Supporting Information

Multiple Binding Configurations of Fis Protein Pairs on DNA:

Facilitated Dissociation versus Cooperative Dissociation

Min-Yeh Tsai,^{1,3,4} Weihua Zheng,^{1,3} Mingchen Chen,^{1,2} and Peter G. Wolynes^{1,3*}

¹Department of Chemistry, ²Department of Bioengineering, and ³Center for Theoretical

Biological Physics, Rice University, Houston, Texas 77005, United States

⁴Department of Chemistry, Tamkang University, New Taipei City, Taiwan (R.O.C.) 25137

E-mail: pwolynes@rice.edu

Table of Contents

Figure S1. Free energy surfaces as a function of several of trial collective coordinates are shown.	2
Figure S2. The trial collective basis variables that are used in the principal component analysis.	3
Figure S3. The structural ensemble of the binary-Fis configuration and their mutual dynamic switching are schematically shown.	4
Figure S4. A free energy surface survey (free energy projected onto PC3-PC1) over a range of Fis mutants for the stability change of the binary-Fis molecular dyad is shown.	5
Figure S5. The correlation plot of the Fis transcription activity in relation to different thermodynamic properties due to mutation effects is shown.	6

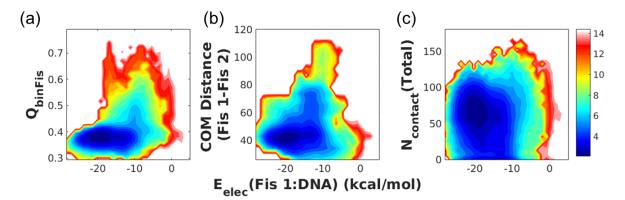


Figure S1. Free energy surfaces as a function of several of trial collective coordinates are shown. (a) Q value of the binary-Fis configuration (Q_{binFis}) (b) Center-of-mass distance between Fis1 and Fis2 on the DNA (c) The total number of protein contacts ($N_{contact}$).

Figure S2. The trial collective basis variables that are used in the principal component analysis. These collective variables are grouped. (*Top*) Items 1-3 (in green) describe the electrostatic interactions between the protein and DNA. (*Middle*) Items 4-5 (in gray) describe physical protein contacts and geometric position between proteins on DNA. (*Bottom*) Items 6-7 describe structural specificity that distinguishes several of the particular protein quaternary structures from each other.

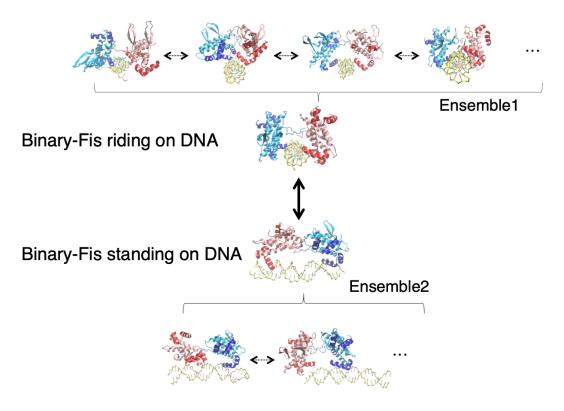


Figure S3. The structural ensemble of the binary-Fis configuration and their mutual dynamic switching are schematically shown.

The structural ensemble of the binary-Fis configuration on DNA contains two major categories of orientation: riding and standing. The binary-Fis structure can dynamically switch between the two distinct orientations by sliding along the DNA, denoted by a *black-thick* line with double arrows. In each of the categories, the structure of the protein-DNA ternary assemblies also shows multiple configurations. The *dashed-thin* lines with double arrows within individual ensemble 1 and 2 describe dynamic switching between each other. Note that only some example structures are shown.

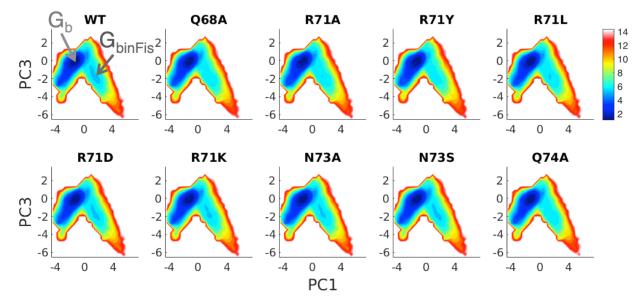


Figure S4. A free energy surface survey (free energy projected onto PC3-PC1) over a range of Fis mutants for the stability change of the binary-Fis molecular dyad is shown.

The free energy of the binary-Fis molecular dyad (G_{binFis} , shown in *dark gray*) is calculated with respect to the bound state (G_b , shown in *light gray*). One can thus calculate the free energy change $\Delta G_{WT} = G_{binFis}$ - G_b ; Similarly for all of the mutants $\Delta G_{binFis}(mut) = G_{binFis}(mut) - G_b$. The $\Delta \Delta G_{binFis}(mut)$ is then calculated according to $\Delta \Delta G_{binFis}(mut) = \Delta G_{binFis}(mut) - \Delta G_{WT}$.

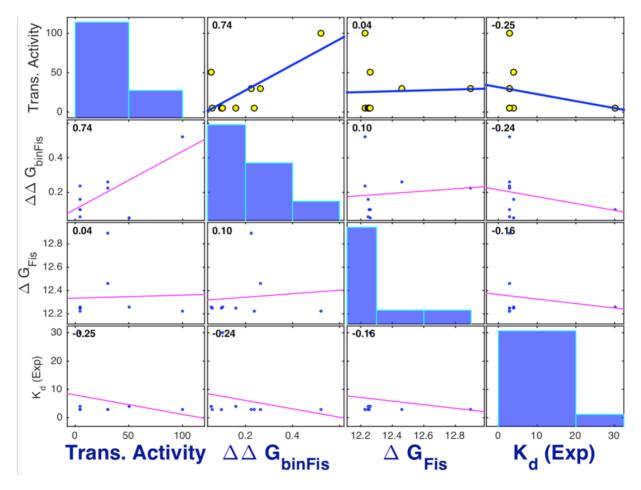


Figure S5. The correlation plot of the Fis transcription activity in relation to different thermodynamic properties due to mutation effects is shown.

Several of the thermodynamic properties such as $\Delta G_{Fis}(mut)$, $\Delta \Delta G_{binFis}(mut)$, and experimental K_d (dissociation constant¹) of the mutants are cross-correlated along with their corresponding transcription activity and are compared on the correlation matrix plot (using *corrplot* function in Matlab). The diagonal panels describe the distribution of individual datasets while the off-diagonal panels show the correlation plots of each pair of the variables. Note that $\Delta \Delta G_{binFis}(mut) = \Delta G_{binFis}(mut) - \Delta G_{WT}$ and that ΔG_{Fis} denotes the simulated free energy of dissociation of Fis from DNA. The number shown on the *top-left* of each panel represents the correlation coefficient ($\rho_{X,Y}$). The Fis transcription activity shows a moderate correlation with $\Delta \Delta G_{binFis}$ (with $\rho_{X,Y}$ =0.74).

References

 Cheng, Y. S.; Yang, W. Z.; Johnson, R. C.; Yuan, H. S. Structural Analysis of the Transcriptional Activation Region on Fis: Crystal Structures of Six Fis Mutants with Different Activation Properties. J. Mol. Biol. 2000, 302 (5), 1139–1151.