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S1. Legendre transforms for the displacements
of equilibria in a pure compound

The displacements describing the geometry of a bin-
odal curve are given by
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where the required Legendre transforms are1
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S2. Computational cost and comparisons of the
proposed methodology with the method of
Topliss et al.

Let us consider as an example the Carnahan-Starling
van der Waals EOS (CS-vdW EOS)2 with the param-
eters reported by Topliss et al.3 for methane and apply
both the proposed approach and the approach equiva-
lent to the method of Topliss et al. The latter is based
on the classification of roots and the domain contrac-
tion methodology. The procedure can be arranged as
follows:

1. Parameters of the model are calculated, and fu-
gacity coefficients is evaluated.

2. The parameter ρlim is obtained.
3. The temperature is fixed.
4. For evaluating the isotherm geometry, dP/dρ

and d2P/dρ2 at ρ = 10−4ρlim is obtained. Re-
markable, for the considered EOS implemented
to pure fluids, only the type-A curves (accord-
ing to classification of Topliss et al.) is obtained
until the critical isotherm. Since the pertinent
verification is trivial, only the initial values for
both phases is determined.

5. An initial value of ρlim/2 can be used for ob-
taining ρinf . This idea is merely geometric, and
it is not described by Topliss et al.3.

6. The low-density and high-density limits is ob-
tained. The low-density limit is situated be-
tween ρlb and ρinf , while the high-density limit
– between ρinf and ρlim, determining thus the
stability areas of a model. Such a procedure
is not required by the proposed approach be-
cause each approximation rests in a point fulfill-
ing A2V > 0.

7. Finally, this method is reduced to finding the
roots in a manner similar to the proposed one.
In order to compare both methods at the same
conditions, let us use the conjugate gradient ap-
proach for solving the roots, while (ρmin + ρlb) /2
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and (ρlim + ρub) /2 are used as initial approxi-
mations.

Figure S1(a) depicts the results of both approaches,
covering the range between 0.4Tc until Tc and Figure
S1(b) compares the CPU times. As seen, in this sim-
ple case the proposed method is around 33% slower.
However, in the cases of more sophisticated models,
such as the IAPWS95 formulation and some SAFT-
family EOS that exhibit multiple roots, the domain
contraction may fail. Yet the most evident problem
of Topliss et al. method is the absence of a limit den-
sity, ρlim. Figure S2 presents a topological analysis
of the isotherms exhibited by IAPWS95 formulation.
To compare both methods, ρlim is considered as the
liquid density at the triple point, which requires a pre-
viously solved equilibrium point. As seen, multiple
ρinf , ρub and ρlb appear, which hinders a systematic
classification of isotherms. In other words, applica-
tion of Topliss et al. method without previous knowl-
edge of the isotherm geometry is questionable because
the procedure easily approaches the non-physical so-
lutions (see the binodal curve represented by black
dotted line in Figure S2). Their discontinuity is char-
acterized by A4V = ∞ and it lasts until 639.32 K.
Unlike that, the proposed method is free of this prob-
lem because it requires only a healthy critical point.
Figure S3 depicts its application to the IAPWS95 for-
mulation and the normalized time.
As discussed, application of the Topliss et al.3 ap-
proach requires preliminary manual mapping of the
EOS behavior to prevent getting of unphysical equilib-
riums. The relative slowness of the proposed approach
is recognized as a reasonable price for a possibility of
its fully automatic implementation to even most so-
phisticated EOS models, including those exhibiting
numerical pitfalls and the related phenomena4.
Another example of problems associated with a do-
main contraction is implementation of empirical ex-
pressions of vapor pressures providing initial estima-
tions for sophisticated models characterized by non-
physical solutions at some specific temperatures. Let
us consider again the IAPWS formulation for water
with a triple point packing fraction and the DIPPR
Equation 1015. However, this time an equilibrium is
calculated at 580 K only. Having this temperature and
the pertinent initial estimation of DIPPR Equation
101 for the pressure (94.585 bar). However, consider-
ing fixed temperature and pressure, it is not always
possible to find an inflection point of the isotherm.
For this reason, a root of the isotherm at the fixed
pressure is considered as ρinf . Besides that, multiple
solutions are found (see Table S1).
Solution 1 represents a non-physical equilibrium point
obtained using a simple domain contraction approach.
Although Solution 2 is a non-physical equilibrium point
as well, it is obtained while considering an additional
criterion, namely A2V > 0, in order to guarantee
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Figure S1: (a) Binodal curve of methane as predicted by CS-
vdW EOS, black line: our approach using κ2 = 0.05, crimson
symbols: our method using κ2 = 1.00 and blue symbols:
seven equilibrium points calculated by Topliss et al. approach.
(b) Normalized time for Topliss et al. and our approach using
the CS-vdW EOS for methane. Colors are black, evaluation of
the model, parameters and fugacity coefficients; green, calcu-
lation of the critical point; red, calculation of the first initial
values; grey, classification of the roots and stability areas of
the isotherm and blue, calculation of the diagram.

Table S1: The solutions found by a domain contraction ap-
proach and DIPPR Equation 1015 for providing an initial value
for solving IAPWS formulation at 580 K.

ρl ρv

mol/L
Solution 1 31.5108 2.99788
Solution 2 38.4434 7.03842
Solution 3 38.7248 2.87196

that the segment of an isotherm is locally stable. To
achieve the physical Solution 3, four domain contrac-
tions are performed and, additionally, it includes the
A2V > 0 criterion. The latter requires preliminary
information of the isotherm behavior. The three equi-
librium points shown in Table S1 are graphically rep-
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Figure S2: Topological analysis of the isotherms of the
IAPWS approach. Black continuous line: actual phase di-
agram predicted by the model, black discontinuous line:
additional non-physical equilibrium predicted by the model,
blue lines: extremal values of the isotherms, crimson lines:
changes of the concavities of the isotherms, green lines: sin-
gular points on the isotherms. (a): from triple point till critical
point and (b) the neighborhood of the critical point.

resented in Figure S4.

S3. Wolfram Mathematica R© code

The derivatives of the Helmholtz energy function can
be obtained using the symbolic derivative command
of Wolfram Mathematica R©.
Av=D[A,v];
A2v=D[Av,v];
A3v=D[A2v,v];
A4v=D[A3,v];
A5v=D[A4,v];
AT=D[A,T];
A2T=D[AT,T];
AvT=D[Av,T];
A2vT=D[AvT,v];
A3vT=D[A2vT,v];
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Figure S3: (a) Binodal curve of water as predicted by IAPWS
EOS, dotted line: the proposed approach using κ2 = 0.05,
crimson symbols: our method using κ2 = 1.00. (b) Normal-
ized time for Topliss et al. and our approach using the IAPWS
EOS. Colors concern to: black, evaluation of the model, pa-
rameters and fugacity coefficients. green, calculation of the
critical point. Red, calculation of the first initial values. Grey
classification of the roots and stability areas of the isotherm.
Blue, calculation of the diagram.

A4vT=D[A3vT,v];
Av2T=D[AvT,T];
A3v2T=D[A3vT,T];

Now, the Gibbs energy function and its derivatives
are obtained from Legendre transformations of the
Helmholtz energy function as
G=A-v Av;
G2P=-1/A2v;
G3P=-A3v/A2v^3;
GPT=-AvT/A2v;
G2TP=-Av2T/A2v+2A2vT AvT/A2v^2-...
...-A3v AvT^2/A2v^3;
GT2P=A2vT/A2v^2-A3v AvT/A2v^3;
G2T=A2T-AvT^2/A2v;

For the first stage of the procedure, the estimates of
the initial values for the liquid and vapor volumes are
given by
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Figure S4: The solutions found by a domain contraction ap-
proach and the DIPPR Equation 1015 for providing an initial
value for solving IAPWS formulation. In crimson Solution 1,
in green Solution 2 and in black the actual Solution (3).

v0=Na sigma^3/chi[m];
T0=varepsilon/tau/(1-2/n/m/varepsilon varepsilonAB
betaAB);
Vc=Chop[FindRoot[{A2v,A3v},{v,v0},{T,T0}]];
v0= v/.Vc;
T0=T/.Vc;
Ta=T0-k1(dvdT/d2vdT2)/.{v→v0,T→T0};
va=v0-(1/2)(2-k1)k1(dvdT^2/d2vdT2)/.{v→v0,T→T0};
vl0=va-(3A3v)/(2A4v)-Sqrt[9A3v^2-24A2v A4v]/...
.../(2A4v)/.{v→va,T→Ta};
vv0=va-(3A3v)/(2A4v)+Sqrt[9A3v^2-24A2v A4v]/...
...(2A4v)/.{v→va,T→Ta};

In addition, the slope and curvature of the vapor pres-
sure are given by
dPdT=-1/(vv-vl)((AT/.{v→vv})-(AT/.{v→vl}));
d2PdT2=-1/(vv-vl)(((G2T /.{v→vv})-...
...-(G2T/.{v→vl}))+2((GPT/.{v→vv})-...
...-(GPT/.{v→vl}))dPdT+((G2P/.{v→vv})-...
...-(G2P/.{v→vl}))dPdT^2);

Finally, the geometric structures of the binodal curve
can be expressed as
vT=(GPT+G2P dPdT);
v2T=(G2TP+GT2P dPdT+(GT2P+G3P dPdT)dPdT+...
...+G2P d2PdT2);
vTL=vT/.{v→vl};
v2TL= v2T/.{v→vl};
vTV=vT/.{v→vv};
v2TV=v2T/.{v→vv};
1TL=-k2 vTL/v2TL;
1TV=-k2 vTV/v2TV;

and the objective function refining the equilibrium cal-
culations are:
of1=(G/.{v→vl})-(G/.{v→vv});
of2=(Av/.{v→vl})-(Av/.{v→vv});

In this work, k1 and k2 are selected as 1/10 and 1,
respectively.

S4. Preliminary implementation in mixtures

The implementation of the proposed approach to mul-
ticomponent mixtures is straightforward if the geom-
etry of the EOS is previously known. Let us con-
sider an example of the applying the second-order dif-
ferential accelerators for equilibrium in methane(1) –
propane(2) system at 300 K. The parameters used in
this example are listed in Table S2.

Table S2: Parameters for methane and propane for CS-vdW
EOS.

a
(0)
2 a

(1)
2 a

(2)
2 b

(0)
2

CH4
1 0.49539 0.16199 0.33333 0.17841

C3H8
2 0.53557 0.08105 0.33333 0.16785

1: taken from Topliss et al.
2: parametrized for this work.

As in the cases of pure compounds, an accelerator
for binary mixtures requires rendering the coexistence
curves as differential equations with further approxi-
mating equilibrium through the second-order Taylor
series. The displacements based on the Malesinski’s
mathematics are:(
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where π refers to any (vapor or liquid) phase, while
α is a phase exhibiting equilibrium with the π-phase.
Obviously, the method can be applied for LLE as well.
In addition, the volume displacements are:(
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The curvature around the critical point required for
initializing the proposed method can be obtained as:(
∂P

dx1

)
c
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where ∆x1 is some small number (in this example
taken as 0.01) and κ1 = 1/100. As discussed, the
proposed method becomes advantageous in the cases
of much more sophisticated models. Its implementa-
tion to such models for calculating phase equilibria in
multi-compound systems will be presented in a forth-
coming study.
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Figure S5: Phase diagram of the methane(1) – propane(2)
system at 300 K as predicted by CS-vdW EOS.

Nomenclature

ρlim: EOS specific parameter characterized by P (ρ) =
∞.
ρinf : point of the isotherm given by d2P/dρ2 = 0.
ρub: high-density limit for determinate an initial value
of the liquid phase.
ρlb: low-density limit for determinate an initial value
of the liquid phase.
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