Guoyong Luo gave 90% yield and 95.5:4.5 er.

(*R*)-3-(4-fluorophenyl)-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)-one(3b): slightly yellow oil, 30.8 mg, 92% yield

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.91 (dd, J = 7.9, 0.6 Hz, 1H), 7.84 (d, J = 7.4 Hz, 1H), 7.48 (dd, J = 8.8, 5.0 Hz, 2H), 7.36 (dd, J = 3.1, 0.9 Hz, 1H), 7.29 (dd, J = 16.2, 8.6 Hz, 1H), 7.15 – 7.02 (m, 2H), 6.79 (d, J = 3.4 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 164.3 (d, J = 253.2 Hz), 158.2, 137.7, 129.7 (d, J = 3.2 Hz), 129.1 (dd, J = 8.9, 1.6 Hz), 128.5, 127.1, 126.2 (d, J = 1.7 Hz), 123.6, 122.3, 122.1 (q, J = 289.2 Hz), 116.3 (d, J = 22.1 Hz), 108.6, 106.5, 93.0 (q, J = 33.8 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -78.4 (3F), -108.8 (1F);

HRMS (ESI, m/z): calcd. for [M+H]⁺: 336.0642, found: 336.0654;

<u>**HPLC analysis**</u>: 96:4 er, (CHIRALCEL OJ-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, λ = 220 nm, t_{minor} = 16.9 min, t_{major} = 26.2 min), $[\alpha]_D^{25}$ = +63.94 (c = 1.0, CHCl₃).

(*R*)-3-(4-chlorophenyl)-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)-one (3c): slightly yellow oil, 34.8 mg, 99% yield

<u>**1H NMR**</u> (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.9 Hz, 1H), 7.84 (d, *J* = 7.5 Hz, 1H), 7.49 – 7.33 (m, 5H), 7.30 (t, *J* = 7.7 Hz, 1H), 6.80 (d, *J* = 3.4 Hz, 1H);

 $\frac{^{13}C \text{ NMR}}{^{12}} (101 \text{ MHz}, \text{CDCl}_3) \delta 158.1, 137.7, 137.6, 132.2, 129.4, 128.5, 128.2 (d, J = 1.2 \text{ Hz}), 127.1, 126.1 (d, J = 1.5 \text{ Hz}), 123.6, 122.4, 122.1 (q, J = 289.2 \text{ Hz}), 108.5, 106.6, 93.0 (q, J = 33.8 \text{ Hz});$

¹⁹**F** NMR (377 MHz, CDCl₃) δ -78.3;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 352.0347, found: 352.0348;

<u>**HPLC analysis**</u>: 95:5 er, (CHIRALCEL OJ-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, λ = 220 nm, t_{minor} = 15.5 min, t_{major} = 21.2 min), $[\alpha]_D^{25}$ = +21.34 (c = 1.0, CHCl₃).

(*R*)-3-(4-bromophenyl)-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)-one(3d): slightly yellow oil, 39.2 mg, 99% yield

¹<u>H NMR</u> (300 MHz, CDCl₃) δ 7.91 (dd, J = 7.9, 0.7 Hz, 1H), 7.84 (d, J = 7.5 Hz, 1H), 7.59 – 7.45 (m, 2H), 7.41 – 7.20 (m, 4H), 6.80 (d, J = 3.4 Hz, 1H);

 $\frac{^{13}C \text{ NMR}}{\text{Hz}} (101 \text{ MHz}, \text{CDCl}_3) \delta 158.1, 137.7, 132.7, 132.4, 128.5, 128.4 (d, J = 1.6 Hz), 127.1, 126.2 (d, J = 1.7 Hz), 126.0, 123.6, 122.4, 122.0 (q, J = 289.3 Hz), 108.5, 106.6, 93.0 (q, J = 33.9 Hz);$

<u>19F NMR</u> (282 MHz, CDCl₃) δ -78.3;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 395.9842, found: 395.9851;

<u>**HPLC analysis**</u>: 95:5 er, (CHIRALCEL OJ-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.8 mL/min, $\lambda = 220$ nm, $t_{minor} = 10.4$ min, $t_{major} = 12.5$ min), $[\alpha]_D^{25} = +8.04$ (c = 1.0, CHCl₃).

(*R*)-3-(*p*-tolyl)-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)-one (3e): slightly yellow oil, 31.8 mg, 96% yield

<u>**H NMR**</u> (300 MHz, CDCl₃) δ 7.89 (dd, J = 7.9, 0.6 Hz, 1H), 7.83 (d, J = 7.4 Hz, 1H), 7.37 (d, J = 8.3 Hz, 3H), 7.32 – 7.22 (m, 1H), 7.19 (d, J = 8.1 Hz, 2H), 6.76 (d, J = 3.3 Hz, 1H), 2.34 (s, 3H);

 $\frac{^{13}C \text{ NMR}}{(101 \text{ MHz, CDCl}_3) \delta 158.6, 141.5, 137.7, 130.7, 129.7, 128.3, 127.1, 126.6)}$ (d, *J* = 1.5 Hz), 126.4 (d, *J* = 1.6 Hz), 123.3, 122.3 (q, *J* = 289.3 Hz), 122.1, 108.6, 106.1, 93.5 (q, *J* = 33.6 Hz), 21.2; ¹⁹**F** NMR (282 MHz, CDCl₃) δ -78.2;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 332.0893, found: 332.0897;

<u>**HPLC analysis**</u>: 96.5:3.5 er, (CHIRALCEL OJ-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, λ = 220 nm, t_{minor} = 15.6 min, t_{major} = 32.1 min), [α]_D²⁵ = +36.60 (c = 1.0, CHCl₃).

(*R*)-3-(4-methoxyphenyl)-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)one (3f): slightly yellow oil, 33.3 mg, 96% yield

¹<u>H NMR</u> (300 MHz, CDCl₃) δ 7.90 (dd, J = 7.9, 0.6 Hz, 1H), 7.83 (d, J = 7.5 Hz, 1H), 7.49 – 7.20 (m, 4H), 6.94 – 6.82 (m, 2H), 6.76 (d, J = 3.3 Hz, 1H), 3.79 (s, 3H);

 $\frac{^{13}C \text{ NMR}}{^{12}} (101 \text{ MHz, CDCl}_3) \delta 161.6, 158.7, 137.7, 128.3 (d, J = 1.6 \text{ Hz}), 128.2, 127.0, 126.4, 125.5, 123.3, 122.3 (q, J = 289.2 \text{ Hz}), 122.1, 114.4, 108.7, 106.1, 93.5 (q, J = 33.6 \text{ Hz}), 55.5;$

¹⁹F NMR (282 MHz, CDCl₃) δ -78.3;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 348.0842, found: 348.0851;

<u>**HPLC analysis**</u>: 97.5:2.5 er, (CHIRALCEL OJ-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, λ = 220 nm, t_{minor} = 26.6 min, t_{major} = 54.4 min), $[\alpha]_D^{25}$ = +55.50 (c = 1.0, CHCl₃).

(*R*)-3-(4-nitrophenyl)-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)-one (3g): slightly yellow oil, 35.1 mg, 97% yield

<u>**H NMR**</u> (300 MHz, CDCl₃) δ 8.34 – 8.18 (m, 2H), 7.95 (d, *J* = 7.9 Hz, 1H), 7.86 (d, *J* = 7.5 Hz, 1H), 7.70 (d, *J* = 8.8 Hz, 2H), 7.42 (d, *J* = 2.1 Hz, 1H), 7.33 (t, *J* = 7.7 Hz, 1H), 6.86 (d, *J* = 3.4 Hz, 1H);

¹³<u>C NMR</u> (101 MHz, CDCl₃) δ 157.5, 149.6, 140.0, 137.7, 128.9, 128.2 (d, *J* = 1.4 Hz), 127.2, 125.9, 124.2, 123.9, 122.7, 121.8 (q, *J* = 289.3 Hz), 108.3, 107.2, 92.5 (q, *J* = 34.1 Hz);

¹⁹**F** NMR (282 MHz, CDCl₃) δ -78.0;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 363.0587, found: 363.0578;

<u>**HPLC analysis**</u>: 93:7 er, (CHIRALCEL OJ-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, $\lambda = 220$ nm, $t_{major} = 51.1$ min, $t_{minor} = 60.3$ min), $[\alpha]_D^{25} = +10.42$ (c = 1.0, CHCl₃).

(*R*)-3-(3-fluorophenyl)-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)-one(3h): slightly yellow oil, 32.8mg, 98% yield

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.92 (dd, J = 7.9, 0.7 Hz, 1H), 7.85 (d, J = 7.5 Hz, 1H), 7.39 (qd, J = 8.1, 5.7 Hz, 2H), 7.31 (ddd, J = 7.7, 4.1, 3.4 Hz, 2H), 7.24 – 7.11 (m, 2H), 6.81 (d, J = 3.4 Hz, 1H);

 $\frac{^{13}\mathbf{C} \text{ NMR}}{^{13}\mathbf{C} \text{ NMR}} (101 \text{ MHz, CDCl}_3) \delta 162.9 (d, J = 249.7 \text{ Hz}), 158.0, 137.7, 135.9 (d, J = 7.0 \text{ Hz}), 130.9 (d, J = 8.1 \text{ Hz}), 128.5, 127.1, 126.1 (d, J = 1.7 \text{ Hz}), 123.6, 122.5, 122.4, 122.0 (q, J = 289.3 \text{ Hz}), 118.4 (d, J = 21.1 \text{ Hz}), 114.4 (dd, J = 24.5, 1.5 \text{ Hz}), 108.5, 106.7, 92.7 (q, J = 33.9 \text{ Hz});$

¹⁹F NMR (377 MHz, CDCl₃) δ -78.2 (3F), -110.2 (1F);

HRMS (ESI, m/z): calcd. for [M+H]⁺: 336.0642, found: 336.0630;

<u>**HPLC analysis**</u>: 93:7 er, (CHIRALCEL OJ-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, λ = 220 nm, t_{minor} = 14.1 min, t_{major} = 15.0 min), $[\alpha]_D^{25}$ = +44.24 (c = 1.0, CHCl₃).

(*R*)-3-(3-chlorophenyl)-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)-one (3i): slightly yellow oil, 31.6 mg, 90% yield

<u>**H NMR**</u> (300 MHz, CDCl₃) δ 7.92 (dd, *J* = 7.9, 0.7 Hz, 1H), 7.85 (d, *J* = 7.5 Hz, 1H), 7.53 – 7.22 (m, 6H), 6.81 (d, *J* = 3.4 Hz, 1H);

 $\frac{13}{C \text{ NMR}} (101 \text{ MHz, CDCl}_3) \delta 158.0, 137.6, 135.5, 135.4, 131.5, 130.4, 128.6, 127.1, 127.0 (d,$ *J*= 1.6 Hz), 126.1 (d,*J*= 1.7 Hz), 124.9 (d,*J*= 1.6 Hz), 123.6, 122.4, 122.0 (q,*J*= 289.4 Hz), 108.4, 106.7, 92.7 (q,*J*= 33.8 Hz);

<u>19F NMR</u> (282 MHz, CDCl₃) δ -78.2;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 352.0347, found: 352.0350;

<u>HPLC analysis</u>: 92.5:7.5 er, (CHIRALCEL OJ-H column, *n*-hexane/*i*-PrOH = 95/5, flow rate = 0.5 mL/min, λ = 220 nm, t_{minor} = 16.5 min, t_{major} = 17.4 min), $[\alpha]_D^{25}$ = +21.12 (c = 1.0, CHCl₃).

(*R*)-3-(naphthalen-2-yl)-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)-one (3j): yellow solid, 35.9 mg, 98% yield

¹<u>H NMR</u> (300 MHz, CDCl₃) δ 7.97 – 7.82 (m, 6H), 7.62 – 7.47 (m, 3H), 7.41 (d, *J* = 2.5 Hz, 1H), 7.28 (dd, *J* = 13.4, 5.7 Hz, 1H), 6.80 (d, *J* = 3.3 Hz, 1H);

<u>1³C NMR</u> (101 MHz, CDCl₃) δ 158.5, 137.8, 134.2, 132.5, 130.7, 129.3, 129.1, 128.4, 128.1, 127.7, 127.2, 127.1, 127.0 (d, *J* = 1.7 Hz), 126.4 (d, *J* = 1.7 Hz), 123.4, 123.1, 122.4 (q, *J* = 289.7 Hz), 122.2, 108.6, 106.3, 93.6 (q, *J* = 33.6 Hz);

¹⁹F NMR (282 MHz, CDCl₃) δ -77.8;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 368.0893, found: 368.0899;

<u>**HPLC analysis**</u>: 94.5:5.5 er, (CHIRALCEL OD-H column, *n*-hexane/*i*-PrOH = 99/1, flow rate = 0.5 mL/min, $\lambda = 254$ nm, t_{minor} = 13.8 min, t_{major} = 16.0 min), $[\alpha]_D^{25} = -46.40$ (c = 1.0, CHCl₃).

(R) - 3 - (1 - tosyl - 1H - indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - [1,3] oxazino [5,4,3 - hi] indol - 3 - yl) - 3 - (trifluoromethyl) - 3 - (trifluoromethyl)

1(3H)-one (3k): white solid, 48.9 mg, 96% yield

<u>**¹H NMR**</u> (300 MHz, CDCl₃) δ 8.05 – 7.81 (m, 4H), 7.76 (d, *J* = 8.4 Hz, 2H), 7.43 – 7.18 (m, 4H), 7.11 – 6.99 (m, 3H), 6.70 (d, *J* = 3.4 Hz, 1H), 2.37 (s, 3H);

 $\frac{^{13}C \text{ NMR}}{127.1, 127.0, 126.4, 126.0, 125.8, 124.3, 123.4, 122.4 (q, J = 291.3 Hz), 122.3, 120.7, 113.8, 113.6, 107.9, 106.5, 91.2 (q, J = 35.1 Hz), 21.7;$

<u>19F NMR</u> (282 MHz, CDCl₃) δ -79.6;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 511.0934, found: 511.0948;

<u>**HPLC analysis**</u>: 96.5:3.5 er, (CHIRALCEL OJ-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, λ = 220 nm, t_{minor} = 35.1 min, t_{major} = 50.9 min), $[\alpha]_D^{25}$ = +90.76 (c = 1.0, CHCl₃).

(*R*)-3-methyl-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)-one (3l): slightly yellow oil, 22.7 mg, 89% yield

<u>¹H NMR</u> (300 MHz, CDCl₃) δ 7.86 (dd, J = 9.5, 7.9 Hz, 2H), 7.36 – 7.16 (m, 2H), 6.74 (d, J = 3.3 Hz, 1H), 2.16 (s, 3H);

<u>1³C NMR</u> (101 MHz, CDCl₃) δ 158.6, 137.0, 128.1, 126.6, 124.3, 123.1, 122.6 (q, J = 291.1 Hz), 121.9, 108.0, 106.2, 91.3 (q, J = 33.8 Hz), 21.5;

¹⁹F NMR (282 MHz, CDCl₃) δ -84.3;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 256.0580, found: 256.0572;

<u>**HPLC analysis</u>**: 94:6 er, (CHIRALCEL OJ-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, $\lambda = 220$ nm, $t_{major} = 16.7$ min, $t_{minor} = 23.8$ min), $[\alpha]_D^{25} = +43.12$ (c = 1.0, CHCl₃).</u>

(*R*)-3-ethyl-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)-one (3m): slightly yellow oil, 26.3 mg, 98% yield

<u>**H NMR**</u> (300 MHz, CDCl₃) δ 7.87 (dd, J = 9.6, 7.8 Hz, 2H), 7.37 – 7.24 (m, 1H), 7.20 (d, J = 3.1 Hz, 1H), 6.76 (d, J = 3.3 Hz, 1H), 2.53 – 2.33 (m, 2H), 1.01 (t, J = 7.3 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 158.9, 137.5, 128.1, 126.6, 124.2, 123.1, 122.7 (q, *J* = 291.1 Hz), 121.8, 107.7, 106.3, 94.0 (q, *J* = 32.6 Hz), 26.2, 5.9;

<u>19F NMR</u> (282 MHz, CDCl₃) δ -83.9;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 270.0736, found: 270.0741;

<u>**HPLC analysis**</u>: 96:4 er, (CHIRALCEL OJ-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, $\lambda = 220$ nm, $t_{major} = 12.6$ min, $t_{minor} = 14.4$ min), $[\alpha]_D^{25} = +65.74$ (c = 1.0, CHCl₃).

(*R*)-3-(difluoromethyl)-3-phenyl-[1,3]oxazino[5,4,3-hi]indol-1(3H)-one (3n): slightly yellow oil, 25.4 mg, 85% yield

<u>**H NMR**</u> (300 MHz, CDCl₃) δ 7.90 (d, *J* = 7.9 Hz, 1H), 7.80 (d, *J* = 7.5 Hz, 1H), 7.50 – 7.20 (m, 7H), 6.77 (d, *J* = 3.3 Hz, 1H), 6.42 (t, *J* = 54.2 Hz, 1H);

 $\frac{^{13}C \text{ NMR}}{(101 \text{ MHz, CDCl}_3) \delta 159.3, 138.1, 135.0, 130.9, 129.2, 128.1, 127.0, 126.8}$ (t, *J* = 2.6 Hz), 126.5, 123.0, 121.9, 113.4 (dd, *J* = 255.3, 3.2 Hz), 108.9, 105.6, 93.8 (dd, *J* = 26.3, 2.8 Hz);

¹⁹**F** NMR (282 MHz, CDCl₃) δ -128.9 (d, J = 285.2 Hz, 1F), -130.3 (d, J = 285.2 Hz, 1F);

HRMS (ESI, m/z): calcd. for [M+H]⁺: 300.0831, found: 300.0834;

<u>**HPLC analysis**</u>: 97:3 er, (CHIRALCEL OJ-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, λ = 220 nm, t_{minor} = 51.8 min, t_{major} = 59.0 min), $[\alpha]_D^{25}$ = +175.50 (c = 1.0, CHCl₃).

(R)-ethyl 1-oxo-3-phenyl-1,3-dihydro-[1,3]oxazino[5,4,3-hi]indole-3-carboxylate
(30): slightly yellow oil, 27.3 mg, 85% yield

¹<u>H NMR</u> (300 MHz, CDCl₃) δ 7.86 (t, J = 7.4 Hz, 2H), 7.64 – 7.38 (m, 5H), 7.38 – 7.17 (m, 2H), 6.68 (d, J = 3.3 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 1.18 (t, J = 7.1 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 166.9, 160.2, 138.2, 134.9, 130.8, 129.1, 127.9, 127.8, 127.7, 127.0, 122.7, 122.1, 109.4, 105.5, 94.3, 63.5, 14.1;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 322.1074, found: 322.1080;

<u>**HPLC analysis**</u>: 97.5:2.5 er, (CHIRALCEL OJ-H column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 0.5 mL/min, λ = 254 nm, t_{minor} = 35.2 min, t_{major} = 54.5 min), $[\alpha]_D^{25}$ = +131.66 (c = 1.0, CHCl₃).

(*R*)-6-methyl-3-phenyl-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)-one(3p): white solid, 31.7 mg, 96% yield

¹<u>H NMR</u> (300 MHz, CDCl₃) δ 7.82 (t, *J* = 6.5 Hz, 2H), 7.51 – 7.36 (m, 5H), 7.26 (t, *J* = 7.6 Hz, 1H), 7.12 (s, 1H), 2.38 (s, 3H);

<u>1³C NMR</u> (101 MHz, CDCl₃) δ 158.6, 138.2, 133.8, 131.1, 129.0, 127.9, 126.7 (d, J = 1.6 Hz), 126.6, 123.5, 123.2, 122.3 (q, J = 289.5 Hz), 121.6, 116.2, 108.4, 93.4 (q, J = 33.6 Hz), 10.0;

¹⁹F NMR (282 MHz, CDCl₃) δ -78.2;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 332.0893, found: 332.0896;

<u>**HPLC analysis**</u>: 94:6 er, (CHIRALCEL OJ-H column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 0.5 mL/min, λ = 220 nm, t_{minor} = 12.7 min, t_{major} = 27.1 min), $[\alpha]_D^{25}$ = +94.54 (c = 1.0, CHCl₃).

(*R*)-7-chloro-3-phenyl-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)-one (3q): slightly yellow oil, 33.7 mg, 96% yield

<u>**¹H NMR**</u> (300 MHz, CDCl₃) δ 7.78 (d, *J* = 7.8 Hz, 1H), 7.60 – 7.33 (m, 6H), 7.28 (d, *J* = 8.5 Hz, 1H), 6.86 (s, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 157.8, 137.9, 134.3, 133.2, 131.4, 129.2, 126.9, 126.6
(d, J = 1.6 Hz), 126.0, 124.6, 122.5, 122.1 (q, J = 289.1 Hz), 107.2, 105.0, 93.5 (q, J = 33.7 Hz);

<u>19</u>F NMR (282 MHz, CDCl₃) δ -78.1;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 352.0347, found: 352.0347;

<u>**HPLC analysis**</u>: 92:8 er, (CHIRALCEL OJ-H column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 0.5 mL/min, λ = 220 nm, t_{minor} = 11.8 min, t_{major} = 15.4 min), $[\alpha]_D^{25}$ = +142.24 (c = 1.0, CHCl₃).

(*R*)-8-fluoro-3-phenyl-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)-one (3r): yellow solid, 32.8 mg, 98% yield

<u>¹H NMR</u> (400 MHz, CDCl₃) δ 7.58 (td, J = 9.6, 2.1 Hz, 2H), 7.52 – 7.35 (m, 6H), 6.76 (d, J = 3.3 Hz, 1H);

 $\frac{^{13}\mathbf{C} \text{ NMR}}{^{13}\mathbf{C} \text{ NMR}} (101 \text{ MHz, CDCl}_3) \delta 158.9 (d, J = 240.4 \text{ Hz}), 157.6 (d, J = 3.1 \text{ Hz}), 134.5, 133.2, 131.4, 129.2, 127.9, 127.7 (d, J = 9.9 \text{ Hz}), 126.6 (d, J = 1.6 \text{ Hz}), 122.1 (q, J = 289.2 \text{ Hz}), 114.4 (d, J = 25.7 \text{ Hz}), 111.0 (d, J = 28.3 \text{ Hz}), 108.7 (d, J = 9.8 \text{ Hz}), 106.1 (d, J = 4.5 \text{ Hz}), 93.6 (q, J = 33.7 \text{ Hz});$

¹⁹F NMR (377 MHz, CDCl₃) δ -78.1 (3F), -119.6 (1F);

HRMS (ESI, m/z): calcd. for [M+H]⁺: 336.0642, found: 336.0640;

<u>**HPLC analysis**</u>: 97.5:2.5 er, (CHIRALCEL OJ-H column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 0.5 mL/min, λ = 220 nm, t_{minor} = 12.1 min, t_{major} = 25.3 min), $[\alpha]_D^{25}$ = +61.32 (c = 1.0, CHCl₃).

(R)-8-chloro-3-phenyl-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)-one(3s): yellow solid, 34.4 mg, 98% yield

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.87 (d, *J* = 1.7 Hz, 1H), 7.81 (d, *J* = 1.6 Hz, 1H), 7.54 – 7.35 (m, 6H), 6.74 (d, *J* = 3.3 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 157.3, 136.1, 133.1, 131.4, 129.2, 128.2, 127.8, 127.7, 126.6, 126.5, 123.2, 122.1 (q, J = 289.3 Hz), 109.3, 105.8, 93.5 (q, J = 33.8 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -78.1;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 352.0347, found: 352.0350;

<u>**HPLC analysis**</u>: 97:3 er, (CHIRALCEL OJ-H column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 0.5 mL/min, λ = 220 nm, t_{minor} = 11.9 min, t_{major} = 34.1 min), $[\alpha]_D^{25}$ = +28.02 (c = 1.0, CHCl₃).

(*R*)-8-bromo-3-phenyl-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)-one (3t): yellow solid, 37.6 mg, 95% yield

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 8.03 (d, *J* = 1.6 Hz, 1H), 7.94 (d, *J* = 1.5 Hz, 1H), 7.52 – 7.33 (m, 6H), 6.74 (d, *J* = 3.4 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 157.2, 136.4, 133.1, 131.4, 130.7, 129.2, 128.7, 127.6 (d, J = 1.6 Hz), 126.6 (d, J = 1.5 Hz), 125.8, 122.1 (q, J = 289.1 Hz), 115.1, 109.7, 105.7, 93.5 (q, J = 33.8 Hz);

<u>19F NMR</u> (377 MHz, CDCl₃) δ -78.1;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 395.9842, found: 395.9856;

<u>**HPLC analysis**</u>: 95:5 er, (CHIRALPAK IC column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, λ = 220 nm, t_{major} = 10.1 min, t_{minor} = 10.9 min), [α]_D²⁵ = +14.50 (c = 1.0, CHCl₃).

(*R*)-8-methoxy-3-phenyl-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)one (3u): white solid, 32.2 mg, 93% yield

¹**H NMR** (400 MHz CDCl₂) δ 7.60 – 7.29 (m. 8H) 6.69 (d.

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.60 – 7.29 (m, 8H), 6.69 (d, *J* = 3.2 Hz, 1H), 3.85 (s, 3H);

 $\frac{^{13}C \text{ NMR}}{^{12}(101 \text{ MHz}, \text{CDCl}_3) \delta 158.4, 156.1, 133.7, 133.6, 131.2, 129.1, 127.9, 127.1, 126.6 (d,$ *J*= 1.4 Hz), 122.2 (q,*J*= 289.1 Hz), 113.4, 110.4, 108.5, 105.8, 93.5 (q,*J*= 33.7 Hz), 56.5;

¹⁹**F** NMR (377 MHz, CDCl₃) δ -78.2;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 348.0842, found: 348.0851;

<u>HPLC analysis</u>: 96:4 er, (CHIRALPAK IC column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, λ = 220 nm, t_{major} = 12.8 min, t_{minor} = 14.0 min), [α]_D²⁵ = +45.96 (c = 1.0, CHCl₃).

(R)-9-fluoro-3-phenyl-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)-one(3v): slightly yellow oil, 30.1 mg, 90% yield

<u>**1H NMR**</u> (400 MHz, CDCl₃) δ 7.84 (dd, J = 8.7, 4.2 Hz, 1H), 7.53 – 7.31 (m, 6H), 7.00 (dd, J = 10.6, 8.7 Hz, 1H), 6.75 (d, J = 3.4 Hz, 1H);

 $\frac{^{13}\mathbf{C} \text{ NMR}}{^{(101 \text{ MHz, CDCl}_3)} \delta 159.2 \text{ (d, } J = 264.4 \text{ Hz}), 154.5 \text{ (d, } J = 3.6 \text{ Hz}), 137.4 \text{ (d, } J = 5.8 \text{ Hz}), 133.2, 131.3, 129.8 \text{ (d, } J = 10.4 \text{ Hz}), 129.2, 126.7 \text{ (d, } J = 1.5 \text{ Hz}), 123.2 \text{ (d, } J = 2.3 \text{ Hz}), 122.1 \text{ (q, } J = 289.1 \text{ Hz}), 111.4, 111.2, 106.3, 97.1 \text{ (d, } J = 14.2 \text{ Hz}), 93.4 \text{ (q, } J = 31.6 \text{ Hz});}$

¹⁹F NMR (377 MHz, CDCl₃) δ -78.0 (3F), -113.8 (1F);

HRMS (ESI, m/z): calcd. for [M+H]⁺: 336.0642, found: 336.0647;

<u>**HPLC analysis**</u>: 97:3 er, (CHIRALPAK IC column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, λ = 220 nm, t_{major} = 12.8 min, t_{minor} = 14.3 min), [α]_D²⁵ = +40.70 (c = 1.0, CHCl₃).

(R)-9-chloro-3-phenyl-3-(trifluoromethyl)-[1,3]oxazino[5,4,3-hi]indol-1(3H)-one(3w): slightly yellow oil, 33.7 mg, 96% yield

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.4 Hz, 1H), 7.53 – 7.32 (m, 6H), 7.27 (d, *J* = 8.4 Hz, 1H), 6.75 (d, *J* = 3.4 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 155.4, 138.4, 133.3, 131.4, 131.3, 129.2, 128.4, 126.7, 126.6, 125.9, 125.1, 122.1 (q, J = 289.4 Hz), 106.4, 106.3, 93.0 (q, J = 33.6 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -78.0;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 352.0347, found: 352.0357;

<u>**HPLC analysis**</u>: 96.5:3.5 er, (CHIRALPAK IC column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, λ = 220 nm, t_{major} = 11.4 min, t_{minor} = 12.2 min), $[\alpha]_D^{25}$ = -48.46 (c = 1.0, CHCl₃).

(*R*)-1'-benzyl-1H-spiro[[1,3]oxazino[5,4,3-hi]indole-3,3'-indoline]-1,2'-dione (5a): white solid, 32.3 mg, 85% yield

<u>**H NMR**</u> (300 MHz, CDCl₃) δ 7.98 – 7.74 (m, 2H), 7.60 (dd, J = 7.4, 0.7 Hz, 1H), 7.51 – 7.08 (m, 8H), 6.82 (d, J = 7.9 Hz, 1H), 6.65 (s, 2H), 4.87 (d, J = 15.7 Hz, 1H), 4.72 (d, J = 15.7 Hz, 1H);

<u>1³C NMR</u> (101 MHz, CDCl₃) δ 169.7, 160.7, 143.8, 138.7, 134.6, 133.3, 129.1, 128.2, 127.8, 127.5, 127.4, 126.4, 124.3, 123.4, 122.9 (2C), 122.1, 110.6, 109.9, 106.6, 89.9, 44.1;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 381.1234, found: 381.1233;

<u>**HPLC analysis**</u>: 97:3 er, (CHIRALCEL OD-H column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 0.8 mL/min, λ = 220 nm, t_{minor} = 15.0 min, t_{major} = 16.3 min), $[\alpha]_D^{25}$ = -493.92 (c = 1.0, CHCl₃).

Note: reproduced by the co-author Dr. Guoyong Luo gave 83% yield and 97:3 er.

(*R*)-1'-methyl-1H-spiro[[1,3]oxazino[5,4,3-hi]indole-3,3'-indoline]-1,2'-dione (5b): slightly yellow solid, 25.8 mg, 85% yield

<u>**1H NMR**</u> (300 MHz, CDCl₃) δ 7.87 (t, J = 8.3 Hz, 2H), 7.65 – 7.48 (m, 2H), 7.33 – 7.20 (m, 2H), 6.96 (d, J = 7.9 Hz, 1H), 6.63 (dd, J = 9.7, 3.3 Hz, 2H), 3.15 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 169.5, 160.7, 144.8, 138.6, 133.4, 127.7, 127.4, 126.3, 124.2, 123.5, 122.9, 122.8, 122.0, 109.9, 109.4, 106.3, 89.8, 26.5;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 305.0921, found: 305.0932;

<u>**HPLC analysis**</u>: 97:3 er, (CHIRALCEL OD-H column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 0.8 mL/min, λ = 220 nm, t_{major} = 15.3 min, t_{minor} = 30.9 min), [α]_D²⁵ = -498.92 (c = 1.0, CHCl₃).

(*R*)-1'-benzyl-5'-chloro-1H-spiro[[1,3]oxazino[5,4,3-hi]indole-3,3'-indoline]-1,2'dione (5c): slightly yellow solid, 34.0 mg, 82% yield

¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.90 (dd, J = 12.6, 7.7 Hz, 2H), 7.60 (d, J = 2.0 Hz, 1H), 7.46 – 7.10 (m, 7H), 6.75 (d, J = 8.5 Hz, 1H), 6.68 (dd, J = 10.1, 3.2 Hz, 2H), 4.87 (d, J = 15.7 Hz, 1H), 4.72 (d, J = 15.7 Hz, 1H);

<u>1³C NMR</u> (101 MHz, CDCl₃) δ 169.3, 160.1, 142.3, 138.6, 134.2, 133.2, 129.8, 129.2, 128.4, 127.9, 127.5, 127.4, 126.8, 124.5, 123.2, 123.1, 122.3, 111.7, 109.7, 107.1, 89.6, 44.3;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 415.0844, found: 415.0845;

<u>HPLC analysis</u>: 94:6 er, (CHIRALPAK IC column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 0.8 mL/min, λ = 220 nm, t_{minor} = 27.3 min, t_{major} = 36.0 min), [α]_D²⁵ = -253.10 (c = 1.0, CHCl₃).

(*R*)-1'-benzyl-5'-bromo-1H-spiro[[1,3]oxazino[5,4,3-hi]indole-3,3'-indoline]-1,2'dione (5d): yellow solid, 33.5 mg, 73% yield

<u>**H NMR**</u> (500 MHz, CDCl₃) δ 7.90 (dd, J = 12.0, 7.7 Hz, 2H), 7.74 (d, J = 1.9 Hz, 1H), 7.53 (dd, J = 8.4, 2.0 Hz, 1H), 7.41 – 7.12 (m, 6H), 6.71 – 6.66 (m, 3H), 4.86 (d, J = 15.7 Hz, 1H), 4.72 (d, J = 15.7 Hz, 1H);

<u>1³C NMR</u> (101 MHz, CDCl₃) δ 169.2, 160.1, 142.8, 138.6, 136.1, 134.1, 129.5, 129.2, 128.4, 127.9, 127.5, 127.4, 124.8, 123.3, 123.2, 122.3, 116.9, 112.1, 109.7, 107.1, 89.5, 44.2;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 459.0339, found: 459.0339;

<u>HPLC analysis</u>: 94:6 er, (CHIRALPAK IC column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 0.8 mL/min, λ = 220 nm, t_{minor} = 28.2 min, t_{major} = 37.4 min), [α]_D²⁵ = -351.78 (c = 1.0, CHCl₃).

(R)-1'-benzyl-6'-methoxy-1H-spiro[[1,3]oxazino[5,4,3-hi]indole-3,3'-indoline]-

1,2'-dione (5e): slightly yellow solid, 33.2 mg, 81% yield

¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.88 (dd, J = 16.6, 7.6 Hz, 2H), 7.52 (d, J = 8.3 Hz, 1H), 7.41 – 7.12 (m, 6H), 6.77 – 6.56 (m, 3H), 6.37 (d, J = 2.1 Hz, 1H), 4.83 (d, J = 15.7 Hz, 1H), 4.69 (d, J = 15.7 Hz, 1H), 3.79 (s, 3H);

<u>1³C NMR</u> (101 MHz, CDCl₃) δ 170.2, 163.8, 161.1, 145.5, 138.7, 134.7, 129.1, 128.2, 127.6, 127.5, 127.4, 123.5, 122.8, 122.0, 114.4, 110.0, 107.8, 106.4, 98.5, 89.9, 55.8, 44.1;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 411.1339, found: 411.1346;

<u>**HPLC analysis**</u>: 98:2 er, (CHIRALCEL OD column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 0.5 mL/min, $\lambda = 254$ nm, $t_{major} = 29.2$ min, $t_{minor} = 33.4$ min), $[\alpha]_D^{25} = -440.12$ (c = 1.0, CHCl₃).

(*R*)-1'-benzyl-7'-fluoro-1H-spiro[[1,3]oxazino[5,4,3-hi]indole-3,3'-indoline]-1,2'dione (5f): slightly yellow solid, 35.8 mg, 90% yield

¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.89 (dd, J = 14.8, 7.7 Hz, 2H), 7.41 (d, J = 7.3 Hz, 1H), 7.37 – 7.09 (m, 8H), 6.63 (dd, J = 20.2, 3.2 Hz, 2H), 4.98 (d, J = 15.3 Hz, 1H), 4.88 (d, J = 15.3 Hz, 1H);

 $\frac{^{13}C \text{ NMR}}{^{13}C \text{ NMR}} (101 \text{ MHz, CDCl}_3) \delta 169.5, 160.3, 147.6 (d, J = 248.0 \text{ Hz}), 138.6, 135.8, 130.5 (d, J = 9.6 \text{ Hz}), 128.9, 128.1, 127.9, 127.6 (d, J = 1.5 \text{ Hz}), 127.5, 125.6 (d, J = 3.0 \text{ Hz}), 125.3 (d, J = 6.3 \text{ Hz}), 123.3, 123.0, 122.4 (d, J = 3.5 \text{ Hz}), 122.3, 121.5 (d, J = 19.6 \text{ Hz}), 109.8, 106.9, 89.5 (d, J = 3.2 \text{ Hz}), 45.8 (d, J = 4.6 \text{ Hz});$

¹⁹**F NMR** (282 MHz, CDCl₃) δ -131.3;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 399.1139, found: 399.1141;

<u>**HPLC analysis**</u>: 95:5 er, (CHIRALCEL OD-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.8 mL/min, λ = 220 nm, t_{minor} = 18.8 min, t_{major} = 19.8 min), [α]_D²⁵ = -471.34 (c = 1.0, CHCl₃).

(*R*)-1'-benzyl-7'-chloro-1H-spiro[[1,3]oxazino[5,4,3-hi]indole-3,3'-indoline]-1,2'dione (5g): yellow solid, 36.0 mg, 87% yield

¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.89 (dd, J = 14.0, 7.7 Hz, 2H), 7.55 (d, J = 7.4 Hz, 1H), 7.41 (d, J = 8.2 Hz, 1H), 7.36 – 7.05 (m, 7H), 6.67 (d, J = 3.0 Hz, 2H), 5.23 (s, 2H);

<u>1³C NMR</u> (101 MHz, CDCl₃) δ 170.4, 160.2, 140.0, 138.7, 136.2, 135.7, 128.9, 127.9, 127.8, 127.5, 126.6, 125.8, 125.3, 125.2, 123.2, 123.1, 122.2, 116.8, 109.8, 107.0, 89.0, 45.2;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 415.0844, found: 415.0847;

<u>**HPLC analysis**</u>: 95:5 er, (CHIRALCEL OD-H column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 0.8 mL/min, λ = 220 nm, t_{minor} = 12.1 min, t_{major} = 14.0 min), $[\alpha]_D^{25}$ = - 340.66 (c = 1.0, CHCl₃).

(*R*)-1'-benzyl-7'-methyl-1H-spiro[[1,3]oxazino[5,4,3-hi]indole-3,3'-indoline]-1,2'dione (5h): slightly yellow solid, 27.6 mg, 70% yield ¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.88 (dd, J = 16.2, 7.7 Hz, 2H), 7.50 (d, J = 7.3 Hz, 1H), 7.38 – 7.03 (m, 8H), 6.72 (d, J = 3.2 Hz, 1H), 6.66 (d, J = 3.2 Hz, 1H), 5.17 – 4.96 (m, 2H), 2.31 (s, 3H);

<u>1³C NMR</u> (101 MHz, CDCl₃) δ 170.8, 160.8, 141.8, 138.7, 137.2, 136.3, 129.2, 127.8, 127.7, 127.4, 125.7, 124.5, 124.4, 123.6, 123.5, 122.8, 122.0, 121.4, 110.1, 106.5, 89.5, 45.3, 18.8;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 395.1390, found: 395.1394;

<u>HPLC analysis</u>: 97.5:2.5 er, (CHIRALCEL OD-H column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 0.8 mL/min, λ = 220 nm, t_{minor} = 13.8 min, t_{major} = 14.7 min), [α]_D²⁵ = -473.88 (c = 1.0, CHCl₃).

(*R*)-1'-benzyl-5',7'-dimethyl-1H-spiro[[1,3]oxazino[5,4,3-hi]indole-3,3'-indoline]-1,2'-dione (5i): yellow solid, 35.5 mg, 87% yield

¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.87 (dd, J = 15.6, 7.7 Hz, 2H), 7.35 – 7.21 (m, 5H), 7.11 (d, J = 7.5 Hz, 2H), 7.00 (s, 1H), 6.73 (d, J = 3.1 Hz, 1H), 6.66 (d, J = 3.2 Hz, 1H), 5.11 – 4.92 (m, 2H), 2.29 (s, 3H), 2.26 (s, 3H);

<u>1³C NMR</u> (101 MHz, CDCl₃) δ 170.8, 160.8, 139.3, 138.7, 137.6, 136.4, 134.2, 129.1, 127.7, 127.6, 127.4, 125.8, 124.9, 123.6, 123.5, 122.8, 122.0, 121.1, 110.0, 106.4, 89.7, 45.3, 20.7, 18.7;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 409.1547, found: 409.1550;

<u>**HPLC analysis**</u>: 98:2 er, (CHIRALCEL OD-H column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 0.8 mL/min, λ = 220 nm, t_{minor} = 12.4 min, t_{major} = 13.8 min), [α]_D²⁵ = -508.14 (c = 1.0, CHCl₃).

(*R*)-1'-benzyl-6-methyl-1H-spiro[[1,3]oxazino[5,4,3-hi]indole-3,3'-indoline]-1,2'dione (5j): slightly yellow solid, 32.3 mg, 82% yield ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.88 (d, *J* = 7.4 Hz, 1H), 7.80 (dd, *J* = 7.9, 0.7 Hz, 1H), 7.60 (dd, *J* = 7.5, 0.8 Hz, 1H), 7.40 (td, *J* = 7.8, 1.3 Hz, 1H), 7.35 – 7.21 (m, 6H), 7.17 (td, *J* = 7.7, 0.8 Hz, 1H), 6.81 (d, *J* = 7.9 Hz, 1H), 6.41 (d, *J* = 1.0 Hz, 1H), 4.83 (d, *J* = 15.7 Hz, 1H), 4.73 (d, *J* = 15.7 Hz, 1H), 2.27 (d, *J* = 1.1 Hz, 3H);

<u>1³C NMR</u> (101 MHz, CDCl₃) δ 169.9, 160.8, 143.8, 139.4, 134.7, 133.1, 129.1, 128.4, 128.1, 127.4, 126.3, 126.1, 124.2, 123.1, 122.7, 121.5, 120.8, 117.0, 110.4, 109.8, 90.0, 44.1, 10.0;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 395.1390, found: 395.1384;

<u>**HPLC analysis**</u>: 96:4 er, (CHIRALCEL OD-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.8 mL/min, λ = 220 nm, t_{minor} = 20.3 min, t_{major} = 22.8 min), [α]_D²⁵ = -481.06 (c = 1.0, CHCl₃).

(*R*)-1'-benzyl-7-chloro-1H-spiro[[1,3]oxazino[5,4,3-hi]indole-3,3'-indoline]-1,2'dione (5k): yellow solid, 38.1 mg, 92% yield

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 1H), 7.59 (dd, *J* = 7.5, 0.7 Hz, 1H), 7.42 (td, *J* = 7.9, 1.2 Hz, 1H), 7.36 – 7.14 (m, 7H), 6.84 (d, *J* = 7.9 Hz, 1H), 6.72 (d, *J* = 3.3 Hz, 1H), 6.68 (d, *J* = 3.3 Hz, 1H), 4.86 (d, *J* = 15.7 Hz, 1H), 4.72 (d, *J* = 15.7 Hz, 1H);

<u>1³C NMR</u> (101 MHz, CDCl₃) δ 169.5, 160.0, 143.9, 138.9, 134.5, 133.4 (2C), 129.1, 128.2, 127.3, 126.4, 126.3, 124.4, 124.0, 123.9, 122.4, 122.3, 110.7, 108.7, 105.3, 89.9, 44.2;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 415.0844, found: 415.0846;

<u>**HPLC analysis**</u>: 95:5 er, (CHIRALCEL OD-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.8 mL/min, λ = 220 nm, t_{minor} = 21.8 min, t_{major} = 23.0 min), [α]_D²⁵ = -308.00 (c = 1.0, CHCl₃).

(*R*)-1'-benzyl-8-fluoro-1H-spiro[[1,3]oxazino[5,4,3-hi]indole-3,3'-indoline]-1,2'-

dione (51): slightly yellow solid, 31.8 mg, 80% yield

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.63 (dd, J = 12.9, 4.6 Hz, 2H), 7.55 (dd, J = 9.4, 2.1 Hz, 1H), 7.43 (t, J = 7.8 Hz, 1H), 7.36 – 7.15 (m, 6H), 6.84 (d, J = 7.9 Hz, 1H), 6.70 (d, J = 3.2 Hz, 1H), 6.62 (d, J = 3.2 Hz, 1H), 4.86 (d, J = 15.7 Hz, 1H), 4.73 (d, J = 15.7 Hz, 1H);

 $\frac{^{13}\mathbf{C} \text{ NMR}}{^{143.9}, 135.5, 134.5, 133.4, 129.2, 128.2, 128.0 (d,$ *J*= 23.5 Hz), 159.1 (d,*J*= 239.7 Hz), 124.4, 122.4, 113.7, 113.5, 110.6, 110.2 (d,*J*= 10.0 Hz), 106.5 (d,*J*= 4.6 Hz), 90.0, 44.2;

¹⁹**F NMR** (377 MHz, CDCl₃) δ -120.1;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 399.1139, found: 399.1141;

<u>**HPLC analysis**</u>: 98:2 er, (CHIRALCEL OD-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.8 mL/min, λ = 220 nm, t_{minor} = 21.0 min, t_{major} = 22.7 min), [α]_D²⁵ = -475.22 (c = 1.0, CHCl₃).

(*R*)-1'-benzyl-8-chloro-1H-spiro[[1,3]oxazino[5,4,3-hi]indole-3,3'-indoline]-1,2'dione (5m): slightly yellow solid, 37.7 mg, 91% yield

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.85 (d, *J* = 1.5 Hz, 1H), 7.82 (d, *J* = 1.6 Hz, 1H), 7.60 (dd, *J* = 7.4, 0.7 Hz, 1H), 7.43 (td, *J* = 7.9, 1.2 Hz, 1H), 7.37 – 7.13 (m, 6H), 6.84 (d, *J* = 7.9 Hz, 1H), 6.68 (d, *J* = 3.2 Hz, 1H), 6.59 (d, *J* = 3.2 Hz, 1H), 4.85 (d, *J* = 15.7 Hz, 1H), 4.72 (d, *J* = 15.7 Hz, 1H);

<u>1³C NMR</u> (101 MHz, CDCl₃) δ 169.4, 159.6, 143.9, 137.1, 134.5, 133.5, 129.2, 128.6, 128.2, 128.0, 127.3, 127.1, 126.4, 124.8, 124.4, 122.7, 122.3, 110.8, 110.7, 106.2, 90.0, 44.2;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 415.0844, found: 415.0840;

<u>**HPLC analysis**</u>: 97.5:2.5 er, (CHIRALCEL OD-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.8 mL/min, λ = 220 nm, t_{minor} = 23.2 min, t_{major} = 24.3 min), $[\alpha]_D^{25}$ = -338.82 (c = 1.0, CHCl₃).

(R)-1'-benzyl-8-methoxy-1H-spiro[[1,3]oxazino[5,4,3-hi]indole-3,3'-indoline]-

1,2'-dione (5n): white solid, 34.0 mg, 83% yield

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.61 (dd, J = 7.4, 0.7 Hz, 1H), 7.54 (d, J = 2.1 Hz, 1H), 7.44 – 7.10 (m, 8H), 6.81 (d, J = 7.9 Hz, 1H), 6.62 (d, J = 3.2 Hz, 1H), 6.56 (d, J = 3.2 Hz, 1H), 4.85 (d, J = 15.7 Hz, 1H), 4.71 (d, J = 15.7 Hz, 1H), 3.89 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 160.7, 156.1, 143.8, 134.6, 134.5, 133.2, 129.1, 128.2, 128.1, 127.3, 126.4, 124.3, 124.2, 122.7, 112.5, 110.5, 110.4, 109.9, 106.3, 90.1, 56.6, 44.1;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 411.1339, found: 411.1347;

<u>HPLC analysis</u>: 96:4 er, (CHIRALPAK IC column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, λ = 220 nm, t_{major} = 12.8 min, t_{minor} = 14.0 min), [α]_D²⁵ = -474.92 (c = 1.0, CHCl₃).

(*R*)-1'-benzyl-9-fluoro-1H-spiro[[1,3]oxazino[5,4,3-hi]indole-3,3'-indoline]-1,2'dione (50): white solid, 37.8 mg, 95% yield

<u>**H NMR**</u> (400 MHz, CDCl₃) δ 7.79 (dd, J = 8.7, 4.2 Hz, 1H), 7.64 – 7.56 (m, 1H), 7.42 (td, J = 7.9, 1.2 Hz, 1H), 7.36 – 7.14 (m, 6H), 7.01 (dd, J = 10.6, 8.7 Hz, 1H), 6.83 (d, J = 7.9 Hz, 1H), 6.62 (q, J = 3.3 Hz, 2H), 4.86 (d, J = 15.7 Hz, 1H), 4.72 (d, J = 15.7 Hz, 1H);

 $\frac{^{13}\text{C NMR}}{J} (101 \text{ MHz, CDCl}_3) \delta 169.6, 158.8 (d, J = 263.1 \text{ Hz}), 156.9, 143.9, 138.4 (d, J = 6.0 \text{ Hz}), 134.5, 133.4, 129.3, 129.2, 128.2, 127.3, 126.4, 124.3, 123.8 (d, J = 4.1 \text{ sz6})$

Hz), 123.7 (d, *J* = 2.0 Hz), 122.4, 111.3 (d, *J* = 23.1 Hz), 110.6, 106.7, 98.1 (d, *J* = 14.1 Hz), 89.83, 44.2;

<u>19F NMR</u> (377 MHz, CDCl₃) δ -115.1;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 399.1139, found: 399.1150;

<u>HPLC analysis</u>: 97:3 er, (CHIRALPAK IC column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, λ = 220 nm, t_{major} = 12.8 min, t_{minor} = 14.3 min), [α]_D²⁵ = -532.12 (c = 1.0, CHCl₃).

(*R*)-1'-benzyl-9-chloro-1H-spiro[[1,3]oxazino[5,4,3-hi]indole-3,3'-indoline]-1,2'dione (5p): white solid, 37.3 mg, 90% yield

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.4 Hz, 1H), 7.61 (dd, *J* = 7.5, 0.8 Hz, 1H), 7.43 (td, *J* = 7.9, 1.3 Hz, 1H), 7.38 – 7.14 (m, 7H), 6.83 (d, *J* = 7.9 Hz, 1H), 6.63 (q, *J* = 3.3 Hz, 2H), 4.87 (d, *J* = 15.7 Hz, 1H), 4.73 (d, *J* = 15.7 Hz, 1H);

<u>1³C NMR</u> (101 MHz, CDCl₃) δ 169.6, 157.7, 143.9, 139.4, 134.5, 133.4, 130.7, 129.2, 128.2, 127.8, 127.4, 126.5, 126.4, 125.0, 124.4, 123.8, 122.4, 110.6, 107.6, 106.6, 89.5, 44.2;

HRMS (ESI, m/z): calcd. for [M+H]⁺: 415.0844, found: 415.0848;

<u>**HPLC analysis**</u>: 97:3 er, (CHIRALPAK IC column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, λ = 220 nm, t_{major} = 11.4 min, t_{minor} = 12.3 min), [α]_D²⁵ = -367.72 (c = 1.0, CHCl₃).

(R)-methyl6-oxo-6,12b-dihydrobenzo[4,5]isothiazolo[3,2-b]pyrrolo[3,2,1-ij]quinazoline-12b-carboxylate 8,8-dioxide (7): white solid, 34.7 mg, 95% yield $\frac{1H \text{ NMR}}{IH \text{ NMR}}$ (400 MHz, DMSO) δ 8.62 (d, J = 7.9 Hz, 1H), 8.36 (d, J = 7.6 Hz, 1H),8.22 (d, J = 3.4 Hz, 1H), 8.17 - 8.08 (m, 1H), 8.04 (t, J = 7.3 Hz, 2H), 7.89 (d, J = 7.5 Hz, 1H), 7.43 (t, J = 7.7 Hz, 1H), 6.94 (d, J = 3.4 Hz, 1H), 3.62 (s, 3H);

13<u>C NMR</u> (101 MHz, DMSO) δ 165.8, 158.3, 137.5, 135.7, 133.6, 133.4, 128.3, 127.9, 127.8, 126.7, 126.5, 122.6, 122.5, 121.6, 111.7, 106.5, 78.8, 55.0; HRMS (ESI, m/z): calcd. for [M+H]⁺: 369.0540, found: 369.0545; HPLC analysis: 83:17 er, (CHIRALCEL OD-H column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 0.8 mL/min, λ = 220 nm, t_{minor} = 33.4 min, t_{major} = 36.0 min), [α]_D²⁵ = -84.10 (c = 0.6, CHCl₃).

X-ray structure of 3k, 5a and 7

Deposition No. CCDC 1902526

¹H, ¹³C and ¹⁹F spectra and HPLC charts

100		90
f1	(p	pm)

0

--78.170

U	V	D	e	te	C	to	r	C.	h2	. 2	.2	0	m	1

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.335	4867729	219104	50.178	70.170
2	28.835	4833121	93141	49.822	29.830
Total		9700850	312246	100.000	100.000

UV Delector Ch2 220111	UV	Det	ector	Ch2	220mm
------------------------	----	-----	-------	-----	-------

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.329	1220612	56255	4.472	10.165
2	28.480	26075993	497139	95.528	89.835
Total		27296605	553394	100.000	100.000

7.924 7.923 7.903 7.903 7.851 7.851 7.851 7.851 7.853 7.853 7.853 7.853 7.853 7.853 7.853 7.853 7.853 7.853 7.855 7.478 7.3555 7.3555 7.3555 7.3555 7.3555 7.3555 7.3555 7.3555 7.

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

Detector A	Ch2 220nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.344	7219996	296540	49.860	64.001
2	27.185	7260432	166798	50.140	35.999
Total		14480429	463338	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.883	959292	41054	3.671	6.669
2	26.239	25174939	574533	96.329	93.331
Total		26134231	615588	100.000	100.000

Detector A Ch2 220nm										
I	Peak#	Ret. Time	Area	Height	Area %	Height %				
	1	15.596	8696086	383324	49.806	60.640				
	2	21.348	8763894	248809	50.194	39.360				
	Total		17459980	632133	100.000	100.000				

Detector A	Ch2	220nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.527	1967892	88183	4.875	7.535
2	21.171	38402304	1082207	95.125	92.465
Total		40370196	1170390	100.000	100.000

UV Detector Ch2 220nm Peak# Ret. Time Area Height Area % Height % 10.346 4719196 257406 48.847 55.886 1 12.502 2 4941910 203187 51.153 44.114 Total 9661107 460594 100.000 100.000

UV Detector Cn2 220mm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	10.422	2471081	133623	5.291	7.015			
2	12.496	44228967	1771268	94.709	92.985			
Total		46700048	1904891	100.000	100.000			

---78.237

Ţ	J	V	D	e	tec	tor	Ch2	220)nm	

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.951	1825056	76453	50.143	74.143
2	32.854	1814614	26662	49.857	25.857
Total		3639670	103115	100.000	100.000

UV Detector	Ch2 2	220nm	

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.583	1830244	75079	3.564	9.509
2	32.056	49522018	714443	96.436	90.491
Total		51352262	789522	100.000	100.000

-3.790

UV Detector Ch2 220nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	27.100	2327538	54735	50.379	69.819			
2	55.816	2292484	23660	49.621	30.181			
Total		4620022	78396	100.000	100.000			

UV Detector Ch2 220nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	26.565	1338683	31808	2.616	5.993			
2	54.409	49838422	498973	97.384	94.007			
Total		51177105	530781	100.000	100.000			

UV Detector	Ch2 220nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	52.046	14975373	170352	49.746	60.850
2	59.584	15128383	109600	50.254	39.150
Total		30103756	279952	100.000	100.000

UV Detector Ch2 220nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	51.118	57227504	599122	92.716	94.277			
2	60.339	4495673	36370	7.284	5.723			
Total		61723177	635492	100.000	100.000			

7, 933 7, 933 7, 933 7, 933 7, 933 7, 933 7, 933 7, 933 7, 933 7, 933 7, 933 7, 933 7, 933 7, 933 7, 933 7, 933 7, 1, 93 7, 3, 81 <t

Detec	tor A	Ch2	220nm	

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.173	10454745	623968	49.973	55.461
2	15.168	10466123	501080	50.027	44.539
Total		20920869	1125048	100.000	100.000

D	etector A	Ch2 220nm				
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	14.128	2336742	151036	7.101	9.250
	2	15.058	30572497	1481863	92.899	90.750
	Total		32909239	1632899	100.000	100.000

UV	Detecto	r Ch2	220nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.505	5016879	200866	47.954	49.660
2	17.466	5444996	203618	52.046	50.340
Total		10461875	404485	100.000	100.000

UV Detector Ch2 220nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.511	3373258	154516	7.751	9.091
2	17.389	40148902	1545151	92.249	90.909
Total		43522160	1699667	100.000	100.000

UV Detector Ch2 220nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.808	34107107	1490639	49.307	51.773
2	15.968	35066150	1388560	50.693	48.227
Total		69173258	2879199	100.000	100.000

UV Detector	Ch1	254nm
-------------	-----	-------

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.848	1150281	55320	5.523	6.189
2	15.987	19677714	838541	94.477	93.811
Total		20827995	893861	100.000	100.000

|--|

Peak#	Ret. Time	Area	Height	Area %	Height %
1	34.963	13182905	82333	45.995	67.735
2	51.783	15478620	39218	54.005	32.265
Total		28661525	121551	100.000	100.000

τ	UV Detector Ch2 220nm						
Γ	Peak#	Ret. Time	Area	Height	Area %	Height %	
Γ	1	35.078	1092402	6693	3.393	7.769	
	2	50.857	31103727	79460	96.607	92.231	
Ι	Total		32196129	86153	100.000	100.000	

-2.161

UV Detector Ch2 220nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	16.718	9814809	481128	51.742	60.647		
2	23.715	9153802	312196	48.258	39.353		
Total		18968611	793324	100.000	100.000		

UV Detector Ch2 220nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	16.731	13659965	675481	93.705	95.396		
2	23.833	917662	32597	6.295	4.604		
Total		14577626	708078	100.000	100.000		

UV Detector Ch2 220nm	
-----------------------	--

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.748	7629498	470318	50.275	52.107
2	14.534	7546061	432289	49.725	47.893
Total		15175559	902607	100.000	100.000

UVI	Detector	Ch2	220nm
-----	----------	-----	-------

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.598	35490524	1912627	95.560	95.341
2	14.397	1649128	93464	4.440	4.659
Total		37139651	2006090	100.000	100.000

UV Detector	Ch2	220nm
-------------	-----	-------

Peak#	Ret. Time	Area	Height	Area %	Height %
1	51.325	5107010	71077	50.299	54.161
2	59.164	5046335	60155	49.701	45.839
Total		10153344	131231	100.000	100.000

UV Detecto	or Ch2 220nm	
Peak#	Ret Time	Area

Peak#	Ret. Time	Area	Height	Area %	Height %
1	51.786	870031	12141	2.850	3.531
2	59.030	29656036	331742	97.150	96.469
Total		30526067	343883	100.000	100.000

PDA	Ch1	254nm 4nm	
IDA	CIII		

I DIT OUT					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	35.623	947937	15389	49.334	67.805
2	55.354	973519	7307	50.666	32.195
Total		1921456	22696	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	35.215	23378	378	2.776	6.062
2	54.513	818827	5853	97.224	93.938
Total		842205	6231	100.000	100.000

yx-3-13-F yx-3-13-F

1	PDA Ch2 220nm 4nm						
	Peak#	Ret. Time	Area	Height	Area %	Height %	
	1	12.611	15526832	626016	50.078	76.128	
	2	27.037	15478291	196304	49.922	23.872	
	Total		31005123	822320	100.000	100.000	

---78.163

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.671	1637413	71590	6.221	18.698
2	27.059	24682060	311293	93.779	81.302
Total		26319473	382882	100.000	100.000

PDA Ch2 220nm 4nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.750	5428430	265606	50.373	59.322
2	15.432	5348072	182126	49.627	40.678
Total		10776502	447732	100.000	100.000

PDA	Ch2	220nm	4mm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.804	2182979	121292	8.464	13.063
2	15.439	23607762	807243	91.536	86.937
Total		25790741	928536	100.000	100.000

PDA	Ch2	220nm 4	nm
1		-	

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.095	4256968	218999	50.474	71.602
2	25.576	4176990	86858	49.526	28.398
Total		8433957	305857	100.000	100.000

PDA Ch2 220nm 4nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.090	669277	39049	2.651	7.183
2	25.296	24578982	504613	97.349	92.817
Total		25248259	543661	100.000	100.000

FDA CH2 2201111 41111

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.885	5687054	288306	49.614	79.508
2	34.569	5775609	74307	50.386	20.492
Total		11462663	362613	100.000	100.000

PL	PDA Ch2 220nm 4nm									
	Peak#	Ret. Time	Area	Height	Area %	Height %				
	1	11.894	1901319	110465	3.271	13.540				
	2	34.119	56217311	705360	96.729	86.460				
	Total		58118630	815824	100.000	100.000				

 $\begin{array}{c} x_{1-372-1} \\ x_{1-372-1} \\ x_{2-1-372-1} \\ x_{2-1-372-$

yx-1-325-F yx-1-325-F

--78.124

T

D	e	te	ct	01	·Α	C	h2	22	01	m	
						-					

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.107	14231307	1136902	50.241	51.201
2	10.907	14094698	1083580	49.759	48.799
Total		28326005	2220482	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.085	36850331	2677111	94.851	94.114
2	10.874	2000265	167417	5.149	5.886
Total		38850595	2844528	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.821	4967541	329363	50.080	51.933
2	13.995	4951623	304845	49.920	48.067
Total		9919164	634208	100.000	100.000

	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	12.811	20752661	1387720	95.869	95.996
ĺ	2	13.982	894217	57878	4.131	4.004
ĺ	Total		21646878	1445598	100.000	100.000

Detector A	A Ch2	220nm	

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.779	2687980	187311	50.212	52.932
2	14.260	2665255	166557	49.788	47.068
Total		5353235	353868	100.000	100.000

	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	12.823	19495443	1287799	96.743	96.946
	2	14.322	656333	40567	3.257	3.054
Ī	Total		20151776	1328366	100.000	100.000

	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	11.416	2996943	243043	50.309	51.950
ĺ	2	12.260	2960145	224795	49.691	48.050
ĺ	Total		5957088	467837	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.402	34445577	2407907	96.464	96.248
2	12.253	1262488	93872	3.536	3.752
Total		35708065	2501779	100.000	100.000

$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & &$

UV D	etector	Ch1	254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.838	1183203	42669	49.334	56.750
2	16.394	1215143	32518	50.666	43.250
Total		2398346	75187	100.000	100.000

UV Detect	or Ch1 254nm
-----------	--------------

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.975	90518	3365	3.041	4.148
2	16.262	2885849	77764	96.959	95.852
Total		2976367	81129	100.000	100.000

UV Detector Ch2 220nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	15.565	4325314	99634	49.744	55.625				
2	31.237	4369765	79482	50.256	44.375				
Total		8695079	179116	100.000	100.000				

UV Detector Ch2 220nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	15.274	14240477	356068	97.417	98.086			
2	30.939	377533	6948	2.583	1.914			
Total		14618010	363016	100.000	100.000			

UV Detector Ch2 220nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	27.184	7717588	174788	49.791	57.205			
2	36.007	7782470	130760	50.209	42.795			
Total		15500058	305548	100.000	100.000			

UV Detector Ch2 220nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	27.250	352117	8196	6.415	8.643			
2	36.027	5136643	86636	93.585	91.357			
Total		5488761	94833	100.000	100.000			

$\int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty}$

1	UV Detector Ch2 220mm								
	Peak#	Ret. Time	Area	Height	Area %	Height %			
	1	28.160	9849327	212238	49.610	57.315			
	2	37.359	10004316	158062	50.390	42.685			
	Total		19853643	370300	100.000	100.000			

UV Detector Ch2 220nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	28.218	304768	6741	6.366	8.578			
2	37.379	4482579	71835	93.634	91.422			
Total		4787347	78575	100.000	100.000			

 $\int_{-3.78}^{-3.78} \int_{-3.787}^{-3.88} \int_{-3.787}^{-3.88} \int_{-3.787}^{-3.88} \int_{-3.787}^{-3.22} \int_{-3.787}^{-3.22} \int_{-3.787}^{-3.23} \int_{-3.787}^{-3.787} \int_{-6.643}^{-3.649} \int_{-6.633}^{-6.649} \int_{-6.677}^{-6.649} \int_{-6.677}^{-6.676} \int_{-6.677}^{-6.677} \int_{-6.677}^{-6.677} \int_{-6.677}^{-6.676} \int_{-6.677}^{-6.6776} \int_{-6.677}^{-6.6776} \int_{-6.677}^{-6.6776} \int_{-6.677$

Peak#	Peak# Ret. Time Area		Height	Area %	Height %
1	29.544	4023646	65362	50.372	48.608
2	33.194	3964160	69107	49.628	51.392
Total		7987806	134468	100.000	100.000

Detector A	ChI 254nm	
D = =1=#	Det Time	

Peak#	Ret. Time	Area	Height	Area %	Height %
1	29.172	9255285	144290	97.526	97.063
2	33.391	234778	4366	2.474	2.937
Total		9490063	148656	100.000	100.000

7.38 7.39 7.39 7.39 7.39 7.39 7.400 7.400 7.420 7.420 7.420 7.420 7.420 7.400 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.219

UV Detector	Ch2	220mm
-------------	-----	-------

Peak#	Ret. Time	Area	Height	Area %	Height %
1	18.640	20452345	615176	49.396	67.230
2	20.332	20952815	299857	50.604	32.770
Total		41405159	915032	100.000	100.000

UV Detector Ch2 220nm										
Peak#	Ret. Time	Area	Height	Area %	Height %					
1	18.809	1966022	62821	4.899	10.934					
2	19.890	38164840	511700	95.101	89.066					
Total		40130862	574521	100.000	100.000					

UV	Detector	Ch2 220nm	
			-

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.013	12189057	575317	49.450	62.082
2	14.166	12460185	351390	50.550	37.918
Total		24649242	926708	100.000	100.000

UV Detector C	h2 220nm
---------------	----------

Peak#	Ret. Time	Ret. Time Area		Area %	Height %
1	12.118	1672536	78064	5.203	8.835
2	14.028	30473422	805506	94.797	91.165
Total		32145958	883570	100.000	100.000

14:2014 14:2014 14:2015

U	J	V	D	e	tect	tor	Ch2	. 22	0mm	

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.622	10447597	405242	49.525	56.208
2	14.807	10648094	315730	50.475	43.792
Total		21095691	720973	100.000	100.000

UV Detector Ch2 220nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	13.769	771474	28957	2.348	3.027		
2	14.729	32085895	927709	97.652	96.973		
Total		32857369	956666	100.000	100.000		

	Uν	Detector	Ch2 220nm	
-				

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.239	11162109	455006	49.779	56.404
2	13.787	11261429	351680	50.221	43.596
Total		22423538	806686	100.000	100.000

UV Detector Ch2 220nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.395	589940	22490	1.709	2.097
2	13.792	33934860	1049874	98.291	97.903
Total		34524799	1072363	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.308	671099	17771	3.894	4.968
2	22.797	16560931	339924	96.106	95.032
Total		17232030	357695	100.000	100.000

I	Detec	tor A	Ch2	220	\mathbf{m}	

Peak#	Ret. Time	Area	Height	Area %	Height %
1	21.356	12643001	313871	48.989	52.211
2	22.732	13164805	287286	51.011	47.789
Total		25807807	601157	100.000	100.000

Detector A Ch2 220nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	. 21.755	963311	25650	5.717	6.909
2	22.952	15885399	345611	94.283	93.091
Tota	վ	16848710	371261	100.000	100.000

Detector A Ch2 220nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	20.661	10937354	302976	49.986	53.761			
2	22.724	10943408	260582	50.014	46.239			
Total		21880762	563559	100.000	100.000			

Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.964	910753	26565	2.115	2.657
2	22.729	42154502	973359	97.885	97.343
Total		43065256	999924	100.000	100.000

Detector A Ch2 220nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	22.873	10923047	264852	48.286	52.259
2	24.168	11698491	241952	51.714	47.741
Total		22621538	506804	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	23.195	253135	6825	2.442	3.129
2	24.347	10112974	211302	97.558	96.871
Total		10366110	218127	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.821	4967541	329363	50.080	51.933
2	13.995	4951623	304845	49.920	48.067
Total		9919164	634208	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.811	20752661	1387720	95.869	95.996
2	13.982	894217	57878	4.131	4.004
Total		21646878	1445598	100.000	100.000

イン 2018年 イン 584 イン 589 イン 588 イン 588

Detector A	Ch2	220nm	

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.779	2687980	187311	50.212	52.932
2	14.260	2665255	166557	49.788	47.068
Total		5353235	353868	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.823	19495443	1287799	96.743	96.946
2	14.322	656333	40567	3.257	3.054
Total		20151776	1328366	100.000	100.000

$\begin{array}{c} 7.555\\ 7.575\\ 7.597\\ 7.597\\ 7.597\\ 7.597\\ 7.597\\ 7.7310\\ 7.3128\\ 7.7310\\ 7.7310\\ 7.7328\\ 7.7310\\ 7.7226\\ 17.191\\ 6.6841\\ 6.841\\ 6.841\\ 6.821\\ 6.821\\ 6.821\\ 6.821\\ 6.821\\ 6.821\\ 6.821\\ 6.821\\ 6.821\\ 7.193\\ 7.113\\$

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.402	34445577	2407907	96.464	96.248
2	12.253	1262488	93872	3.536	3.752
Total		35708065	2501779	100.000	100.000

-3.616

Peak#	Ret. Time	Area	Height	Area %	Height %
1	33.418	532825	6362	17.020	19.798
2	35.968	2597780	25773	82.980	80.202
Total	1	3130605	32135	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	30.779	341026	5293	3.208	4.074
2	32.452	10288873	124650	96.792	95.926
Total		10629898	129943	100.000	100.000

Computational Details

The theoretical calculations were carried out by using Gaussian 09 program. Geometry optimizations were performed using the M062X functional with a standard 6-31G(d,p) basis set using SMD solvation model (solvent = DCM). Frequency analyses were done to obtain the thermodynamic energy corrections and to ensure that the optimized structures were at either a minimum or transition state. Single point energies were further refined at the M062X functional with a higher standard 6-311++G(2df,p) basis set level using SMD solvation model (solvent = DCM).

Various energy values for all of the relevant species

1a

Zero-point correction=	0.141434 (Hartree/Particle)
Thermal correction to Energy=	0.149378
Thermal correction to Enthalpy=	0.150322
Thermal correction to Gibbs Free Energ	gy= 0.108685
Sum of electronic and zero-point Energ	ies= -476.838757
Sum of electronic and thermal Energies	s= -476.830812
Sum of electronic and thermal Enthalpi	es= -476.829868
Sum of electronic and thermal Free Ene	ergies= -476.871505

SCF Done: E(RM062X) = -477.128034642 A.U. after 13 cycles

NFock= 13 Conv=0.19D-08 -V/T= 2.0042 SMD-CDS (non-electrostatic) energy (kcal/mol) = -3.48 (included in total energy above)

2a

Zero-point correction=	0.116797 (Hartree/Particle)
Thermal correction to Energy=	0.126445
Thermal correction to Enthalpy=	0.127390
Thermal correction to Gibbs Free Energ	gy= 0.080552
Sum of electronic and zero-point Energ	ies= -682.253876

Sum of electronic and thermal Energies=	-682.244227
Sum of electronic and thermal Enthalpies=	-682.243283
Sum of electronic and thermal Free Energies=	-682.290121

SCF Done: E(RM062X) = -682.610836853 A.U. after 13 cycles NFock= 13 Conv=0.58D-08 -V/T= 2.0034 SMD-CDS (non-electrostatic) energy (kcal/mol) = -2.18 (included in total energy above)

Cat. (NHC)

Zero-point correction=	0.259434 (Hartree/Particle)
Thermal correction to Energy=	0.279820
Thermal correction to Enthalpy=	0.280764
Thermal correction to Gibbs Free Energ	y= 0.208309
Sum of electronic and zero-point Energy	ies= -1429.755887
Sum of electronic and thermal Energies	-1429.735501
Sum of electronic and thermal Enthalpie	es= -1429.734557
Sum of electronic and thermal Free Ene	rgies= -1429.807013

SCF Done: E(RM062X) = -1430.50581958 A.U. after 14 cycles

NFock= 14 Conv=0.90D-09 -V/T= 2.0036

SMD-CDS (non-electrostatic) energy (kcal/mol) = -6.74 (included in total energy above)

DQ

Zero-point correction=	0.622538 (Hartree/Particle)
Thermal correction to Energy=	0.655003
Thermal correction to Enthalpy=	0.655947
Thermal correction to Gibbs Free Energ	y= 0.561165

Sum of electronic and zero-point Energies=	-1240.394238
Sum of electronic and thermal Energies=	-1240.361774
Sum of electronic and thermal Enthalpies=	-1240.360829
Sum of electronic and thermal Free Energies=	-1240.455611

```
SCF Done: E(RM062X) = -1241.36131774 A.U. after 11 cycles
    NFock= 11 Conv=0.56D-08 -V/T= 2.0046
SMD-CDS (non-electrostatic) energy (kcal/mol) = -8.22
(included in total energy above)
```

DQ-H⁻

Zero-point correction=	0.632260 (Hartree/Particle)
Thermal correction to Energy=	0.664740
Thermal correction to Enthalpy=	0.665684
Thermal correction to Gibbs Free Energy	gy= 0.571831
Sum of electronic and zero-point Energy	gies= -1241.132733
Sum of electronic and thermal Energies	s= -1241.100253
Sum of electronic and thermal Enthalpi	ies= -1241.099309
Sum of electronic and thermal Free End	ergies= -1241.193162

SCF Done: $E(RM062X) = -1242.118$	13038	A.U. after	13 cycles
NFock=13 Conv=0.42D-08	-V/T=2	2.0046	
SMD-CDS (non-electrostatic) energy	(kca	l/mol) =	-8.28
(included in total energy above)			

Base:	N,N-Diiso	propyleth	ylamine
--------------	-----------	-----------	---------

Zero-point correction=	0.263853 (Hartree/Particle)		
Thermal correction to Energy=	0.275744		
Thermal correction to Enthalpy=	0.276688		

Thermal correction to Gibbs Free Energy=	0.227377	
Sum of electronic and zero-point Energies=	-370.608290	
Sum of electronic and thermal Energies=	-370.596399	
Sum of electronic and thermal Enthalpies=	-370.595455	
Sum of electronic and thermal Free Energies=	-370.644766	

SCF Done: $E(RM062X) = -370.97203$	36478	A.U. after	11 cycles
NFock= 11 Conv=0.40D-08	-V/T=	2.0049	
SMD-CDS (non-electrostatic) energy	(kca	l/mol) =	-2.95
(included in total energy above)			

Base-H⁺

Zero-point correction=	0.281217 (Hartree/Particle)
Thermal correction to Energy=	0.292629
Thermal correction to Enthalpy=	0.293574
Thermal correction to Gibbs Free Energy	gy= 0.245704
Sum of electronic and zero-point Energ	gies= -371.061922
Sum of electronic and thermal Energies	s= -371.050509
Sum of electronic and thermal Enthalpi	les= -371.049565
Sum of electronic and thermal Free End	ergies= -371.097435

SCF Done: E(RM062X) = -371.438353662 A.U. after 9 cycles
 NFock= 9 Conv=0.98D-08 -V/T= 2.0052
SMD-CDS (non-electrostatic) energy (kcal/mol) = -2.88
(included in total energy above)

3a

Zero-point correction=	0.239657 (Hartree/Particle)
Thermal correction to Energy=	0.256551

Thermal correction to Enthalpy=	0.257495
Thermal correction to Gibbs Free Energy=	0.194323
Sum of electronic and zero-point Energies=	-1157.940556
Sum of electronic and thermal Energies=	-1157.923662
Sum of electronic and thermal Enthalpies=	-1157.922718
Sum of electronic and thermal Free Energie	es= -1157.985890

SCF Done: $E(RM062X) = -1158.5600$	03623	A.U. after	14 cycles
NFock= 14 Conv=0.25D-08	-V/T=	2.0037	
SMD-CDS (non-electrostatic) energy	(kca	l/mol) =	-5.31
(included in total energy above)			

(*R*)-4

Zero-point correction=	0.261506 (Hartree/Particle)
Thermal correction to Energy=	0.279275
Thermal correction to Enthalpy=	0.280219
Thermal correction to Gibbs Free Ene	rgy= 0.216061
Sum of electronic and zero-point Ener	gies= -1159.102011
Sum of electronic and thermal Energie	es= -1159.084242
Sum of electronic and thermal Enthal	pies= -1159.083297
Sum of electronic and thermal Free En	nergies= -1159.147456

SCF Done: E(RM062X) = -1159.74526111 A.U. after 13 cycles
 NFock= 13 Conv=0.34D-08 -V/T= 2.0037
SMD-CDS (non-electrostatic) energy (kcal/mol) = -4.86
(included in total energy above)

TS-1

Zero-point correction=	0.402428 (Hartree/Particle)
Thermal correction to Energy=	0.431296
Thermal correction to Enthalpy=	0.432241
Thermal correction to Gibbs Free Energy	gy= 0.342291
Sum of electronic and zero-point Energ	ies= -1906.593568
Sum of electronic and thermal Energies	-1906.564699
Sum of electronic and thermal Enthalpie	es= -1906.563755
Sum of electronic and thermal Free Ene	ergies= -1906.653705

SCF Done: E(RM062X) = -1907.63030727 A.U. after 14 cycles NFock= 14 Conv=0.22D-08 -V/T= 2.0038 SMD-CDS (non-electrostatic) energy (kcal/mol) = -7.37 (included in total energy above)

INT-1

Zero-point correction=	0.404028 (Hartree/Particle)
Thermal correction to Energy=	0.432808
Thermal correction to Enthalpy=	0.433752
Thermal correction to Gibbs Free Energy	gy= 0.345016
Sum of electronic and zero-point Energ	gies= -1906.599247
Sum of electronic and thermal Energies	s= -1906.570466
Sum of electronic and thermal Enthalpi	ies= -1906.569522
Sum of electronic and thermal Free End	ergies= -1906.658259

SCF Done: E(RM062X) = -1907.64069597 A.U. after 14 cycles
NFock= 14 Conv=0.40D-08 -V/T= 2.0038
SMD-CDS (non-electrostatic) energy (kcal/mol) = -7.68
(included in total energy above)

INT-2

Zero-point correction=	0.394646 (Hartree/Particle)
Thermal correction to Energy=	0.423549
Thermal correction to Enthalpy=	0.424493
Thermal correction to Gibbs Free Energy	gy= 0.333413
Sum of electronic and zero-point Energ	ies= -1905.884038
Sum of electronic and thermal Energies	-1905.855135
Sum of electronic and thermal Enthalpie	es= -1905.854191
Sum of electronic and thermal Free Ene	orgies= -1905.945271

SCF Done: E(RM062X) = -1906.90327060 A.U. after 13 cycles NFock= 13 Conv=0.79D-08 -V/T= 2.0038 SMD-CDS (non-electrostatic) energy (kcal/mol) = -8.10 (included in total energy above)

INT-3

Zero-point correction=	0.380644 (Hartree/Particle)
Thermal correction to Energy=	0.409190
Thermal correction to Enthalpy=	0.410134
Thermal correction to Gibbs Free Energy	gy= 0.321752
Sum of electronic and zero-point Energ	ties= -1905.418964
Sum of electronic and thermal Energies	s= -1905.390418
Sum of electronic and thermal Enthalpi	es= -1905.389474
Sum of electronic and thermal Free End	ergies= -1905.477856

SCF Done: E(RM062X) = -1906.43167459 A.U. after 14 cycles NFock= 14 Conv=0.44D-08 -V/T= 2.0038

SMD-CDS (non-electrostatic) energy (kcal/mol) = -7.36

(included in total energy above)

TS-1'

Zero-point correction=	0.522783 (Hartree/Particle)
Thermal correction to Energy=	0.561091
Thermal correction to Enthalpy=	0.562035
Thermal correction to Gibbs Free Energ	y= 0.452462
Sum of electronic and zero-point Energ	ies= -2588.864474
Sum of electronic and thermal Energies	-2588.826166
Sum of electronic and thermal Enthalpie	es= -2588.825222
Sum of electronic and thermal Free Ene	rgies= -2588.934795

SCF Done: E(RM062X) = -2590.25110864 A.U. after 14 cycles
 NFock= 14 Conv=0.22D-08 -V/T= 2.0037
SMD-CDS (non-electrostatic) energy (kcal/mol) = -8.72
(included in total energy above)

6. Cartesian Coordinates

1a

С	-6.11953800	0.03692100	0.00018300
С	-4.70141700	0.04802100	0.00025100
С	-3.96482800	1.24746000	-0.00084500
С	-4.67918500	2.44299500	-0.00203200
С	-6.08196000	2.45165500	-0.00220700
С	-6.80237500	1.26292700	-0.00110900
С	-6.51715100	-1.34392900	0.00174600
С	-5.36715000	-2.08348100	0.00212600
Н	-4.12948600	3.38073600	-0.00286600
Н	-6.60939000	3.39950800	-0.00320000
Н	-7.88856100	1.28265100	-0.00120500
Н	-7.52554400	-1.73098500	0.00221900

Н	-5.22922800	-3.15509200	0.00308700
Н	-3.29930500	-1.51407400	0.00248900
Ν	-4.27392500	-1.24602400	0.00185400
С	-2.50173500	1.23397000	-0.00064000
0	-1.83729300	0.21060100	0.00023300
Н	-2.01190000	2.22590400	-0.00130600

2a

С	-2.60881700	-0.30597400	-0.00023600
С	-1.21898600	-0.35956100	-0.00072900
С	-0.48159400	0.83120200	-0.00126900
С	-1.14240900	2.06640100	-0.00118200
С	-2.52908600	2.11215400	-0.00041200
С	-3.26241600	0.92458000	-0.00000700
Н	-3.18188800	-1.22699200	0.00000000
Н	-0.72649300	-1.32521100	-0.00084500
Н	-0.55216000	2.97692200	-0.00152400
Н	-3.04025900	3.06905500	-0.00011000
Н	-4.34741900	0.95934800	0.00052300
С	0.99894000	0.85653800	-0.00196700
0	1.66548600	1.86471600	-0.00574100
С	1.75022500	-0.49463300	0.00300300
F	1.43011200	-1.21516100	1.08669900
F	1.43354300	-1.22146400	-1.07751900
F	3.06393200	-0.30551900	0.00451800

Cat. (NHC)

С	-7.19302900	-0.81099200	-0.30595800
С	-5.80497000	-0.70546000	-0.27253700

С	-5.15717300	0.46490900	-0.65648600
С	-5.92913700	1.54692900	-1.07318600
С	-7.32344600	1.45010600	-1.10330400
С	-7.96429300	0.27288600	-0.72167300
С	-7.65019900	-2.17368000	0.14675100
С	-5.16583200	-1.98585800	0.22109000
Н	-4.07270100	0.52823000	-0.63650100
Н	-5.44602900	2.47007600	-1.37717900
Н	-7.91290400	2.30069400	-1.43154700
Н	-9.04767100	0.19999000	-0.75339600
Н	-8.19062800	-2.11281700	1.09655700
Н	-4.69726200	-1.84713700	1.19766300
Н	-8.31785800	-2.65860800	-0.57297900
С	-2.79396500	-2.18625800	-0.63705900
С	-4.44713700	-3.20421400	-1.79290800
Ν	-2.40379600	-2.80946100	-1.77786100
С	-1.08213700	-2.86033100	-2.26359900
С	-0.48300200	-4.08304500	-2.55611900
С	-0.35114900	-1.69329500	-2.46712800
С	0.81304000	-4.14208900	-3.04446300
С	0.95277800	-1.74540600	-2.93776800
С	1.53299700	-2.97069900	-3.23096000
F	-0.89340900	-0.50555800	-2.22145900
F	1.64237200	-0.62282100	-3.12392000
F	2.77841300	-3.02359900	-3.68936300
F	1.37357700	-5.31711400	-3.31873300
F	-1.14830300	-5.21656600	-2.36099200
Ν	-3.39367100	-3.45081100	-2.50292900
N	-4.12767400	-2.46304700	-0.68358900

С	-5.85910100	-3.67325300	-1.92451500
Н	-6.50100400	-2.87987800	-2.33134300
Н	-5.91911200	-4.54385100	-2.57808300
С	-6.35815600	-3.00965200	0.31525600
Н	-6.33400200	-3.51024900	1.28313300
0	-6.27039500	-4.06966200	-0.62702200

DQ

С	-2.01961800	-0.25773500	0.00789500
С	-0.63473400	-0.17530200	-0.42625300
С	0.08763000	0.96613900	-0.41669600
С	-0.55875900	2.22290800	0.06376800
С	-1.98637900	2.16671500	0.49624900
С	-2.63361600	0.98156900	0.45660400
С	-2.71880200	-1.45734900	-0.00714700
С	-2.10478500	-2.69664100	-0.45585600
С	-2.75200200	-3.88179900	-0.49550400
С	-4.17962200	-3.93801400	-0.06302200
С	-4.82603100	-2.68125600	0.41744100
С	-4.10368700	-1.53980300	0.42699700
Н	-0.15906100	-1.07823400	-0.77773100
Н	-3.66592100	0.95300300	0.77201900
Н	-1.07248000	-2.66805500	-0.77127200
Н	-4.57937800	-0.63688100	0.77847200
С	-2.66112500	3.45506500	0.96948700
С	-4.12294200	3.21475100	1.36418800
С	-1.92770900	4.00835800	2.20585200
С	-2.64843900	4.50007200	-0.16193600
Н	-4.71840400	2.84341700	0.52340700

Н	-4.21157100	2.50569200	2.19408700
Н	-4.56248600	4.16216700	1.68964700
Н	-0.89271000	4.26373900	1.97757200
Н	-2.43938300	4.91019200	2.55885500
Н	-1.93751700	3.27446100	3.01871800
Н	-3.16899000	5.40380300	0.17280700
Н	-1.63175300	4.77179800	-0.44664400
Н	-3.17068500	4.11771000	-1.04545200
С	1.54547600	1.01968300	-0.87668000
С	1.68908300	1.99461900	-2.06056900
С	2.44695300	1.47257700	0.28769700
С	2.03990100	-0.35459500	-1.34342500
Н	1.05730300	1.68102900	-2.89843100
Н	1.41659000	3.01196200	-1.77894500
Н	2.72885500	1.99595600	-2.40483500
Н	2.36123700	0.78163800	1.13306600
Н	3.49157500	1.47420800	-0.04173400
Н	2.18945900	2.47592800	0.62795700
Н	3.08232900	-0.26732300	-1.66376300
Н	2.00031500	-1.09919400	-0.54120600
Н	1.46126300	-0.72919400	-2.19449800
С	-2.07722900	-5.17013400	-0.96874500
С	-0.61541600	-4.92978400	-1.36343600
С	-2.08989400	-6.21514800	0.16267300
С	-2.81062400	-5.72343600	-2.20511900
Н	-0.52680100	-4.22071700	-2.19333000
Н	-0.01996800	-4.55844100	-0.52265000
Н	-0.17584800	-5.87718700	-1.68889900
Н	-3.10657500	-6.48690400	0.44737300

Η	-1.56931600	-7.11886200	-0.17207200
Н	-1.56766500	-5.83277700	1.04619400
Н	-2.29892500	-6.62525500	-2.55812500
Н	-3.84561800	-5.97884600	-1.97684800
Н	-2.80082900	-4.98953300	-3.01797900
С	-6.28387700	-2.73483900	0.87741900
С	-6.77836800	-1.36057200	1.34412500
С	-7.18532100	-3.18780900	-0.28695300
С	-6.42744900	-3.70975600	2.06132800
Н	-6.19975300	-0.98592400	2.19519300
Н	-6.73881200	-0.61599100	0.54188800
Н	-7.82079400	-1.44788400	1.66445900
Н	-6.92776900	-4.19115400	-0.62718700
Н	-8.22994600	-3.18948900	0.04247000
Н	-7.09963600	-2.49688600	-1.13233900
Н	-7.46722400	-3.71113500	2.40558300
Н	-6.15490300	-4.72709200	1.77972700
Н	-5.79569100	-3.39611800	2.89918800
0	0.06812500	3.27805200	0.10026100
0	-4.80649100	-4.99316800	-0.09949500

DQ-H[.]

С	-1.97333700	-0.24748500	0.01512800
С	-0.77658900	-0.08045700	-0.69841300
С	-0.05633400	1.10690700	-0.70515200
С	-0.53475700	2.25320000	0.04868100
С	-1.77100300	2.07362000	0.79063200
С	-2.43515000	0.85467500	0.75065000
С	-2.71563000	-1.52731700	-0.00655200

С	-2.05016900	-2.75444800	-0.08712700
С	-2.71851600	-3.98161900	-0.11640100
С	-4.12708000	-3.95665500	-0.04523600
С	-4.84733700	-2.74671300	0.04551100
С	-4.11439400	-1.55988100	0.05564800
Н	-0.42428600	-0.91948800	-1.29285300
Н	-3.34452300	0.72600400	1.33165400
Н	-0.96704900	-2.74000700	-0.10407800
Н	-4.63980500	-0.61286400	0.08915900
С	-2.31815500	3.24971100	1.61194500
С	-3.61890400	2.90248800	2.34616800
С	-1.28736000	3.67927800	2.67113900
С	-2.61442300	4.43813500	0.67929300
Н	-4.41929500	2.62133600	1.65269200
Н	-3.48160200	2.08079300	3.05775600
Н	-3.96168100	3.77677800	2.91087500
Н	-0.34820400	3.94925900	2.18680700
Н	-1.66016200	4.53788900	3.24401000
Н	-1.09858400	2.86153000	3.37641100
Н	-2.97838400	5.29880000	1.25496400
Н	-1.70876600	4.72182100	0.14125400
Н	-3.38840000	4.16886900	-0.04876900
С	1.23911500	1.24705200	-1.51707800
С	1.07379300	2.35189800	-2.57613700
С	2.40756700	1.60737900	-0.58148100
С	1.61872500	-0.04505200	-2.25043700
Н	0.28578500	2.08220000	-3.28885600
Н	0.80442800	3.29255900	-2.09378100
Н	2.00515100	2.48781800	-3.14058900

Н	2.57797300	0.80333800	0.14411700
Н	3.33225600	1.74107400	-1.15725400
Н	2.18196900	2.52746200	-0.04065600
Н	2.55388700	0.11075400	-2.80003200
Н	1.77651400	-0.87811800	-1.55618600
Н	0.85434700	-0.34575900	-2.97535800
С	-1.93163700	-5.30412000	-0.20678300
С	-0.41568200	-5.06321200	-0.25267600
С	-2.18497900	-6.18019000	1.03848100
С	-2.27962500	-6.05781000	-1.50872700
Н	-0.12368800	-4.46726200	-1.12255000
Н	-0.05695400	-4.55946400	0.64966900
Н	0.09509000	-6.02867900	-0.32257900
Н	-3.23319500	-6.43873700	1.21185700
Н	-1.62702100	-7.11842300	0.95177400
Н	-1.83658900	-5.65830100	1.93494200
Н	-1.71398200	-6.99417900	-1.55756800
Н	-3.33689500	-6.31226300	-1.62905900
Н	-2.00451300	-5.44766000	-2.37444700
С	-6.38500000	-2.73143100	0.10910900
С	-6.93479600	-1.30178000	0.20832800
С	-6.98015300	-3.35896200	-1.16474500
С	-6.87839600	-3.49089900	1.35439800
Н	-6.57804900	-0.78708900	1.10634000
Н	-6.66820100	-0.69750300	-0.66454400
Н	-8.02743300	-1.34466700	0.26056700
Н	-6.67849700	-4.40014500	-1.28337700
Н	-8.07470900	-3.31894900	-1.12122200
Н	-6.65877300	-2.80160500	-2.05124900

Н	-7.97238000	-3.44646500	1.40448900
Н	-6.57720300	-4.53859100	1.33824300
Н	-6.48111500	-3.02964500	2.26494200
0	0.09803500	3.36247000	0.05633500
0	-4.87520200	-5.10759900	-0.05943200
Н	-4.30538300	-5.87563700	-0.16652300

Base: N,N-Diisopropylethylamine

Ν	1.54589500	-1.13617400	0.23521200
С	2.14244500	-0.31063300	1.29805300
С	3.24549000	-0.98475000	2.12861200
С	1.03920500	0.21565200	2.21703300
Н	2.59330400	0.55398400	0.79844400
Н	4.02595100	-1.42178400	1.50144100
Н	3.71549600	-0.24740700	2.78724300
Н	2.83838800	-1.77624600	2.76617200
Н	0.29775600	0.77650500	1.64147400
Н	0.52361900	-0.61070900	2.71978700
Н	1.45091900	0.87061100	2.99179200
С	2.16052500	-1.00780200	-1.09349300
С	3.67512500	-1.24707300	-1.14303200
С	1.80449500	0.33679200	-1.72808300
Н	1.69085100	-1.78360200	-1.70918100
Н	3.94604600	-2.20890700	-0.69637600
Н	4.02112100	-1.25219700	-2.18161800
Н	4.21952200	-0.45552600	-0.61646300
Н	0.72196300	0.49027700	-1.71306000
Н	2.27564000	1.17218500	-1.19928400

Н	2.14841100	0.37262600	-2.76648400
С	1.26603100	-2.51715600	0.61801100
С	0.02105600	-3.06876400	-0.07035400
Н	1.09182600	-2.54301900	1.69781500
Н	2.12570100	-3.18476100	0.42958900
Н	-0.18185200	-4.08999100	0.26661500
Н	-0.84512900	-2.44452100	0.16807700
Н	0.12749600	-3.09643000	-1.15861700

Base-H⁺

Ν	1.46919100	-1.10252200	0.26240300
С	2.16418900	-0.25755600	1.33508100
С	3.21029400	-1.03697100	2.12008000
С	1.09814800	0.33983400	2.24202500
Н	2.65503600	0.54592000	0.78405900
Н	3.92799100	-1.55142000	1.47914100
Н	3.76174000	-0.31819000	2.73088600
Н	2.75191800	-1.76340200	2.79527900
Н	0.38610100	0.94569400	1.67303700
Н	0.55243900	-0.43938000	2.78328900
Н	1.58103900	0.98543300	2.97896700
С	2.06978600	-0.96351800	-1.13217200
С	3.54328100	-1.33095300	-1.16874300
С	1.80450400	0.43840100	-1.66473200
Н	1.50277800	-1.67259500	-1.73765400
Н	3.73579500	-2.33710900	-0.78809200
Н	3.86518600	-1.30568800	-2.21262300
Н	4.15251000	-0.61062500	-0.61586700
Н	0.75155600	0.71716100	-1.55520200

Η	2.42474100	1.19495000	-1.17740500
Η	2.04459400	0.45115000	-2.73021900
С	1.23616700	-2.52799900	0.69112800
С	0.23026000	-3.24286600	-0.19311800
Η	0.86146300	-2.47324900	1.71472700
Η	2.20178400	-3.03384800	0.70248900
Н	-0.04252900	-4.18184800	0.29339000
Η	-0.68285100	-2.65100900	-0.31204100
Н	0.62856100	-3.48538700	-1.17962900
Н	0.52918200	-0.69936800	0.17212600

3a

С	0.28295400	0.95021600	2.83980400
С	1.29384700	0.51531900	1.96966600
С	2.56578400	1.06326200	1.87943300
С	2.85511000	2.13657600	2.71192400
С	1.86881900	2.60981800	3.59562000
С	0.60146600	2.03405600	3.67485800
С	-0.84527200	0.08701500	2.58006200
С	-0.47416900	-0.79162800	1.60116000
Н	3.83843400	2.59394100	2.68141000
Н	2.10696300	3.44833800	4.24112200
Н	-0.12838600	2.42709800	4.37590500
Н	-1.80936000	0.11006200	3.06655600
Н	-1.02734400	-1.58995000	1.12649300
Ν	0.84302300	-0.53972900	1.23544400
С	3.49768900	0.39791000	0.96034700
Ο	4.64441700	0.69022000	0.76448900
С	0.70001900	-4.54835700	-1.08378600

C	0.81086600	-3.15814900	-1.05966300
С	1.49067700	-2.54071300	-0.01093000
С	2.04670400	-3.31204800	1.01375100
С	1.93482400	-4.69583900	0.98245500
С	1.26058800	-5.31675500	-0.06943200
Н	0.17327800	-5.02590600	-1.90326900
Н	0.36515200	-2.58192300	-1.86160900
Н	2.56845100	-2.82141500	1.83026800
Н	2.37296200	-5.28998000	1.77762600
Н	1.17273300	-6.39818700	-0.09512800
С	1.63308200	-1.03520800	0.12749200
0	3.01183300	-0.74488700	0.33589400
С	1.23917100	-0.24847700	-1.14107500
F	1.89887200	-0.68532100	-2.21260900
F	-0.07312300	-0.34323600	-1.38061600
F	1.53123000	1.04791900	-0.97819500

(**R**)-4

С	-6.35623400	-1.30238300	-1.76499700
С	-5.74166600	-1.58912900	-0.51467000
С	-5.30430600	-0.50816500	0.30297800
С	-5.59027600	0.78961800	-0.13893500
С	-6.21506400	1.06248800	-1.35873600
С	-6.58077300	0.01547500	-2.18406400
С	-6.67838300	-2.54820000	-2.38790800
С	-6.29649000	-3.52422400	-1.52784300
Н	-5.27155400	1.61900500	0.48621100
Н	-6.39397800	2.08984700	-1.65529200
Н	-7.05165900	0.19863900	-3.14541500

Н	-7.14387400	-2.69078900	-3.35202200
Н	-6.38190600	-4.59059700	-1.64832200
Н	-3.70546200	-2.92020400	1.28896300
Ν	-5.74179000	-2.97256300	-0.37497600
С	-4.42968400	-0.50783200	1.48336700
0	-3.68638600	-1.39603300	1.87296100
Н	-4.41736900	0.45547600	2.01927700
С	-6.23236800	-2.83522100	4.44088500
С	-5.53948100	-3.27320700	3.31657900
С	-6.12620100	-3.17870500	2.05435400
С	-7.42011000	-2.67265700	1.92564800
С	-8.11232700	-2.23728300	3.05315600
С	-7.51836300	-2.31382200	4.31075700
Н	-5.76683600	-2.90186900	5.41896800
Н	-4.53804600	-3.67980500	3.41051800
Н	-7.88743500	-2.61419500	0.94643300
Н	-9.11563100	-1.83773100	2.94624500
Н	-8.05744900	-1.97064900	5.18820800
С	-5.37467100	-3.72925400	0.83683400
0	-4.00646800	-3.81511700	1.00086500
С	-5.79774100	-5.21017700	0.69335700
F	-5.51164100	-5.86248300	1.82054700
F	-7.11059900	-5.34391500	0.46796500
F	-5.14375800	-5.82808100	-0.29804200

TS-1

С	7.90991400	-3.64600900	1.41220600
С	7.02548800	-2.60027100	1.66672800
С	7.45257600	-1.42376100	2.27642800

С	8.79530900	-1.30125900	2.62479300
С	9.68991300	-2.34337000	2.36350000
С	9.25434400	-3.52000400	1.75822500
С	7.21774300	-4.81873000	0.76982400
С	5.62465300	-2.93443000	1.20925100
Н	6.74902500	-0.62109200	2.48436100
Н	9.15013800	-0.39216000	3.09963300
Н	10.73459100	-2.23472100	2.63822100
Н	9.95163700	-4.32953100	1.56249800
Н	7.64663800	-5.05781000	-0.20720300
Н	5.24008800	-2.23928400	0.45801700
Н	7.29559300	-5.72591900	1.37927100
С	4.01045200	-1.79189500	2.76648800
С	4.27410000	-3.98483600	3.02830400
Ν	3.25791000	-2.30815000	3.75345400
С	2.33905600	-1.60537300	4.56262800
С	0.99725900	-1.97444200	4.56811000
С	2.74671700	-0.51176900	5.31710100
С	0.07571700	-1.26586200	5.32127800
С	1.82591000	0.21264200	6.05747700
С	0.49268700	-0.16846300	6.06095600
F	4.02080600	-0.13346400	5.31925000
F	2.21314400	1.28434600	6.74305700
F	-0.39634400	0.54628100	6.74140300
F	-1.21079700	-1.60145900	5.29750700
F	0.58029600	-2.98809700	3.81693200
Ν	3.39679000	-3.66919800	3.93024900
Ν	4.66259500	-2.88383600	2.31312800
С	4.81199700	-5.31246600	2.61306200

Н	5.81266800	-5.47244400	3.03635600
Н	4.15454700	-6.11412900	2.94993800
С	5.73590400	-4.39272000	0.62208600
Н	5.44951300	-4.35748700	-0.42893600
0	4.82868000	-5.31943500	1.19779800
С	0.49000200	1.11692400	2.95220200
С	1.41093900	0.31529000	2.23490300
С	2.79153700	0.56010800	2.22837200
С	3.23867800	1.65742400	2.94538100
С	2.34236200	2.48573000	3.65476200
С	0.98071700	2.22565300	3.66779100
С	-0.79967600	0.50727700	2.77677300
С	-0.61103700	-0.60034400	1.99069700
Н	4.30437500	1.87408000	2.96668000
Η	2.73190200	3.33511000	4.20721700
Н	0.30335400	2.85849500	4.23481300
Н	-1.74085700	0.84113100	3.19001000
Н	-1.32807700	-1.32388400	1.62946800
Ν	0.71908400	-0.72156100	1.66939600
С	3.70523700	-0.36416800	1.46921000
0	3.26144200	-0.99415100	0.47012800
Н	4.75189400	0.00020000	1.47122300
Н	1.15650700	-1.37519100	1.03129500

INT-1

С	7.91585100	-3.61045700	1.25778400
С	7.00235400	-2.60477700	1.56549900
С	7.42155400	-1.38589700	2.09212900
С	8.78318500	-1.18126700	2.30067400

С	9.70494600	-2.18353400	1.98496800
С	9.27841000	-3.40258200	1.46331400
С	7.23198900	-4.83815700	0.71872700
С	5.58712500	-3.03567700	1.25157900
Н	6.70251400	-0.60932600	2.33900700
Н	9.13091300	-0.23770800	2.70868100
Н	10.76356500	-2.01018700	2.15167400
Н	9.99596200	-4.18236100	1.22495300
Н	7.51878200	-5.02905400	-0.31958000
Н	5.10523500	-2.44173000	0.46910400
Н	7.47731800	-5.73974500	1.29007400
С	3.88871800	-1.90053600	2.73095200
С	4.52055800	-3.92091900	3.32485400
Ν	3.26517200	-2.31924300	3.84049600
С	2.22326000	-1.67147700	4.54824900
С	0.90720800	-2.04913600	4.30477500
С	2.49233200	-0.64134800	5.43999800
С	-0.13729800	-1.38881100	4.92946800
С	1.45120500	0.03347100	6.05689000
С	0.14047200	-0.34240500	5.79806400
F	3.74418900	-0.26879400	5.67452500
F	1.70112700	1.05420200	6.87125800
F	-0.85749400	0.32826300	6.35844000
F	-1.39701200	-1.72633800	4.67346300
F	0.64759200	-3.02194000	3.43928800
Ν	3.63509500	-3.59131300	4.21478300
Ν	4.70455000	-2.91755900	2.41460600
С	5.21660300	-5.21223900	3.05326900
Н	6.27757100	-5.14994700	3.32958100
Н	4.74646600	-6.02395100	3.60814600
---	-------------	-------------	-------------
С	5.71561700	-4.54700900	0.81411600
Н	5.22543000	-4.67463300	-0.15060000
0	5.03773000	-5.45597100	1.66961800
С	0.62067200	1.34962200	2.99522000
С	1.43441200	0.39856900	2.33197800
С	2.83353500	0.38433400	2.41647000
С	3.41818200	1.39202600	3.16512400
С	2.63658000	2.36178600	3.83316100
С	1.25255500	2.34927400	3.76066100
С	-0.73873900	0.97254200	2.72176700
С	-0.68837500	-0.14965300	1.93030000
Н	4.50200500	1.42374000	3.25718000
Н	3.13520700	3.12811500	4.41888900
Н	0.66558300	3.09184400	4.29413500
Н	-1.63567200	1.46455300	3.07046400
Н	-1.49486800	-0.73396000	1.50988000
Ν	0.61692700	-0.49933400	1.70258600
С	3.60472300	-0.74339400	1.73005400
0	2.99501400	-1.34425900	0.70232300
Н	4.62430600	-0.33909700	1.51717600
Н	1.03479900	-1.21910100	1.11350800

INT-2

С	5.29730400	-3.25125500	-2.14264500
С	4.29683700	-2.48240900	-1.55126700
С	2.99869200	-2.46435700	-2.05460600
С	2.71438300	-3.23897600	-3.17649600
С	3.71111000	-4.01641000	-3.77266900

С	5.00655100	-4.02972700	-3.26054200
С	6.60905700	-3.10675100	-1.41759900
С	4.84105700	-1.73454500	-0.35184700
Н	2.22783200	-1.86325600	-1.58260900
Н	1.71098500	-3.23960300	-3.58953700
Н	3.47302900	-4.61410600	-4.64695400
Н	5.78006000	-4.63124300	-3.72847000
Н	6.85739800	-4.02386300	-0.87453800
Н	4.43650900	-2.09908300	0.59369800
Н	7.44781700	-2.88457500	-2.08411200
С	3.56701800	0.43188300	0.12943600
С	5.25473800	0.54413900	-1.24164900
Ν	3.70776100	1.66432400	-0.36969100
С	2.85298800	2.78043300	-0.18761800
С	3.38623000	4.00830900	0.19070400
С	1.48218400	2.65154500	-0.38355300
С	2.55286000	5.10158900	0.36587100
С	0.64290100	3.73682000	-0.19455800
С	1.18364500	4.96285200	0.17216000
F	0.97089800	1.47169400	-0.71935900
F	-0.66422200	3.61087900	-0.37329500
F	0.38830400	6.00432000	0.34839300
F	3.05547400	6.27284900	0.72999400
F	4.68589500	4.12401700	0.41780700
Ν	4.76584800	1.75041800	-1.22210400
Ν	4.53038800	-0.29593400	-0.43668200
С	6.50642400	-0.01239300	-1.83954700
Н	6.28204600	-0.61256700	-2.72999300
Н	7.18425200	0.79687300	-2.11062000

С	6.40177600	-1.94350700	-0.42483700
Н	6.78589100	-2.17940400	0.56678300
0	7.10599200	-0.76992300	-0.80549000
С	0.56727300	1.02959900	4.10670400
С	0.98182400	0.30129100	2.95785500
С	2.15085900	0.64938000	2.24648700
С	2.92003700	1.71486700	2.73996500
С	2.52620800	2.42389300	3.87364300
С	1.35251300	2.09575200	4.55252100
С	-0.65505400	0.42517900	4.55759400
С	-0.91944400	-0.60441800	3.70250300
Н	3.85123100	1.98439300	2.24976100
Н	3.14574100	3.23866000	4.23060800
Н	1.05506800	2.66270400	5.42963300
Н	-1.25030900	0.72214300	5.40813500
Н	-1.73576400	-1.31191600	3.69288100
Ν	0.06699000	-0.67796900	2.73871300
С	2.49671100	-0.10653800	1.06020400
0	1.98389300	-1.16035000	0.72024200
Н	0.12740500	-1.36901400	2.00330400

INT-3

С	4.96944800	-3.37791600	-1.80978700
С	4.37798500	-2.50107900	-0.90352900
С	3.05454500	-2.64183300	-0.49763000
С	2.32430200	-3.71287100	-1.00910800
С	2.91370500	-4.61186800	-1.90259200
С	4.23606600	-4.44976800	-2.31295300
С	6.39116900	-2.97791600	-2.11164200

С	5.36187900	-1.43480000	-0.47645500
Н	2.58739700	-1.91467600	0.16540400
Н	1.28769900	-3.84454600	-0.71607300
Н	2.32926900	-5.43969000	-2.29216600
Н	4.68324100	-5.14082200	-3.02143200
Н	7.10063600	-3.68324700	-1.66729700
Н	5.69113400	-1.55084000	0.55705700
Н	6.60617700	-2.93017000	-3.18353200
С	4.13750200	0.65608100	0.30844800
С	4.66429800	0.53462300	-1.80422300
Ν	3.70597300	1.72488700	-0.36797500
С	2.90476700	2.77444700	0.14091600
С	3.31345800	3.48375300	1.26379000
С	1.62908100	2.96984200	-0.37873700
С	2.44520400	4.36236600	1.89004200
С	0.76100100	3.85651500	0.23718700
С	1.16956600	4.54472200	1.37263100
F	1.22817500	2.29235400	-1.44292000
F	-0.46448500	4.03650700	-0.24194400
F	0.33161300	5.37957300	1.97089600
F	2.82520600	5.02053500	2.97953500
F	4.52277700	3.27295200	1.77749900
Ν	4.02526000	1.66224900	-1.69009900
Ν	4.76822800	-0.09730800	-0.59330600
С	5.38159800	-0.09841900	-2.95270200
Н	4.78710300	-0.91787200	-3.37650500
Н	5.57649500	0.64086400	-3.72953500
С	6.56650300	-1.58077500	-1.47493500
Н	7.50779200	-1.49771200	-0.93243700

0	6.62612700	-0.53784200	-2.43996400
С	0.49022500	1.25450700	2.56655600
С	1.64219500	0.68543600	1.90790800
С	2.91227500	0.75804800	2.53470300
С	3.01556000	1.31736900	3.81716900
С	1.89244100	1.85148300	4.45021100
С	0.63764500	1.83309300	3.82856400
С	-0.58052000	1.06157100	1.64211500
С	-0.00829900	0.41265000	0.56100000
Н	3.99555900	1.38533300	4.28036000
Н	1.99981600	2.31104700	5.42728000
Н	-0.21612400	2.28122100	4.33184400
Н	-1.61833500	1.33985800	1.76681100
Н	-0.51667000	0.09875200	-0.34559800
Ν	1.33535700	0.17128900	0.69985200
С	4.12958100	0.42926300	1.81979000
0	5.20085300	0.08245500	2.28645200

TS-1'

С	-5.00919900	-2.76324000	-1.70261600
С	-4.97314500	-2.62807700	-0.28030100
С	-4.03212400	-1.72990000	0.29887500
С	-3.24410000	-0.99217300	-0.58970500
С	-3.29636900	-1.11725800	-1.98040200
С	-4.17127100	-2.02371700	-2.54441000
С	-5.99732200	-3.74315300	-2.02774000
С	-6.53563800	-4.15777100	-0.85485800
Н	-2.52331000	-0.29901500	-0.15992700
Н	-2.64151700	-0.51474900	-2.60061600

Н	-4.22529100	-2.16802200	-3.61923200
Н	-6.25535400	-4.10070400	-3.01387100
Н	-7.30556700	-4.89519000	-0.70410300
Н	-5.01129200	-3.00370900	2.71054000
Ν	-5.93863900	-3.50915300	0.22312000
С	-3.65422500	-1.46077800	1.74156200
0	-4.31417800	-1.76475900	2.76251400
Н	-3.06252800	-0.53393400	1.79666500
С	-8.02348000	-0.50843400	3.43880700
С	-7.35260900	-1.69735100	3.17028300
С	-7.18970900	-2.12732300	1.85245800
С	-7.71541400	-1.36799600	0.80692800
С	-8.38441900	-0.17628600	1.07818400
С	-8.53947600	0.25546600	2.39307500
Н	-8.14092100	-0.17718100	4.46578700
Н	-6.94178200	-2.29364700	3.97810800
Н	-7.60215400	-1.70096200	-0.22132300
Н	-8.78401400	0.41351500	0.25930400
Н	-9.06087300	1.18429100	2.60275700
С	-6.51140800	-3.47878300	1.59017200
0	-5.59219100	-3.83845900	2.54153100
С	-7.60349700	-4.56801300	1.72207400
F	-8.02837600	-4.61860500	2.98431800
F	-8.67908600	-4.33399600	0.95470100
F	-7.13633900	-5.78498800	1.40470900
С	0.82366900	-0.64094800	4.30050200
С	-0.43365700	-0.59457500	3.69217300
С	-1.60217800	-0.57220200	4.44825200
С	-1.49212400	-0.57669900	5.83826300

С	-0.23768900	-0.60081200	6.45163300
С	0.92847400	-0.63644000	5.68822100
С	1.92541600	-0.72953500	3.27616100
С	-0.29521200	-0.58816200	2.18774100
Н	-2.58298800	-0.57284800	3.97958300
Н	-2.38982400	-0.55879800	6.44785100
Н	-0.17059800	-0.59634400	7.53525000
Н	1.90227700	-0.66422900	6.16855600
Н	2.78254800	-0.09027900	3.49934300
Н	-0.92313000	0.15967600	1.69645700
Н	2.29233500	-1.76010300	3.20982000
С	-1.84247900	-2.49767600	1.63292400
С	0.25031400	-2.67565400	0.89133100
Ν	-1.60198100	-3.63773500	0.96852800
С	-2.55581800	-4.64453500	0.71059700
С	-2.85844000	-5.00635800	-0.60115400
С	-3.24985800	-5.23850600	1.75512600
С	-3.83262300	-5.95376100	-0.85860300
С	-4.22831000	-6.18972500	1.50505800
С	-4.52152700	-6.53930600	0.19856600
F	-3.00917900	-4.87744700	3.00884800
F	-4.89989100	-6.73286800	2.51176300
F	-5.49302400	-7.40840200	-0.05527000
F	-4.14093000	-6.28012400	-2.11099000
F	-2.23276700	-4.41676800	-1.61390600
Ν	-0.31958200	-3.77089700	0.48992200
Ν	-0.63209900	-1.89339200	1.59427900
С	1.66044700	-2.22968800	0.66411700
Н	2.33410500	-2.73293000	1.36771900

Н	1.96892200	-2.49320200	-0.34886400
С	1.21781800	-0.29295700	1.97653400
Н	1.31400000	0.78966200	1.87228400
0	1.73561700	-0.82286200	0.77302400

7. Mulliken charges for II:

- 1 C 0.607566
- 2 C 0.437703
- 3 C -0.092780
- 4 C -0.347781
- 5 C -0.394492
- 6 C -0.639183
- 7 C -0.941887
- 8 C -0.536792
- 9 H 0.197212
- 10 H 0.266450
- 11 H 0.251097
- 12 H 0.267798
- 13 H 0.221076
- 14 H 0.287492
- 15 H 0.249564
- 16 C -0.393896
- 17 C 0.648304
- 18 N 0.497636
- 19 C -0.002858
- 20 C 0.045717
- 21 C 0.255441
- 22 C 0.050028
- 23 C -0.247459
- 24 C 0.426723

- 25 F -0.142665
- 26 F -0.157464
- 27 F -0.176390
- 28 F -0.153592
- 29 F -0.125999
- 30 N -0.152044
- 31 N 0.412169
- 32 C -0.738882
- 33 H 0.249732
- 34 H 0.281859
- 35 C 0.042603
- 36 H 0.277607
- 37 O -0.070702
- 38 C 0.223167
- 39 C 0.136149
- 40 C 0.206110
- 41 C -0.197602
- 42 C -0.574327
- 43 C -0.422219
- 44 C -0.530375
- 45 C -0.110250
- 46 H 0.257895
- 47 H 0.242583
- 48 H 0.255778
- 49 H 0.243898
- 50 H 0.240535
- 51 N -0.311160
- 52 C -0.010488
- 53 O -0.308603

References

[1] Giardinetti, M.; Moreau, X.; Coeffard, V.; Greck, C. Aminocatalyzed Cascade Synthesis of Enantioenriched 1,7-annulated indoles from indole-7-carbaldehyde derivatives and α,β-unsaturated aldehydes. Adv. Synth. Catal. 2015, 357, 3501-3506. [2] a) Cheng, H.-F.; Pei, Y.; Leng, F.-Q.; Li, J.-Y.; Liang, A.-P.; Zou, D.-P.; Wu, Y.J.; Wu, Y.-S. Highly efficient synthesis of aryl and heteroaryl trifluoromethyl ketones via o-iodobenzoic acid (IBX). Tetrahedron Lett. 2013, 54, 4483-4486. b) Khodakovskiy, P. V.; Volochnyuk, D. M.; Panov, D. M.; Pervak, I. I.; Zarudnitskii, E. V.; Shishkin, V.: A. A.: Shivanyuk, Tolmachev. О. Yurchenko, A.; A. A. 2-(trifluoroacetyl)imidazoles, 2-trifluoroacetyl-1,3-thiazoles, and 2-trifluoroacetyl-1,3oxazoles. Synthesis 2008, 948-956. c) Bos, M.; Huang, W. S.; Poisson, T.; Pannecoucke, X.; Charette, A. B.; Jubault, P. Catalytic enantioselective synthesis of highly functionalized difluoromethylated cyclopropanes. Angew. Chem. Int. Ed. 2017, 56, 13319-13323.

[3] a) Breslow, R. On the mechanism of thiamine action. IV. Evidence from studies on model systems. *J. Am. Chem. Soc.* **1958**, *80*, 3719-3726. b) Stetter, H. Catalyzed addition of aldehydes to activated double bonds-A new synthetic approach. *Angew. Chem. Int. Ed.* **1976**, *15*, 639-647.