Supporting Information

Selective hydrogenolysis of glycerol to 1,3-propanediol over rhenium oxide-modified iridium nanoparticles coating rutile titania support

Lujie Liu,^a Takehiro Asano,^a Yoshinao Nakagawa,^{a,b,*} Masazumi Tamura,^{a,b}

Kazu Okumura^c and Keiichi Tomishige^{*a,b,**}

^a Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan ^b Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan

^c Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji, Tokyo 192-0015, Japan

* Corresponding authors.

School of Engineering, Tohoku University,

6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan

E-mail: yoshinao@erec.che.tohoku.ac.jp, Tel/Fax: +81-22-795-7215 (Y. N.);

tomi@erec.che.tohoku.ac.jp, Tel/Fax: +81-22-795-7214 (K. T.)

Contents

Description of EXAFS measurement

Supporting figures

Figure S1. Kinetics study of effect of glycerol concentration on glycerol hydrogenolysis over 4 wt%-Ir Ir-ReO_x/Rutile (Re/Ir = 0.24^*) at around standard reaction conditions (glycerol concentration: 40~80 wt%). Details of reaction conditions and results are summarized in Table S4. Reduction conditions: H₂ flow at 573 K (G, 573).

Figure S2. TPR profiles of TiO₂ support and 4 wt%-Ir Ir-ReO_x/TiO₂, (a) P25 TiO₂, (b) anatase TiO₂, (c) rutile TiO₂, (d) 4 wt% Ir/P25, (e) 4 wt%-Ir Ir-ReO_x/P25 (Re/Ir = 0.30^*), (f) 4 wt% Ir/Anatase, (g) 4 wt%-Ir Ir-ReO_x/Anatase (Re/Ir = 0.16^*). Y-axis was normalized by the weight of catalysts. Conditions: H₂/Ar (5% v/v, 30 cm³ min⁻¹) at heating rate of 10 K min⁻¹. Dotted line represents the baseline for H₂ consumption amount calculation.

Figure S3. TEM images of Ir-ReO_x/Rutile (G, 573). Ir: 4 wt%, $Re/Ir = 0.3^*$ (1).

Figure S4. TEM images of catalysts: (A) 2 wt%-Ir Ir-ReO_x/Rutile, (B) 6 wt%-Ir Ir-ReO_x/Rutile, (C) 8 wt%-Ir Ir-ReO_x/Rutile. Re/Ir = 0.25. Catalysts were pre-reduced by H₂ at 573 K for 1 h before measurement.

Figure S5. TEM images of Ir-ReO_x/Rutile (G, 573). Ir: 4 wt% (precursor of $Ir(NO_3)_4$), Re/Ir = 0.27^{*} (0.25).

Figure S6. TEM images of catalysts: Ir-ReO_x/Rutile (G, 773). Ir: 4 wt%, Re/Ir = 0.24^* (0.25).

Figure S7. XPS fitting results of Ti over 4 wt%-Ir Ir-ReO_x/Rutile reduced at 573 K. (a) Ir/Rutile, (b) Re/Ir = 0.24^* , (c) Re/Ir = 0.3^* .

Figure S8. Results of Ir L_3 -edge and Re L_3 -edge XANES analysis of 4 wt% Ir/Rutile and Ir-ReO_x/Rutile catalysts after gas-phase reduction (G, 573) or reaction. (I) Ir L_3 -edge XANES spectra of (a) Ir powder, (b) Ir/Rutile, (c) Ir/Rutile after reaction, (d) 4 wt%-Ir, Re/Ir = 0.08^{*}, (e) 4 wt%-Ir, Re/Ir = 0.12^{*}, (f) 4 wt%-Ir, Re/Ir = 0.24^{*}, (g) 4 wt%-Ir, Re/Ir = 0.24^{*} after reaction, (h) 4 wt%-Ir, Re/Ir = 0.25^{*}, (i) 4 wt%-Ir, Re/Ir = 0.30^{*}, (j) 4 wt%-Ir, Re/Ir = 0.30^{*} after reaction, (k) 2 wt%-Ir, Re/Ir = 0.32^{*}, (l) 6 wt%-Ir, Re/Ir = 0.18^{*}, (m) 8 wt%-Ir, Re/Ir = 0.15^{*}, (n) 4 wt%-Ir, Re/Ir = 0.24^{*} after calcination, (o) IrO₂; (II) Re L_3 -edge XANES spectra of (a) Re powder, (b) ReO₂, (c) ReO₃, (d)~(m) were same to those in (I), (n) 4 wt%-Ir, Re/Ir = 0.24^{*} after calcination, (o) Re₂O₇; (III) Typical cases of relation between white line area and valence of Re.

Figure S9. Results of Ir L_3 -edge EXAFS analysis of 4 wt% Ir/Rutile and Ir-ReO_x/Rutile catalysts after gas-phase reduction (G, 573) or reaction. (I) k^3 -Weighted EXAFS oscillations. (II) Fourier transform of k^3 -weighted Ir L_3 -edge EXAFS, FT range: 30-120 nm⁻¹. (III) Fourier filtered EXAFS data (solid line) and calculated data (dotted line), Fourier filtering range: 0.156-0.325 nm. (a) Ir powder, (b) IrO₂, (c) Ir/Rutile, (d) Ir/Rutile after reaction, (e) 4 wt%-Ir, Re/Ir = 0.08^{*}, (f) 4 wt%-Ir, Re/Ir = 0.12^{*}, (g) 4 wt%-Ir, Re/Ir = 0.24^{*}, (h) 4 wt%-Ir, Re/Ir = 0.24^{*} after reaction, (i) 4 wt%-Ir, Re/Ir = 0.25^{*}, (j) 4 wt%-Ir, Re/Ir = 0.30^{*}, (k) 4 wt%-Ir, Re/Ir = 0.30^{*} after reaction, (l) 4 wt%-Ir Ir-ReO_x/SiO₂ (Re/Ir = 1) after reaction with H₂SO₄ addition (H⁺/Ir = 1), Ref. S4, (m) 2 wt%-Ir Ir-ReO_x/Rutile (Re/Ir = 0.32^{*}) (G, 573), (n) 6 wt%-Ir Ir-ReO_x/Rutile (Re/Ir = 0.18^{*}) (G, 573), (o) 8 wt%-Ir Ir-ReO_x/Rutile (Re/Ir = 0.15^{*}) (G, 573).

Figure S10. Results of Re L₃-edge EXAFS analysis of Ir-ReO_x/Rutile catalyst after gas-phase reduction (G,

573) or reaction. (I) k^3 -Weighted EXAFS oscillations. (II) Fourier transform of k^3 -weighted Re L_3 -edge EXAFS, FT range: 30-120 nm⁻¹. (III) Fourier filtered EXAFS data (solid line) and calculated data (dotted line), Fourier filtering range: 0.150-0.313 nm. (a) Re powder, (b) NH4ReO4, (c) 4 wt%-Ir, Re/Ir = 0.08^{*}, (d) 4 wt%-Ir, Re/Ir = 0.12^{*}, (e) 4 wt%-Ir, Re/Ir = 0.24^{*}, (f) 4 wt%-Ir, Re/Ir = 0.24^{*} after reaction, (g) 4 wt%-Ir, Re/Ir = 0.25^{*}, (h) 4 wt%-Ir, Re/Ir = 0.30^{*}, (i) 4 wt%-Ir, Re/Ir = 0.30^{*} after reaction, (j) 4 wt%-Ir Ir-ReO_x/SiO₂ (Re/Ir = 1) after reaction with H₂SO₄ addition (H⁺/Ir = 1), Ref. S4, Fourier filtering range: 0.156-0.331 nm. (k) 2 wt%-Ir Ir-ReO_x/Rutile (Re/Ir = 0.32^{*}) (G, 573), (l) 6 wt%-Ir Ir-ReO_x/Rutile (Re/Ir = 0.18^{*}) (G, 573), (m) 8 wt%-Ir Ir-ReO_x/Rutile (Re/Ir = 0.15^{*}) (G, 573).

Supporting tables

Table S1 Summary of previous reports on hydrogenolysis of glycerol to 1,3-PrD over Pt-WO_x based, Ir-Re based, and the present catalysts using water as solvent

Table S2 Summary of precursors, gases, supports and reagents used in this work

Table S3 Effect of H₂ pressure on glycerol hydrogenolysis over 4 wt%-Ir Ir-ReO_x/Rutile (Re/Ir = 0.24^*)

Table S4 Effect of glycerol concentration on glycerol hydrogenolysis over 4 wt% Ir-ReO_x/Rutile (Re/Ir = 0.24^*)

Table S5 Reusability of 4 wt%-Ir Ir-ReO_x/Rutile

Table S6 Valence of Re determined by H₂ consumption and XRF

Table S7 Results of FT-IR of adsorbed CO analysis over Ir/Rutilr and Ir-ReO_x/Rutile catalysts

Table S8 Dependency of Re/Ir ratio on glycerol to 1,3-PrD over Ir-ReO_x/Rutile

References

Description of EXAFS measurement

The X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra measurements were carried out at the BL01B1 and BL14B2 stations at SPring-8. The storage ring was operated at 8 GeV, and a monochromatic X-ray beam was obtained by using a Si (1 1 1) single crystal. For Re L_3 -edge and Ir L_3 -edge measurement, two ion chambers for I_0 and I were filled with 85% $N_2 + 15\%$ Ar and 50% $N_2 + 50\%$ Ar, respectively. For analysis, the extracted oscillation was obtained using a spline smoothing approach from the original EXAFS data [S1]. A radial distribution function was obtained after Fourier transformation of the k^3 -weighted EXAFS oscillation from the k space to the r space was accomplished. A usual curve fitting approach was used for analyzing the inversely Fourier filtered data [S2, S3]. The empirical phase shift and amplitude functions for the Re-O and Ir-O bonds were extracted from the data of NH4ReO4 and IrO2, respectively. It is very difficult to distinguish between Ir and Re as a scattering atom. Therefore, the empirical phase shift and amplitude functions for the Ir-Ir and Ir-Re bonds were extracted from the data of Ir powder, and for those of Re-Re, and Re-Ir bonds were extracted from the data of Re powder. The Re-Ir and Ir-Ir bonds are represented by the Re-Ir (or -Re) and Ir-Ir (or -Re) in the curve fitting results. Analyses of XANES and EXAFS data were performed using a computer program (REX2000, ver. 2.6; Rigaku Corp.).

Figure S1. Kinetics study of effect of glycerol concentration on glycerol hydrogenolysis over 4 wt%-Ir Ir-ReO_x/Rutile (Re/Ir = 0.24^*) at around standard reaction conditions (glycerol concentration: 40~80 wt%). Details of reaction conditions and results are summarized in Table S4. Reduction conditions: H₂ flow at 573 K (G, 573).

Figure S2. TPR profiles of TiO₂ support and 4 wt%-Ir Ir-ReO_x/TiO₂, (a) P25 TiO₂, (b) anatase TiO₂, (c) rutile TiO₂, (d) 4 wt% Ir/P25, (e) 4 wt%-Ir Ir-ReO_x/P25 (Re/Ir = 0.30^{*}), (f) 4 wt% Ir/Anatase, (g) 4 wt%-Ir Ir-ReO_x/Anatase (Re/Ir = 0.16^{*}). Y-axis was normalized by the weight of catalysts. Conditions: H₂/Ar (5% v/v, 30 cm³ min⁻¹) at heating rate of 10 K min⁻¹. Dotted line represents the baseline for H₂ consumption amount calculation.

Figure S3. TEM images of Ir-ReO_x/Rutile (G, 573). Ir: 4 wt%, $Re/Ir = 0.3^{*}$ (1).

Figure S4. TEM images of catalysts: (A) 2 wt%-Ir Ir-ReO_x/Rutile, (B) 6 wt%-Ir Ir-ReO_x/Rutile, (C) 8 wt%-Ir Ir-ReO_x/Rutile. Re/Ir = 0.25. Catalysts were pre-reduced by H₂ at 573 K for 1 h before measurement.

Figure S5. TEM images of Ir-ReO_x/Rutile (G, 573). Ir: 4 wt% (precursor of $Ir(NO_3)_4$), $Re/Ir = 0.27^*$ (0.25).

Figure S6. TEM images of catalysts: Ir-ReO_x/Rutile (G, 773). Ir: 4 wt%, $Re/Ir = 0.24^*$ (0.25).

Figure S7. XPS fitting results of Ti over 4 wt%-Ir Ir-ReO_x/Rutile reduced at 573 K. (a) Ir/Rutile, (b) Re/Ir = 0.24^* , (c) Re/Ir = 0.3^* .

Figure S8. Results of Ir L_3 -edge and Re L_3 -edge XANES analysis of 4 wt% Ir/Rutile and Ir-ReO_x/Rutile catalysts after gas-phase reduction (G, 573) or reaction. (I) Ir L_3 -edge XANES spectra of (a) Ir powder, (b) Ir/Rutile, (c) Ir/Rutile after reaction, (d) 4 wt%-Ir, Re/Ir = 0.08^* , (e) 4 wt%-Ir, Re/Ir = 0.12^* , (f) 4 wt%-Ir, Re/Ir = 0.24^* , (g) 4 wt%-Ir, Re/Ir = 0.24^* after reaction, (h) 4 wt%-Ir, Re/Ir = 0.25^* , (i) 4 wt%-Ir, Re/Ir = 0.30^* , (j) 4 wt%-Ir, Re/Ir = 0.30^* after reaction, (k) 2 wt%-Ir, Re/Ir = 0.32^* , (l) 6 wt%-Ir, Re/Ir = 0.18^* , (m) 8 wt%-Ir, Re/Ir = 0.15^* , (n) 4 wt%-Ir, Re/Ir = 0.24^* after calcination, (o) IrO₂; (II) Re L_3 -edge XANES spectra of (a) Re powder, (b) ReO₂, (c) ReO₃, (d)~(m) were same to those in (I), (n) 4 wt%-Ir, Re/Ir = 0.24^* after calcination, (o) Re₂O₇; (III) Typical cases of relation between white line area and valence of Re.

Figure S9. Results of Ir L_3 -edge EXAFS analysis of 4 wt% Ir/Rutile and Ir-ReO_x/Rutile catalysts after gas-phase reduction (G, 573) or reaction. (I) k^3 -Weighted EXAFS oscillations. (II) Fourier transform of k^3 -weighted Ir L_3 -edge EXAFS, FT range: 30-120 nm⁻¹. (III) Fourier filtered EXAFS data (solid line) and calculated data (dotted line), Fourier filtering range: 0.156-0.325 nm. (a) Ir powder, (b) IrO₂, (c) Ir/Rutile, (d) Ir/Rutile after reaction, (e) 4 wt%-Ir, Re/Ir = 0.08^{*}, (f) 4 wt%-Ir, Re/Ir = 0.12^{*}, (g) 4 wt%-Ir, Re/Ir = 0.24^{*}, (h) 4 wt%-Ir, Re/Ir = 0.24^{*} after reaction, (i) 4 wt%-Ir, Re/Ir = 0.25^{*}, (j) 4 wt%-Ir, Re/Ir = 0.30^{*}, (k) 4 wt%-Ir, Re/Ir = 0.30^{*} after reaction, (l) 4 wt%-Ir Ir-ReO_x/SiO₂ (Re/Ir = 1) after reaction with H₂SO₄ addition (H⁺/Ir = 1), Ref. S4, (m) 2 wt%-Ir Ir-ReO_x/Rutile (Re/Ir = 0.32^{*}) (G, 573), (n) 6 wt%-Ir Ir-ReO_x/Rutile (Re/Ir = 0.18^{*}) (G, 573), (o) 8 wt%-Ir Ir-ReO_x/Rutile (Re/Ir = 0.15^{*}) (G, 573).

Figure S10. Results of Re L_3 -edge EXAFS analysis of Ir-ReO_x/Rutile catalyst after gas-phase reduction (G, 573) or reaction. (I) k^3 -Weighted EXAFS oscillations. (II) Fourier transform of k^3 -weighted Re L_3 -edge EXAFS, FT range: 30-120 nm⁻¹. (III) Fourier filtered EXAFS data (solid line) and calculated data (dotted line), Fourier filtering range: 0.150-0.313 nm. (a) Re powder, (b) NH₄ReO₄, (c) 4 wt%-Ir, Re/Ir = 0.08^{*}, (d) 4 wt%-Ir, Re/Ir = 0.12^{*}, (e) 4 wt%-Ir, Re/Ir = 0.24^{*}, (f) 4 wt%-Ir, Re/Ir = 0.24^{*} after reaction, (g) 4 wt%-Ir, Re/Ir = 0.25^{*}, (h) 4 wt%-Ir, Re/Ir = 0.30^{*}, (i) 4 wt%-Ir, Re/Ir = 0.30^{*} after reaction, (j) 4 wt%-Ir Ir-ReO_x/SiO₂ (Re/Ir = 1) after reaction with H₂SO₄ addition (H⁺/Ir = 1), Ref. S4, Fourier filtering range: 0.156-0.331 nm. (k) 2 wt%-Ir Ir-ReO_x/Rutile (Re/Ir = 0.32^{*}) (G, 573), (l) 6 wt%-Ir Ir-ReO_x/Rutile (Re/Ir = 0.18^{*}) (G, 573), (m) 8 wt%-Ir Ir-ReO_x/Rutile (Re/Ir = 0.15^{*}) (G, 573).

		Composition		Re	action ditions	$P_{1,3,\mathrm{PrD}}$ /	
Entry	Catalyst	Pt /	Pt / W/Pt		<i>P</i> (H ₂) /	$(g g_{Pt}^{-1} h^{-1})$	Ref.
		wt%	(20 wt% HSjW)	K	MPa		
1	Pt-LiSiW/ZrO2	1.0	(20 wt% HSIW) 18.3	453	5.0	0.2	[S5]
2	Pt/WO _x /Al ₂ O ₃	9.0	(8 wt% W) 0.94	493	4.5	0.6	[S6]
3	Pt/WO _x /Al ₂ O ₃	8.9	(8 wt% W) 0.95	493	4.5	1	[S 7]
4	Pt/WO ₃ /TiO ₂ /SiO ₂	2.0	(5 wt% WO ₃) 2.1	453	5.5	1	[S 8]
5	$Pt/Ti_{80}W_{20}$	2.0	(W/Ti = 20:80)	453	5.5	1	[\$9]
6	Pt/WO _x /SiO ₂ -ZrO ₂	2.0	(15 wt% WO ₃) 6.3	453	5.0	1	[S10]
7	Pt-WO ₃ /SBA-15	2.0	(10 wt% WO ₃) 4.2	483	0.1	2	[S11]
8	Pt/W-SBA-15	3.0	0.16	423	4	2	[S12]
	10	(8 wt% W)	453	5.0	2	[812]	
9		1.0	4.7	413	1.0	0.5	[313]
10	Pt/WO ₃ /ZrO ₂	3.0	(10 wt% W) 3.5	403	4.0	2	[S14]
11	Pt/WO _x /Al ₂ O ₃	6.0	(12.9 wt% W) 2.3	453	5.0	3	[\$15]
10	Dt/maga W/O	2.0		433	1.0	4	[816]
12	Pumeso-wO _x	2.0	-	413	1.0	2	[310]
13	Pt/ZrW38Mn3	2.0	(38 wt% W) 20.2	453	8.0	4	[S 17]
14	Pt-WO _x /t-ZrO ₂	2.0	(7.7 wt% W) 4.1	413	8.0	5	[S18]
15	Ir-Re/KIT-6 (Ir-Re alloy)	(Ir) 4.0	(Re/Ir) 1	393	8.0	no data for initial one 7 (g g_{Ir}^{-1} h ⁻¹), highest yield	[S19]
10	Ir-ReO _x /SiO ₂	(Ir)	(Re/Ir)	202	0.0	$18 (g g_{Ir}^{-1} h^{-1})$, initial one	[0.4]
10	$+ H_2 SO_4$	4.0	0.83*	393	8.0	6 (g $g_{Ir}^{-1} h^{-1}$), highest yield	[54]
17	Ir-ReO _x /SiO ₂	(Ir)	(Re/Ir)	393	8.0	22 (g g_{Ir}^{-1} h ⁻¹), initial one	[S20]
		20.0	0.34*		0.0	7 (g g_{Ir}^{-1} h ⁻¹), highest yield	
		(Ir)	(Re/Ir)	393	8.0	52 (g g_{Ir}^{-1} h ⁻¹), initial one	This
18	Ir-ReO _x /Rutile	4.0	0.24	393	8.0	94 (g $g_{Ir}^{-1} h^{-1}$), initial one (Table S8)	work

Table S1 Summary of previous reports on hydrogenolysis of glycerol to 1,3-PrD over Pt-WO_x based, Ir-Re based, and the present catalysts using water as solvent

Precursor or reagent	Manufacturer
H_2IrCl_6	Furuya Metals Co., Ltd.
Ir(NO ₃) ₄	Furuya Metals Co., Ltd.
NH ₄ ReO ₄	Soekawa Chemical Co., Ltd.
IrO ₂	Kanto Chemical Co., Inc.
ReO ₂	Strem Chemicals, Inc.
H_2	Nippon Peroxide Co., Ltd., 99.99%
N_2	Nippon Peroxide Co., Ltd., > 99%
CH_4	Japan Fine Products Corp., 22.1%, diluted with Ar, standard gas
$C_{2}H_{6} + C_{3}H_{8}$	GL Sciences, C_2H_6 (0.997%) + C_3H_8 (1.00%), diluted with N ₂ , standard gas
SiO ₂	G6, Fuji Silysia, calcined at 973 K for 1 h, S _{BET} 485 m ² g ⁻¹
MgO	Ube Industries, Ltd., 500A, 34 m ² g ⁻¹
CeO ₂	Daiichi Kigenso Co., Ltd., HS, calcined at 873 K for 1 h, 84 m ² g ⁻¹
γ-Al ₂ O ₃	Nippon Aerosil Co., Ltd., calcined at 973 K for 1 h, 100 m ² g ⁻¹
ZrO_2	Daiichi Kigenso Kogyo Co., Ltd., calcined at 773 K for 1 h, 62 m ² g ⁻¹
Activated carbon	Shirasagi FAC-10, Japan EnviroChemicals, Ltd., 851 m ² g ⁻¹
H-ZSM-5	JRC-Z5-90H(1), Süd-Chemie Catalysts and Catalysis Society of Japan, $Si/Al_2 = 90$, 270 m ² g ⁻¹
Anatase TiO ₂	Wako Pure Chemical Industries, Ltd., 11 m ² g ⁻¹
Rutile TiO ₂	Wako Pure Chemical Industries, Ltd., 6 m ² g ⁻¹
P25 TiO ₂	Nippon Aerosil, 50 m ² g ⁻¹
Glycerol	Wako Pure Chemical Industries, Ltd., > 99%
1,3-Propanediol	Wako Pure Chemical Industries, Ltd., > 97%, standard reagent
1,2-Propanediol	Wako Pure Chemical Industries, Ltd., > 99%, standard reagent
1-Propanol	Wako Pure Chemical Industries, Ltd., > 99.5%, standard reagent
2-Propanol	Wako Pure Chemical Industries, Ltd., > 99.7%, standard reagent
1-Butanol	Wako Pure Chemical Industries, Ltd., > 99%, internal standard

Table S2 Summary of precursors, gases, supports and reagents used in this work

<i>t /</i> h		Conv.		Se	Conversion rate (v_g) /			
	P / MPa	/ %	1,3-PrD	1,2-PrD	1-PrOH	2-PrOH	Others	mmol·g-Cat ⁻¹ h ⁻¹
0	1	<1	-	-	-	-	-	-
2	2	7	59	2	34	3	2	10.0
4	2	13	54	2	38	4	2	10.0
2	5	16	69	2	24	4	1	11 0
3	5	25	67	1	26	4	2	22.0
1	6	11	73	2	22	2	1	20.1
2	6	20	70	2	24	3	1	28.1
1	8	12	73	1	19	4	3	26.9
2	8	26	71	2	22	4	1	30.8

Table S3 Effect of H₂ pressure on glycerol hydrogenolysis over 4 wt%-Ir Ir-ReO_x/Rutile (Re/Ir = 0.24^*)

Reaction conditions: catalyst = 150 mg, glycerol = 4 g, $H_2O = 2$ g, T = 393 K. Reduction conditions: H_2 flow at 573 K (G, 573). PrD, propanediol; PrOH, propanol. Others: ethylene glycol + ethanol + propane + ethane + methane. Note: The glycerol rate was typically calibrated by considering the glycerol conversion at 0 h with conversion level lower than 25%. The autoclave was pressurized with 1 MPa H_2 at ambient temperature to suppress side reactions during the heating to 393 K.

Glycerol	Catalyst	Glucerol	<i>t /</i> h	/ h Conv		Se		Conversion rate		
concentration / wt%	amount / mg	amount / g			1,3-PrD	1,2-PrD	1-PrOH	2-PrOH	Others	(v_g) / mmol·g-Cat ⁻¹ h ⁻¹
5	37.5	1	2	6	62	10	13	14	1	8.7*
10	75	2	2	14	69	5	17	9	0	20.3*
20	150	4	2	18	72	4	17	7	0	26.1*
40	150	4	0	< 0.5	-	-	-	-	-	
			1	11	74	2	18	2	4	32.5
			2	23	71	3	21	5	0	
50	150	4	0	< 0.5	-	-	-	-	-	
			1	13	73	2	19	3	3	35.2
			2	25	70	2	22	5	1	
67	150	4	0	<1	-	-	-	-	-	
			1	12	73	1	19	4	3	36.8
			2	26	71	2	22	4	1	
80	150	4	0	<1	-	-	-	-	-	
			1	14	70	2	21	3	4	38.2
			2	27	67	2	26	4	1	
100	150	4	2	15	63	2	31	3	1	21.7*

Table S4 Effect of glycerol concentration on glycerol hydrogenolysis over 4 wt% Ir-ReO_x/Rutile (Re/Ir = 0.24^*)

Reaction conditions: T = 393 K, $P(H_2) = 8$ MPa. Reduction conditions: H_2 flow at 573 K (G, 573). The autoclave was pressurized with 1 MPa H_2 at ambient temperature to suppress side reactions during the heating to 393 K. Note: Those conversion rate values with a mark (*) were calculated by only the conversion data at 2 h since the conversion at 0 h was negligible and linearity can be assumed to some extent.

Do/Ir	Glycerol	H_2O	Catalyst	Usaga	Conv		Se	Conversion rate (u)			
ratio	amount	amount	amount	times	/ %	1,3-PrD	1,2-PrD	1-PrOH	2-PrOH	Others	mmol·g-Cat ⁻¹ h^{-1}
	/ g	/ g	/ mg								
0.24^{*}	1.0	19.0	150	1	24	64	5	21	8	2	17.1
0.24^{*}	0.9	17.1	(135) ^a	2	19	64	7	18	10	1	(13.6)
0.24^{*}	0.8	15.2	(121) ^a	3	19	65	7	16	10	2	(14.0)
0.24^{*}	0.7	13.3	113	4	16	62	9	16	12	1	11.5
0.30*	1.0	19.0	150	1	36	59	5	26	9	1	26.3
0.30^{*}	0.9	17.1	(135) ^a	2	30	60	6	23	9	2	(21.6)
0.30*	0.8	15.2	(121) ^a	3	28	59	8	22	9	2	(20.8)
0.30*	0.7	13.3	108	4	25	56	10	22	10	2	19.0

Table S5 Reusability of 4 wt%-Ir Ir-ReO_x/Rutile

Reaction conditions: $P(H_2) = 8$ MPa, T = 393 K, t = 1 h. Catalyst of 4 wt%-Ir Ir-ReO_x/Rutile (Re/Ir = 0.24^{*}) was pre-reduced by H₂ flow at 573 K for 1 h (G, 573).

^aEstimated amount from the final catalyst amount.

Catalyst	Re/Ir ratio	Ir / wt% (actual)	Re / wt% (actual)	Temperature range for calculation	Consumed H ₂ / µmol	Re valence
4 wt% Ir/Rutile	-	4.0	-	323–800 K	44.2	(-0.2) ^b
4 wt% Ir/Anatase	-	4.0	-	323–700 K	42.0	(0) ^b
4 wt% Ir/P25	-	3.9	-	323–950 K	40.6	(0) ^b
0.9 wt% ReO _x /Rutile	-	-	0.7	323–550 K	9.4	2.0
4 wt%-Ir Ir-ReO _x /Rutile	0.08*(0.063)	4.0	0.3	323–750 K	44.6	3.5
	0.12* (0.13)	4.2	0.5	323–700 K	47.4	4.4
	0.24* (0.25)	3.9	0.9	323–600 K	51.5	2.5
	$0.25^{*}(0.5)$	4.1	1.0	323–550 K	55.3	2.4
	0.30* (1)	4.2	1.2	323–550 K	61.7	1.5
4 wt%-Ir Ir-ReO _x /Anatase	0.16* (0.25)	3.7	0.6	323–600 K	48.4	1.0
4 wt%-Ir Ir-ReO _x /P25	0.30* (0.25)	3.9	1.2	323–800 K	49.3	4.3
4 wt%-Ir Ir-ReO _x /Rutile ^a	0.27* (0.25)	4.4	1.2	323–600 K	48.6	6.2

Table S6 Valence of Re determined by H₂ consumption and XRF

Molar sensitivity is defined by the H₂ consumption of Ir/SiO₂ (IrO₂ + 2H₂ \rightarrow Ir + 2H₂O). Sample amount of 100 mg. Re valence: 7-2 × [(amount of H₂ consumed, µmol) – 2 × (actual Ir loading amount, µmol)]/(actual Re loading amount, µmol).

^aPrecursor of Ir(NO₃)₄. ^bIr valence: $4-2 \times [(\text{amount of } H_2 \text{ consumed}, \mu \text{mol})/(\text{actual Ir loading amount}, \mu \text{mol})]$. Dotted line represents the baseline for H₂ consumption amount calculation.

Catalyst	Ir loading amount (nominal) / wt%	Re/Ir ratio	Ir ⁰ Wavenumber / cm ⁻¹	- Area ratio/%	$\frac{Ir^{\delta_{+}} (Ir^{3+}/Ir^{4+})}{Wavenumber} / cm^{-1}$	Area ratio/%
Ir (G,573)	4	-	2070	65	2083	35
Ir-ReO _x (G,573)	4	0.24* (0.25)	2075	66	2089	34
Ir-ReO _x (G,573)	4	0.30* (1)	2073	68	2087	32
Ir-ReO _x (G,573)	2	0.32* (0.25)	2073	56	2083	44
Ir-ReO _x (G,573)	6	0.18* (0.25)	2074	72	2089	28
Ir-ReO _x (G,573)	8	0.15* (0.25)	2076	75	2089	25

Table S7 Results of FT-IR of adsorbed CO analysis over Ir/Rutile and Ir-ReO_x/Rutile catalysts

	. / 1	Conv.		P _{1,3-PrD} /				
Re/Ir ratio	<i>t /</i> h	/ %	1,3-PrD	1,2-PrD	1-PrOH	2-PrOH	Others	$g g_{Ir}^{-1} h^{-1}$
0.08*	0	< 0.5	-	-	-	-	-	
(0.063)	4	11	73	1	19	5	2	9
	8	18	70	2	18	6	4	
0.12^{*}	0	< 0.5	-	-	-	-	-	
(0.13)	4	21	70	2	20	5	3	21
	6.7	31	67	2	23	6	2	
0.24^{*}	0	<1	-	-	-	-	-	
(0.25)	1	12	73	1	19	4	3	52
	2	26	71	2	22	4	1	
0.25^{*}	0	<1	-	-	-	-	-	
(0.5)	1	18	69	2	24	4	1	67
	2	32	67	2	25	5	1	
0.30*	0	< 0.5	-	-	-	-	-	04
(1)	1	24	75	3	17	4	1	94

Table S8 Dependency of Re/Ir ratio on glycerol to 1,3-PrD over 4wt%-Ir Ir-ReO_x/Rutile

Reaction conditions: catalyst = 150 mg, glycerol = 4 g, $H_2O = 2$ g, $P(H_2) = 8$ MPa, T = 393 K. Reduction conditions: H_2 flow at 573 K (G, 573). The $P_{1,3-PrD}$ was calculated at glycerol conversion about 20–25%.

References

(1) Jr., J. W. C.; Sayers, D. E. Criteria for Automatic X-ray Absorption Fine Structure Background Removal. *J. Appl. Phys.* **1981**, *52*, 5024–5031.

(2) Okumura, K.; Amano, J.; Yasunobu, N.; Niwa, M. X-ray Absorption Fine Structure Study of the Formation of the Highly Dispersed PdO over ZSM-5 and the Structural Change of Pd Induced by Adsorption of NO. *J. Phys. Chem. B* **2000**, *104*, 1050–1057.

(3) Okumura, K.; Matsumoto, S.; Nishiaki, N.; Niwa, M. Support Effect of Zeolite on the Methane Combustion Activity of Palladium. *Appl. Catal. B* **2003**, *40*, 151–159.

(4) Amada, Y.; Shinmi, Y.; Koso, S.; Kubota, T.; Nakagawa, Y.; Tomishige, K. Reaction Mechanism of the Glycerol Hydrogenolysis to 1,3-Propanediol over Ir-ReO_x/SiO₂ Catalyst. *Appl. Catal. B* **2011**, *105*, 117–127.

(5) Zhu, S.; Gao, X.; Zhu, Y.; Zhu, Y.; Xiang, X.; Hu, C.; Li, Y. Alkaline Metals Modified Pt–H₄SiW₁₂O₄₀/ZrO₂ Catalysts for the Selective Hydrogenolysis of Glycerol to 1,3-Propanediol. *Appl. Catal. B* **2013**, *140–141*, 60–67.

- (6) García-Fernández, S.; Gandarias, I.; Requies, J.; Güemez, M. B.; Bennici, S.; Auroux, A.; Arias,
 P. L. New Approaches to the Pt/WO_x/Al₂O₃ Catalytic System Behavior for the Selective Glycerol Hydrogenolysis to 1,3-Propanediol. *J. Catal.* 2015, *323*, 65–75.
- (7) García-Fernández, S.; Gandarias, I.; Requies, J.; Soulimani, F.; Arias, P. L.; Weckhuysen, B. M. The Role of Tungsten Oxide in the Selective Hydrogenolysis of Glycerol to 1,3-Propanediol over Pt/WO_x/Al₂O₃. *Appl. Catal. B* **2017**, *204*, 260–272.
- (8) Gong, L.; Lu, Y.; Ding, Y.; Lin, R.; Li, J.; Dong, W.; Wang, T.; Chen, W. Selective Hydrogenolysis of Glycerol to 1,3-Propanediol over a Pt/WO₃/TiO₂/SiO₂ Catalyst in Aqueous Media. *Appl. Catal. A* **2010**, *390*, 119–126.
- (9) Zhang, Y.; Zhao, X.-C.; Wang, Y.; Zhou, L.; Zhang, J.; Wang, J.; Wang, A.; Zhang, T. Mesoporous Ti–W Oxide: Synthesis, Characterization, and Performance in Selective Hydrogenolysis of Glycerol. *J. Mater. Chem. A* **2013**, *1*, 3724–3732.
- (10)Zhu, S.; Gao, X.; Zhu, Y.; Cui, J.; Zheng, H.; Li, Y. SiO₂ Promoted Pt/WO_x/ZrO₂ Catalysts for the Selective Hydrogenolysis of Glycerol to 1,3-Propanediol. *Appl. Catal. B* **2014**, *158–159*, 391–399.
- (11) Priya, S. S.; Kumar, V. P.; Kantam, M. L.; Bhargava, S. K.; Srikanth, A.; Chary, K. V. R. High Efficiency Conversion of Glycerol to 1,3-Propanediol Using a Novel Platinum–Tungsten Catalyst Supported on SBA-15. *Ind. Eng. Chem. Res.* **2015**, *54*, 9104–9115.
- (12)Fan, Y. Q.; Cheng, S. J.; Wang, H.; Ye, D. H.; Xie, S. H.; Pei, Y.; Hu, H. R.; Hua, W. M.; Li, Z. H.; Qiao, M. H.; Zong, B. N. Nanoparticulate Pt on Mesoporous SBA-15 Doped with Extremely Low Amount of W as a Highly Selective Catalyst for Glycerol Hydrogenolysis to 1,3-Propanediol. *Green Chem.* 2017, *19*, 2174–2183.
- (13) Arundhathi, R.; Mizugaki, T.; Mitsudome, T.; Jitsukawa, K.; Kaneda, K. Highly Selective Hydrogenolysis of Glycerol to 1,3-Propanediol over a Boehmite-Supported Platinum/Tungsten Catalyst. *ChemSusChem* **2013**, *6*, 1345–1347.
- (14)Qin, L.-Z.; Song, M.-J.; Chen, C.-L. Aqueous-Phase Deoxygenation of Glycerol to 1,3-Propanediol over Pt/WO₃/ZrO₂ Catalysts in a Fixed-Bed Reactor. *Green Chem.* **2010**, *12*, 1466–1472.
- (15)Lei, N.; Zhao, X.; Hou, B.; Yang, M.; Zhou, M.; Liu, F.; Wang, A.; Zhang, T. Effective

Hydrogenolysis of Glycerol to 1,3-Propanediol over Metal-Acid Concerted Pt/WO_x/Al₂O₃ Catalysts. *ChemCatChem* **2019**, *11*, 3903–3912.

(16) Wang, J.; Zhao, X. C.; Lei, N.; Li, L.; Zhang, L. L.; Xu, S. T.; Miao, S.; Pan, X. L.; Wang, A. Q.;
Zhang, T. Hydrogenolysis of Glycerol to 1,3-Propanediol under Low Hydrogen Pressure over WO_x-Supported Single/Pseudo-Single Atom Pt Catalyst. *ChemSusChem* **2016**, *9*, 784–790.

(17)Zhou, W.; Luo, J.; Wang, Y.; Liu, J. F.; Zhao, Y. J.; Wang, S. P.; Ma, X. B. WO_x Domain Size, Acid Properties and Mechanistic Aspects of Glycerol Hydrogenolysis over Pt/WO_x/ZrO₂. *Appl. Catal. B* 2019, 242, 410–421.

(18)Fan, Y. Q.; Cheng, S. J.; Wang, H.; Tian, J.; Xie, S. H.; Pei, Y.; Qiao, M. H.; Zong, B. N. Pt-WO_x on Monoclinic or Tetrahedral ZrO₂: Crystal Phase Effect of Zirconia on Glycerol Hydrogenolysis to 1,3-Propanediol. *Appl. Catal. B* **2017**, *217*, 331–341.

(19)Deng, C.; Duan, X.; Zhou, J.; Zhou, X.; Yuan, W.; Scott, S. L. Ir–Re Alloy as a Highly Active Catalyst for the Hydrogenolysis of Glycerol to 1,3-Propanediol. *Catal. Sci. Technol.* **2015**, *5*, 1540–1547.

(20)Liu, L.; Kawakami, S.; Nakagawa, Y.; Tamura, M.; Tomishige, K. Highly Active Iridium–Rhenium Catalyst Condensed on Silica Support for Hydrogenolysis of Glycerol to 1, 3-Propanediol. *Appl. Catal. B* 2019, *256*, 117775.