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Algorithms not belonging to importance sampling 

Milestoning. A number of nonintersecting hypersurfaces or slices of the free-energy surface 

are chosen to describe the reaction, referred to as “milestones”.1 A trajectory around a given 

milestone is collected until sampling reaches an adjacent one. The local sampling around 

each milestone is then gathered together to capture the global kinetics through post-treatment. 

It should be noted that although a transition coordinate is usually employed to help define the 

milestones, it is not a requirement of the method. 

Generalized ensembles and weighted ensembles. In both generalized and weighted ensembles, 

the probability of each state is weighted by a factor, rendering sampling of configurational 

space uniform. High-energy states, which are notoriously difficult to be explore by means of 

Boltzmann sampling, are, therefore, more likely to be captured in generalized and weighted 

ensembles. In generalized-ensemble algorithms, such as replica-exchange molecular 

dynamics (REMD),2 replica-exchange simulated tempering (REST)3 and replica exchange 

with solute scaling (REST2),4 different simulations with distinct temperatures are performed 

simultaneously. Low-temperature replicas can receive configurations from the high-

temperature ones, hence improving the sampling ability of the former. In stark contrast, 

weighted-ensemble schemes like accelerated MD (aMD),5 Gaussian accelerated MD 

(GaMD)6 and integrated tempering enhanced sampling (ITS),7 morph the potential energy 

landscape to make high-energy states more favorable with respect to the same ones on the 

original surface. Since the generalized- and weighted-ensemble schemes aim at achieving a 

random walk in the potential-energy space, the use of a transition coordinate is not needed for 

these algorithms. 

Importance splitting is a class of algorithm that is mostly used with the Monte-Carlo 

approach,8,9 and the discussion of which goes beyond the scope of this paper. 
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Importance-sampling algorithms other than ABF 

Umbrella Sampling. In the original algorithm, an external potential is added to the potential 

energy function, resulting in an effectively flat free-energy landscape. Staging or stratifying is 

added by means of confinement potentials to improve further sampling.10 In practice, since 

guessing the umbrella potential is difficult, the algorithm has evolved towards an over-

stratification approach, whereby the reaction pathway is broken down in a large number of 

very narrow windows, or strata, in which sampling is confined by means of a harmonic 

potential,11 

𝑈 = 𝑘$𝜉 − 𝜉0(
2
                                                          (S1) 

where 𝜉 is the transition coordinate. The restraint guarantees that sampling along 𝜉 is close to 

𝜉0. The free-energy difference in each of the windows is less than 𝑘B𝑇, where 𝑘B is the 

Boltzmann constant and 𝑇, the temperature. The overall free-energy change along 𝜉 can be 

obtained via the weighted histogram analysis method (WHAM),12 or umbrella integration.13 

Metadynamics. Metadynamics (MtD) adds Gaussian potentials to the oversampled region to 

help sampling escape free-energy minima, until all the valleys of the free-energy landscape 

are flooded,14–16 as shown in Figure 1C, 

𝑈 =,𝑉(𝑡)
𝑡

																																											(S2) 

where 𝑉(𝑡) is the potential added to the potential energy function at time 𝑡. The true free-

energy change along	𝜉 can be recovered by a time-independent estimator. 

The choice of an enhanced-sampling algorithm highly depends on the inherent properties of 

the molecular object of interest and the degrees of freedom at play. Since generalized- and 

weighted-ensemble schemes do not require a predefined transition coordinate, they may be 

used to explore a process that cannot be easily described by collective variables. However, 
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sampling in a generalized- or weighted-ensemble simulation is very random. It is, therefore, 

plausible that the process of interest will not be observed over the timescale of the simulation, 

especially in the case of complex molecular objects. On the contrary, sampling along the 

transition coordinate is guaranteed in importance-sampling simulations, in the limit of 

timescale separation. Hence, importance-sampling algorithms are often more cost-effective 

when a reasonable transition coordinate is available. 

Ease to use of importance-sampling algorithms 

In general, for simple molecular objects and structural transformations, ABF, eABF, 

meta-eABF/WTM-eABF and MtD/WT-MtD are equally easy to use, since no stratification 

strategy is needed and the complete free-energy profile can be determined from a single 

simulation, while US requires the most significant human intervention. For molecular objects 

and geometric transformations of moderate complexity, the use of meta-eABF/WTM-eABF 

may be the easiest, because the transition coordinate can span a single, large window, 

whereas a stratification strategy and multiple simulations are needed for most other ABF-

based algorithms. MtD/WT-MtD may also be used without stratification strategy if the size of 

the Gaussians is carefully determined. For a very complex task, the ease or difficulty of using 

a given algorithm highly depends on the properties of the molecular object, and how the 

transition coordinate is coupled to the slowest degrees of freedom, i.e., timescale separation. 

(Table S1). 

 

Table S1. Human intervention needed for running a simulation using different importance-
sampling algorithms. Part of the human time can be spared depending on the molecular 
simulation and free-energy calculation engine. 

Algorithm Human intervention 

ABF 
• Merging windows if a stratification strategy is applied 
• Integration of free-energy gradientsa 

eABF 
• Merging windows if a stratification strategy is applied 
• Integration of free-energy gradientsa 
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meta-eABF/WTM-eABF 
• Merging windows if a stratification strategy is appliedb 
• Integration of free-energy gradientsa 

MtD/WT-MtD 

• Optimize the size of the Gaussians for non-trivial molecular 
objects and structural transformations 

• Calculating free-energy profiles using a time-independent 
estimatorc 

US 

• Extracting initial structures for each window from a steered 
MD trajectory, followed by appropriate equilibration 
simulations 

• Preparing and running multiple simulationsd 
• Recovering the free-energy profiles by post-treatmente 

aAutomated in Colvars. 
bUsually not needed. 
cImplemented in Plumed. 
dThe number of simulations needed in US is usually much larger than that in ABF or MtD. 
eBy WHAM12 or umbrella integration.13 
 

Discussion of the choice of transition coordinates 

In general, a good transition coordinate can describe all (or most) of the slow degrees of 

freedom of a given molecular object. Figure S1 provides two examples of a good and a bad 

transition coordinate. 

 

Figure S1. Graphical representation of a good (A) and a bad (B) transition coordinate. The 

former can characterize the slow degrees of freedom of the molecular object while the latter 

cannot. 
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A coarse method to examine the quality of a transition coordinate is to observe sampling 

along it during an ABF/eABF/meta-eABF/WTM-eABF simulation. A homogeneous, uniform 

sampling is an indicator of an appropriate transition coordinate. To rigorously check whether 

a chosen transition coordinate, 𝜉, is appropriate, a committor analysis ought to be performed. 

The committor function,	𝑝B, at 𝜉 = 𝜉‡, is defined as the probability that a trajectory will reach 

the product (B), before returning to the reactant (A), starting from the transition state. If the 

distributions of 𝑝B  are Gaussian-like with a peak at 𝑝B  = 0.5, the choice of transition 

coordinate is appropriate. A detailed introduction of committor analysis can be found 

elsewhere.17,18 

According to eq. 1 in the main text, in the original ABF algorithm, the calculation of 

𝐅bias  requires the determination of :𝜕 ln|𝐉|
𝜕𝜉
@
𝜉
, which involves the second derivative of the 

collective variable (CV). If one wants to implement a new CV in the context of an ABF 

calculation, the analytical expression of the CV, its first derivative and its second derivative 

must be implemented, which can be complicated in practice. eABF (and meta-eABF/WTM-

eABF) obviates the need for an explicit analytical determination of |𝐉|, as mentioned in the 

main text, making knowledge of the second derivative of the CVs unnecessary. Moreover, in 

the current version of Colvars and Plumed, the first derivative of a CV can be automatically 

calculated by the built-in lepton library. Implementing a new CV for eABF/meta-

eABF/WTM-eABF is, therefore, very straightforward in a modern free-energy calculation 

engine. It should be noted that eABF, meta-eABF and WTM-eABF are compatible with all 

the CVs already implemented in Colvars and Plumed, while ABF cannot be used with some 

of them due to the missing implementation of :𝜕 ln|𝐉|
𝜕𝜉
@
𝜉
. 
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Figure S2. A Gedanken experiment showing the “hidden barriers”. A hypothetical 

importance-sampling algorithm is used to explore the two-dimensional surface. x is selected 

as the one-dimensional transition coordinate, while y mirrors the orthogonal space. The initial 

state is located in basin 2. Since the importance-sampling algorithm accelerates the 

exploration along the transition coordinate, namely x, basin 1-3 can be easily investigated. 

Sampling of other local minima, however, is hampered due to the barriers along the y-

direction. Two major basins, namely 5 and 6, therefore, may not be found during the 

simulation.  
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Detailed Introduction of Replica-Exchange WTM-eABF (REX-WTM-eABF) Algorithm 

Approximately, any extended-Lagrangian-based calculation can be regarded as an 

umbrella-sampling-like simulation. The umbrella-integration unbiased estimator, can 

therefore, be used to calculate the free-energy landscape.19,20 Here, the Metropolis criterion 

used in replica-exchange umbrella sampling (REUS)21 is applied in an replica-exchange 

WTM-eABF (REX-WTM-eABF) algorithm. Similar criteria have also been adopted in other 

extended-Lagrangian-based methods, such as multi-scale sampling using temperature 

accelerated and replica exchange molecular dynamics (MuSTAR MD).22 

In REX-WTM-eABF, the probability of exchanging two replicas is, 

𝑝(exchange) = F 1	
(∆≤ 0)

𝑒K∆	(∆> 0)
                                            (S3) 

and 

∆= 𝛽𝑚(𝐸𝑛 − 𝐸𝑚) − 𝛽𝑛(𝐸𝑛 − 𝐸𝑚)                                        (S4) 

where 𝐸 is the sum of the force field energy and the elastic potential energy of the fictitious 

spring, and 𝑛 and 𝑚, two replicas. 

 

Comparison between Different Importance-Sampling Algorithms 

In plain language, US is a histogram-based scheme, which improves the sampling relying 

on restraints and a stratification of the reaction pathway. ABF is a thermodynamic-

integration-based approach, shaving the free energy barriers by applying biasing forces. MtD 

fills the valleys by gradually adding Gaussian potentials as the simulation proceeds. Due to 

these differences, each algorithm has its own advantages and limitations, as detailed in ref. 23. 

To assess the computational efficiency of different importance-sampling schemes, we 

have calculated the free-energy landscapes characterizing the isomerization of deca-alanine 

and N-acetyl-N’-methylalanylamide (NANMA) in aqueous solution using WTM-eABF, 
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eABF and WT-MtD. As shown in Figure S3, for the deca-alanine case, the PMF obtained 

from 100 ns WTM-eABF simulation is almost identical to the reference, while those from 

eABF and WT-MtD simulations still differ significantly from the original one. For the 

NANMA case, the WTM-eABF simulation converged in 10 ns, while plain eABF and WT-

MtD only sampled the low-free-energy region within the same time scale. The free-energy 

landscape obtained from the WT-MtD simulation, moreover, is slightly noisy. All in all, 

WTM-eABF outperforms the other two algorithms in sampling efficiency in both cases, 

suggestive of a reasonable choice for the standard free-energy calculations. 
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Figure S3. Performance comparison of WTM-eABF, eABF and WT-MtD. Molecular objects 

and transition coordinates (A). Both of the two molecules are solvated in aqueous solution. 

Free-energy changes along the end-to-end distance, 𝑑, of deca-alanine (B). Inset: Time 

evolution of the PMF root-mean-square deviation (RMSD) with respect to the reference. 
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Free-energy landscapes characterizing the isomerization of alanine dipeptide from the 

reference (C), WTM-eABF (D), eABF (E) and WT-MtD (F) simulations. The RMSD (in 

kcal/mol) of each two-dimensional free-energy landscape with respect to the reference is 

shown in the lower left corner of the corresponding panel. Both references are obtained from 

a more than 1-µs eABF simulation. Other one-dimensional PMFs and two-dimensional free-

energy landscapes are from 100- and 10-ns importance-sampling calculations, respectively. 

Extra efforts have been made to optimize the MtD parameters.  
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Figure S4. Example configuration file for a WTM-eABF simulation using the Colvars 

module. Example files for running ABF, eABF, meta-eABF and WTM-eABF simulations are 

provided in GitHub (https://github.com/fhh2626/ABF-example-files-for-NAMD-and-

OpenMM) and in the ZIP archive of the Supporting Information. 
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Figure S5. Example configuration file for a WTM-eABF simulation using the Plumed 

module. Example files for running eABF, meta-eABF and WTM-eABF simulations are 

provided in GitHub (https://github.com/fhh2626/ABF-example-files-for-NAMD-and-

OpenMM) and in the ZIP archive of the Supporting Information.  
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Table S2. Standard Binding Free-Energy Calculations of p41:Abl-SH3 Complex using eABF 

and WTM-eABF 

Contribution 

eABF (ref .24) WTM-eABF (this work)a 

Energyb 
(kcal/mol) 

Simulation Time 
(ns) 

Energy 
(kcal/mol) 

Simulation Time 
(ns) 

∆𝐺S
site -4.59 15 -4.59 15 

∆𝐺Θ
site -0.16 8 -0.18 4 

∆𝐺Φ
site -0.53 14 -0.57 7 

∆𝐺Ψ
site -0.21 12 -0.23 6 

∆𝐺X
site -0.15 4 -0.11 4 

∆𝐺Y
site -0.21 12 -0.21 6 

−
ln(𝑆∗𝐼∗𝐶∘)

𝛽
 -16.46 40 -16.22 20 

∆𝐺S
bulk 7.77 84 7.27 42 

∆𝐺a
bulk 6.61 - 6.61 - 

∆𝐺bind
∘  -7.95 189 -8.24 104 

∆𝐺cdef
∘ (exp)c 

-7.99 

∆𝐺cdef
∘ (MM-PBSA)d 

-2.6 
aThe result reported herein is from one of the four parallel simulations at T=300 K in Table 2, as a 
representative. 
bExcept for	∆𝐺𝑜bulk and ∆𝐺𝑜bulk, quantities are calculated by integration of the PMFs shown in Figure 
S6. 
cFrom ref. 25. 
dFrom ref. 26. 
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Table S3. Local minima and corresponding free energies in Figure 4A and 4B. 

QM/MM (Figure 4A) MM (Figure 4B) 

position of local mimima 

(𝜙1, 𝜙2, 𝜙3) (°) ΔG (kcal/mol) 

position of local mimima 

(𝜙1, 𝜙2, 𝜙3) (°) ΔG(kcal/mol) 

(𝜙1, 𝜙2, 𝜙3, 𝜓1, 𝜓2, 𝜓3) = (-88, 

-78, -74, 146, 158, 149)a 0.0 

(𝜙1, 𝜙2, 𝜙3, 𝜓1, 𝜓2, 𝜓3) = (-67, 

-66, -70, 150, 161, 156)a 0.0 

(-80, 70, -70) 1.5 (-70, -150, -70) 1.0 

(-80, -80, 70) 2.1 (-70, -70, 60) 1.1 

(-80, 70, 70) 2.4 (-70, -70, -150) 1.2 

(60, 70, -70) 2.5 (50, -70, -70) 1.2 

  
(-140, -70, -70) 1.3 

  
(-60, 50, -70) 1.6 

  
(-60, 50, 60) 1.9 

  
(-70, -150, 60) 2.0 

  
(50, 60, -70) 2.2 

  
(-150, -150, -70) 2.2 

  
(60, -70, -150) 2.3 

  
(50, -70, -140) 2.3 

  
(-140, -60, 60) 2.3 

  
(50, 50, 60) 2.4 

aAdditional simulations with a precision of 1° were added to identify the global minimum. It is 

noteworthy that (𝜓1, 𝜓2, 𝜓3) fluctuate a lot since they are not slow degrees of freedom.  
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Figure S6. Free-energy profiles of an example of accurate binding free-energy calculation. 

The corresponding collective variables are shown in Figure 3. Reproduced with permission 

from ref. 24. Copyright 2017 American Chemical Society.  
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Figure S7. Calculation of 𝑇∆𝑆	(𝑇 = 298	K) for ethanol hydration by 750-ns REX-WTM-

eABF, 2.4-µs MW-ABF and 3-µs WTM-eABF simulations. The error bars for 𝑇Δ𝑆	(REX-

WTM-eABF) correspond to the standard deviation of the quantity calculated using different 

values of Δ𝑇. The error bars for 𝑇Δ𝑆 (MW-eABF) and 𝑇Δ𝑆 (WTM-eABF) are shown in 

Figure S8. Inset: transition coordinate. 

 

The difficulty of exploring the region at the water-vacuum interface (10Å ≤ 𝑑 ≤ 24Å) 

makes this model representative for testing the ability to estimate accurately the entropy 

change of importance-sampling algorithms. An alchemical route for entropy calculation 

circumvents the challenge of sampling at water-vacuum interface.27 Therefore, the simulation 

time consumed by the geometrical and alchemical routes should not be compared directly.  
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Figure S8. Calculation of 𝑇∆𝑆	(𝑇 = 298	K)  for ethanol hydration. All the curves are 

identical to those shown in Figure S7. The error bars for 𝑇Δ𝑆 (MW-eABF) and 𝑇Δ𝑆 (WTM-

eABF) are shown in this figure for clarity.  
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Simulation Details 

Table S4. Details of Simulations Performed in This Account 

Processes Models Ensemble Number of atoms Box size (Å3) 

Permeation of 2’,3’-
dideoxyadenosine 

across a lipid bilayer CHARMM28 + 
TIP3P29 

NPT 

42093 69×69×86 

p41:Abl-SH3 binding  11366 48×48×48 

Ethanol hydration 4287 35×35×80 

Conformational change 
of an alanine tripeptide PM730 + TIP3P29 4515 (QM:42; 

MM:4473) 36×37×37 

 

All the atomistic MD simulations reported herein were performed using the parallel, 

scalable program NAMD.31 MOPAC32 was used as the QM engine. Covalent bonds involving 

hydrogen atoms of (bio)organic molecules were constrained to their equilibrium length by 

means of the SHAKE/RATTLE33,34 algorithms while the SETTLE35 algorithm was used for 

water molecules. The r-RESPA multiple time-step algorithm36 was employed to integrate the 

equations of motion with a time step of 2 and 4 fs for short- and long-range interactions, 

respectively. The particle mesh Ewald (PME)37 scheme was utilized to estimate long-range 

electrostatic forces. A smoothed 12 Å cutoff was applied to truncate short-range electrostatic 

and van der Waals interactions. Periodic boundary conditions (PBCs) were applied in the 

three directions. NPT ensemble equilibrations were performed employing Langevin 

dynamics38 and the Langevin piston pressure control.39  
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