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ESI Section 1:  
Following Le Ru et al, the SERS contributions as a function of analyte distribution can be extracted from 
numerical simulations assuming a uniform angular distribution of binding events around the spheres 
of a dimer, described below: 

 

Figure S1: Estimated SERS contributions from a dimer of two 80.nm nanoparticles (NPs) based on 
numerical simulations. a) FDTD simulation of a dimer of two 80 nm nanoparticles using a 1.nm gap 
showing field enhancements up to |𝑬𝑬/𝑬𝑬𝟎𝟎|=500. b) Black trace is the extracted field enhancement 
around the NP in a as a function of θ, blue trace is the field-enhancement trace smoothed to mitigate 
the effects of finite resolution in the FDTD simulation. Distribution plot in red shows the angular 
probability of 107 random positions taken on the spheres with respect to the hot-spot. c) Probability 
distribution of different SERS enhancement factors (𝑬𝑬𝟒𝟒) based on the distribution presented in b, 
showing that based on the FDTD model and a uniform distribution of molecules, 0.1% of the analytes 
already contribute 23% of the total signal, which is in line with what has previously been shown by Le 
Ru et al.1 

ESI Section 2:  
Binding effects are expected to play a significant role when the ratio of the number of binding sites to 
the total number of analytes available in the system 𝑁𝑁ratio starts to approach 1: 



 𝑁𝑁ratio
lim
�� 1, (1) 

with 𝑁𝑁ratio being defined as 

 𝑁𝑁ratio =  𝑁𝑁bound
𝑁𝑁analytes

, (2) 

and 𝑁𝑁analytes and 𝑁𝑁bound are calculated using the following expressions: 
 𝑁𝑁analytes = 𝑀𝑀analytes × 𝑉𝑉 × 𝑁𝑁A, (3) 

 𝑁𝑁bound = 𝐶𝐶AuNPs × 𝑉𝑉 × 4𝜋𝜋𝑟𝑟2 × 𝜑𝜑
𝐾𝐾occupancy × 𝐴𝐴binding site

 (4) 

In eq. (3-4) V is the total volume, Manalytes the concentration of analytes, NA Avogadro’s constant, 
CAuNPs the concentration of nanoparticles, r the radius of the nanoparticles, φ the packing density of 
binding sites per area, Koccupancy a factor to describe the number of sites that are occupied by an 
analyte, and Abinding site the area taken up by a binding site. 
With a AuNP concentration of 𝐶𝐶AuNPs = 2.6 ∙ 1013 particles per litre, a radius of 𝑟𝑟 = 40 nm, a packing 
fraction of 𝜑𝜑 = 0.5 and an occupancy of 𝐾𝐾occupancy = 0.50, 𝑁𝑁ratio reaches 1 at roughly 1.µM. This means 
for any lower concentrations the analyte ‘theft’ of the substrate has to be taken into account. 
 
ESI Section 3:  
DFT calculations were performed to predict the binding energetics for each THC@CB[n], n = 5, 6, 7, 
and 8 complex. The Gibbs free energy of binding is calculated as: 
 ∆𝐺𝐺bind

RRHO/QH(l) = ∆𝐺𝐺0
RRHO/QH(l) + δ𝐸𝐸CP(g), (5) 

and the enthalpy gain is analogously obtained as: 
 ∆𝐻𝐻bindRRHO(l) = ∆𝐻𝐻0RRHO(l) + δ𝐸𝐸CP(g), (6) 

 where 𝛅𝛅𝑬𝑬𝐂𝐂𝐂𝐂(𝐠𝐠) denotes the counterpoise correction, and ∆𝑮𝑮𝟎𝟎
𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑/𝐐𝐐𝐐𝐐(𝐥𝐥) and ∆𝑯𝑯𝟎𝟎

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑(𝐥𝐥) are the binding 
Gibbs free energy and enthalpy, respectively prior to the correction for the basis superposition error 
(BSSE). The results for each of the complexes are given in Table S1, with (𝐠𝐠) and (𝐥𝐥) denoting gas 
phase (vacuum) and liquid with implicit water molecules as the simulated environment respectively. 
 

aThe two complexes slightly differ in the THC conformation, but have virtually the same depth of 
penetration into the CB[7] cavity. 
bGas phase potential energy in kcal∙mol −1 at the B3LYP/6-31G*+GD3BJ level of theory. 
cThe frequency cutoff applied in Grimme’s quasi-harmonic approximation was set to 100.cm−1.  
 
ESI section 4: Principal component analysis 
Principal component analysis (PCA) is a powerful tool in characterising spectral changes in Raman 
spectroscopy as it takes into account the entire spectrum. It is therefore able to pick up on changes in 

Table S1. Calculated binding Gibbs free energies and enthalpies (in kcal∙mol−1) at the B3LYP/6-
31G*+GD3BJ level of theory in SMD implicit water for each of the THC@CB[n] complexes, using the 
rigid-rotor harmonic oscillator approximation (RRHO), as well as the quasi-harmonic approximation 
(QH) following Grimme2 where the translational entropy was also corrected. 
Complex ∆𝐸𝐸(g)b δ𝐸𝐸CP(g) ∆𝐻𝐻bindRRHO(l) ∆𝐺𝐺bindRRHO(l) ∆𝐺𝐺bind

QH (l)c 

THC@CB[5] −4.4 11.6 22.7 37.2 33.4 
THC@CB[6] −40.0 16.1 −17.4 −6.1 −10.6 
THC@CB[7] (i)a −42.7 17.9 −28.1 −12.7 −18.7 
THC@CB[7] (ii)a −40.6 15.4 −30.9 −16.2 −21.9 
THC@CB[8] −41.3 16.2 −22.8 −18.9 −20.7 



spectra which are otherwise barely distinguishable when examining individual peaks. We use a version 
of PCA on a dilution series of analytes, to extract the LOD. For a typical experiment here, a stock 
analyte solution is made in an appropriate carrier solvent (water for MV2+, methanol for cannabinoids), 
and the stock solution is sequentially volumetrically diluted resulting in an analyte concentration 
series. For each analyte concentration, 5 new aggregate solutions were prepared by mixing 5.µL of 
1.mM CB[n] (in this case n=5) stock solution with 220.µL of AuNPs solution and allowed to self-
assemble for 10 minutes, after which 20.µL of analyte solution was added (ie. 1 unique sample 
realisation). Between each block of 5 sample realisations two control measurements with only carrier 
solvent were measured to test for consistency. At the end of each series five samples were measured 
without analyte or carrier solvent added (Figure S2a). 

 

Figure S2: Experimental data acquired for principal component analysis (PCA). a) Analyte concentration 
series for measuring SERS spectra with PCA analysis. b) (top) Individual SERS spectra for analyte (2),  
colour denotes concentrations. (bottom) SERS spectra at same concentration averaged together for 
better visualisation showing clear trends with analyte concentration. c) Eigenvalues obtained from PCA 
analysis on the dataset for each of the components generated. 

In all experiments a clear drop in analyte peak intensities is observed with the reduction of analyte 
concentration. Raw spectra show characteristic peaks around 1300.cm-1, that drop with the reduction 
in analyte concentration (Figure S2b,top), visualized more clearly by averaging the 5 individual 
measurements for each analyte concentration (Figure S2b, bottom). The Igor implementation of 
principal component analysis by WaveMetrics was used to process the set of raw spectra into a 
combination of eigenvectors (components) and eigenvalues (Figure S2c). The typical decrease in 
eigenvalues with increase in component number is observed. Plotting the PCA scores for each of the 
analytes vs their concentration (here labelled by sample number corresponding to Figure S2a), clear 
trends emerge (Figure S3a). For comp I, II, IV an undulating pattern is observed with sample number 
matching the artificially-generated periodic change in analyte concentration (Figure S2a). This makes 
evident that comp I, II, IV are related to the probed analyte. For comp III we see a sudden rise in 
score for the last 5 sample numbers where no carrier solvent methanol was added. Finally, the small 
comp V scores show both matching and non-matching behaviour (partly linked to comp IV). As the 
eigenvalues decrease with greater component number, their contributions become less relevant and 
more complicated. Comparing the loading plots (Figure S3b, red), a CB[5]:AuNP spectrum is identified 



as comp I but with an additional peak at 1000.cm-1 and peaks around 1300.cm-1. These extra peaks are 
a result of comp II and III contributing to the loading plot of comp I. This mixing of the states is 
inherent to PCA analysis and requires post processing, or ‘rotation’, to separate the components by 
enforcing a known condition which is the spectrum without any analyte. 

 

Figure S3: PCA results and rotation for analyte (2). a) PCA scores plotted versus sample number. b) 
Corresponding loading plots for component with comp I shown before and after rotation. c) PCA 
scores for comp I to V after rotation plotted vs sample number. 

To remove the contribution of comp II to the loading plot of comp I when no analyte is present, we 
use: 

𝐸𝐸I′ = 𝐸𝐸I − 𝐸𝐸II ×
𝐶𝐶II(0%)
𝐶𝐶I(0%)

 

which gives the black comp I curve in Figure S3b (top), and where 𝐸𝐸I and 𝐸𝐸II are the loading plots of 
comp I and comp II respectively, and 𝐶𝐶I(0%) and 𝐶𝐶II(0%) the component scores for the sample with 
0% analyte. The rotation performed for the comp scores follows: 

𝑐𝑐II′ (𝑚𝑚) = 𝑐𝑐II(𝑚𝑚) − 𝑐𝑐I(𝑚𝑚) ×
𝐶𝐶II(0%)
𝐶𝐶I(0%)

 

Hence for comp II specifically, the score corresponding to analyte concentration 𝑚𝑚=0% is forced to be 
0. The resulting transformed scores are shown in Figure S3c (black), with comp I nearly constant and 
comp II following the analyte concentration closely. Close examination of the other loading plots now 
reveals for comp.III a resemblance to methanol.3 Comp IV shows a relation to the analyte 
concentration and shows a peak in the region of 1600.cm-1, this we tentatively attribute to hydrogen 
bonding or other forms of supra-molecular interaction, as discussed in [3]. Comp V shows a double 
peak around 1000.cm-1 which is very similar to styrene, a polymer commonly used in laboratory 
consumable such as pipette tips, multi-well plates and cuvettes, and likely a source of contamination 
though of minor significance compared to the signal from the analytes (Figure S2c). To normalise the 
PCA scores and extract a spectral response, the scores were multiplied by the loading plot normalised 
for power (P) and spectral integration time (T), using: 



𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑐𝑐 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐 · �
|comp IIλ|
𝑃𝑃 · 𝑇𝑇

𝑚𝑚=λ

 

 
ESI section 5: comp II and analyte identification 
The obtained comp.II from each analyte concentration series can be used as a fingerprinting 
technique to identify the types of component present in mixtures. Using a simple Pearson correlation 
between the raw unprocessed spectra and the comp II for each analyte vs concentration shows the 
analyte can be clearly distinguished above concentrations higher than 10-8 M (Figure S4). 
 

 
Figure S4: Pearson correlations between raw unprocessed spectra and different comp II spectra. The 
plots show each components is clearly distinguishable from its sister compounds once the analyte 
concentration reaches 10-8 M or higher.  

In addition to fingerprinting correlation, a comparison can be made between the comp II spectra and 
their respective bulk powder Raman spectra (Figure S5), offset for clarity. 
 

Figure S5: Comparisons between comp II (SERS) and bulk powder Raman spectra for each of the 
synthetic cannabinoids measured. Distinct peaks from the powder spectra can be clearly recognised in 
the SERS spectra, while some smaller peaks have shifted or change intensity ratios. A notable 
difference is the increased width of the SERS lines with respect to the Raman lines resulting in peaks 
with narrow separations showing up as shoulders in the SERS spectra.  
 
For the majority of the peaks from each compound a good correlation can be made between the PCA 
comp II (SERS) and the powder Raman spectra. There are however, a couple of notable differences 
with slight peaks shifts (expected in SERS) and ratio changes in peak intensities. In particular in the 
region 1100.cm-1 and 1250.cm-1 of analyte (4) the peak ratios for the smaller peaks differ significantly 
between the comp II and the Raman. 
 
ESI Section 6: Reproducibility and noise 
The strength of this self-assembled SERS aggregation and measurement technique lies in its extremely 
high reproducibility. Small variations around 1000.cm-1 arise from trace amounts of styrene 



contamination leached from the plastic well plates (Figure S6a). This allows for the background 
(CB[n]AuNP aggregates without analyte) to be reliably subtracted from the raw data to isolate spectral 
changes, see Figure 7 of the main text. The level of noise in our spectra was estimated by taking a 
background region of the spectrum without peaks (above 1600 cm-1), fitting a sigmoidal curve, and 
taking the residuals as noise (Figure S6b). 
 
To estimate the noise threshold, the standard deviation of the residuals was used giving 0.03.cts·mW-

1·s-1. 

 

Figure S6: Experimental determination of the LOD. a) Four different background scans plotted on top 
of each show near identical spectra. Small variations around 1000.cm-1 arise from trace amounts of 
styrene contamination leached from the plastic well plates. b) Region of the spectrum without peaks 
fitted to a sigmoidal curve, with residuals giving the noise level. 
 
 
Table S2. Hill-Langmuir fit parameters:𝑲𝑲𝐃𝐃 and 𝑵𝑵. 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐾𝐾D 𝑁𝑁 

THC(2):CB[5] 5.8·10-7±0.77·10-7 0.53±0.03 

5F-PB-22(3) 13.5·10-7±3.95·10-7 0.34±0.05 
MMb-
CHMICA(4) 2.42·10-7±1.96·10-7 0.56±0.20 

5F-AKB48(5) 1.94·10-7±0.27·10-7 2.53±0.001 
 
The Hill-Langmuir fits for each of the components returned a 𝐾𝐾D value around 10-7, and for 3 out of 4 
a Hill coefficient between 𝑁𝑁=0.3 and 0.6. However, a clearly different Hill coefficient of 𝑁𝑁=2.53 is 
found for compound (5) suggesting a different binding behaviour from the other compounds. This 
shows that understanding the difference in binding behaviour can help bring down the limits of 
detection. Elucidating the origin of this change in 𝑁𝑁 and how to modify this is subject to ongoing 
research.  
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