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Contours of DOFs for synthetic data sets

Figures S1 and S2 shows the DOF variation with in the composition space for the SET A,B

respectively.

Hyperparameter selection

In this work, we perform Bayesian optimization (BO) to find hyperparameters. We use a 95%

train and 5% validation split of the data.1 We perform BO by treating the kNN-classification

error as the black box function to be optimized.We use the automatic relevance determination

squared exponential kernel as a covariance function, and the expected improvement as our

acquisition function. We make a total of 15 iterative searches and typically observe about 4

and 15 % training and validation error, respectively.

One limitation that needs to be considered is that the Bayesian optimization is not

effective when dealing with a higher number of variables. Such a situation might arise

when working with material data sets screened over a large number of design variables.
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Figure S1: A contour plot of DOFs shows that when the underlying DOFs of the responses
are known, it is easier to separate the phases. Although the D1, D2 show overlap in their
trends for the three phases, D3 makes it easier to identify phase green to be a separate cluster

For example, high-throughput combinatorial experiments of multi-component systems with

various material processing conditions could result in a large number of hyperparameters

γ. In such cases, MT-LMNN coupled with BO could be inefficient. Nevertheless, this is an

active area of research with promising approached already being proposed.2

Defining classes in MT-LMNN

As discussed in the paper, one needs to define classes for each task to emphasize design space

information into the metric learned. Here, the user needs to make a decision. Typically the

user is interested in quantifying a similarity that explains the low, medium, high contents in

each of the design variables giving rise to 3 classes per task.

However, the optimal number of classes for a given task can be identified through op-

timization. In such a case, partition of composition space can be made into n classes.

Parameter n becomes a hyperparameter to partition a data in the sorted composition space.
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Figure S2: A contour plot of DOFs highlighting the highly overlapping behavior of each of
the DOFs as opposed to Figure S1

To identify optimal number of classes, we define a loss function to be minimized. Here, we

minimize the stochastic neighborhood distortion of data before and after the partition into

classes. A minimum value of the loss function signifies the least distortion of the neighbor-

hood due to partitioning. The loss function is defined as KL divergence between the two

distributions calculated: Gaussian distribution of the high dimensional data and student

t-distribution of the composition space and summed over all tasks. A Gaussian distribution

fitted among the high dimensional responses after the partition is modified such that distance

between data points of different classes in a task is set to infinity (i.e., zero probability of

that being a neighbor). Gaussian and student t-distribution are computed using the method

proposed for tSNE algorithm in.3 The optimal number of classes (n) is computed using the

default Bayesian optimization settings in MATLAB.
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Synthetic XRD data set case study

In the main document, we performed the analysis for XRD data sets from the high-throughput

experiments. Here, we report results from a similar analysis but on synthetic XRD signals.

We used synthinst133 t1 n21 p100 s1 inst dataset from an open-source database.4 This

dataset corresponds to a ternary system with four underlying phases. The dataset contains

231 diffractograms with intensities collected at 650 q-values. Figure S3a depicts the fraction

of input four phases shown as contour diagrams. Figure S3 shows a reference phase diagram,

which is a result of assigning a phase to a sample in the ternary based on its largest phase

content of the four underlying phases.

(a) (b)

Figure S3: (a) Phase contents shown as contour diagrams (b) Labelled space with four
classes: classes are assigned based on the maximum phase content of the input phase (left
panel).

To learn the metric, we follow the protocol described in the main document. In Ta-

ble S1, we present the mean values from the four clustering performance measures used.

Interestingly, correlation has been adjudged the best distance measure based on the mean

performance measure for all the four measures. Nevertheless, mean performance measures

suggest that the proposed approach (MT-LMNN) is in the top three well performing distance

measure (correlation, cosine, and MT-LMNN).
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Table S1: Mean value of four different performance measures for all the distance measures
studied. Distance measure with best mean value for a given performance measure is

highlighted (bold).

Measure AMI ARI FMS NMI
Chebychev 0.49 0.46 0.61 0.53
city block 0.45 0.42 0.59 0.49
correlation 0.59 0.59 0.71 0.64

cosine 0.55 0.53 0.66 0.60
Euclidean 0.45 0.43 0.59 0.49
Hamming 0.38 0.32 0.51 0.42
Jaccard 0.35 0.30 0.51 0.39

Minkowski 0.45 0.43 0.59 0.49
DTW 0.36 0.34 0.56 0.41

MT-LMNN 0.50 0.48 0.63 0.55
sEuclidean 0.00 0.00 0.49 0.05

Results of t-test for synthetic CV data sets

To statistically compare various distance functions, we additionally performed the statis-

tical test with the following protocol. (1) For each of the clustering settings and distance

measure, we record the predicted labels. (2) Using these labels and true labels, we compute

four different clustering performance measures (ARI, AMI, NMI, FWS) from scikit-learn

python library. The four performance measures: (a) the adjusted rand index (ARI)– which

measures the similarity of our predicted labels with true labels ignoring permutations with a

normalized chance;5 mutual information,- which measures agreement between the true and

predicted labels ignoring permutations, with two variants being used (b) adjusted mutual

information (AMI), which is normalized against chance;6 (c) normalized mutual information

(NMI), which is mutual information normalized by the product of entropies of predicted

and true labels;7,8 and (d) Fowlkes-Mallows scores (FWS).9 (3) For each distance and each

performance measure, we compute the mean value of performance measures - see Table S6

for the example summary. Next, we select a distance measure with the highest mean to

be the best for a given performance measure. We then perform a one-sided paired t-test

between MT-LMNN and the best distance measure. We define the Null hypothesis for any
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given performance measure to be: MT-LMNN is similar to the best distance measure.

The hypothesis test described above is designed to classify how similar (or dissimilar) are

two distance measures in terms of any given clustering performance measure distribution

over clustering settings that are varied.

We record the hypothesis test result h obtained using the one-sided paired t-test (with

a significance level of 0.01). A value of h = 0 signifies that the t-test failed to reject the

null hypothesis while a value of h = 1 signifies the rejection of our null hypothesis. Table S2

summarizes the results from the t-test. If MT-LMNN is the best distance, we count number

of performance measure for which it is the best. For example, MT-LMNN is the best distance

according to all 4 performance measures for data set SET B1 (see Table S5). Similarly, we

could number of tests for which the hypothesis was rejected and failed to be rejected.

Here, we show the results for the CV data sets considered in the main paper. Tables S3

to S6 report the mean value of four different performance measures considered for SET A1

and B2. We marked the distance measure with the highest mean using bold text. Note that,

in some cases, our metric might come out to be the best distance measure for the performance

measure under consideration. We also report the h-value from the paired one-sided t-test.

Table S2 displays the results for all four CV datasets. Specifically, we present the

number of performance measures for which MT-LMNN came out to be best, failed to reject

and reject. Please note that we focus only on cases when a measure other than MT-LMNN

is the best (SET B1). In the case of SET A2, for all four performance measures the Null

hypothesis failed to be rejected. As a reminder, the Null hypothesis states: MT-LMNN

is similar to the best distance measure. Only for SET A2, MT-LMNN is rejected to be

performing comparable to the best distance functions (i.e., Chebychev).

In summary, regardless of the performance measure used, MT-LMNN is at least as good

as the best distance measure obtained from the exhaustive search. In many cases, MT-LMNN

outperforms the standard similarity measure, including more sophisticated and computation-

ally demanding distance measures such as dynamic time warping (DTW).
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Table S2: The number of performance measures MT-LMNN has been classified into each of
the three categories–best, failed to reject, reject–for the four synthetic data sets introduced

earlier.

Data set Best Failed to reject Rejected
SET A1 0 4 0
SET A2 0 0 4
SET B1 4 0 0
SET B2 0 3 1

Table S3: Mean value of four different performance measures for all the distance measures
studied for SET A1 (synthetic CV data sets with separable DOFs and no noise). The best
distance measures are highlighted. For this data set, MT-LMNN is failed to reject for all

the performance measure as its performance is comparable to the best performing measure.

Measure AMI ARI FMS NMI
Chebychev 0.76 0.76 0.87 0.85
city block 0.74 0.75 0.87 0.83
correlation 0.24 0.28 0.62 0.29

cosine 0.33 0.35 0.65 0.38
Euclidean 0.76 0.76 0.87 0.85
Hamming 0.33 0.36 0.66 0.39
Jaccard 0.33 0.36 0.66 0.39

Minkowski 0.76 0.76 0.87 0.85
DTW 0.73 0.77 0.88 0.81

MT-LMNN 0.76 0.76 0.87 0.85
sEuclidean 0.21 0.21 0.62 0.27

h 0.00 0.00 0.00 0.00

Pseudo code and source code

We created the archive with our codes to generate the synthetic CV data sets and made

them available. The archive can be downloaded from the repository on github: https:

//github.com/kiranvad/MLCD. The archive contains all MatLab codes and the set of CV

curves that were used in our work. In Algorithm 1, we also include the pseudo code of the

main routine.
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Table S4: Mean value of four different performance measures for all the distance measure
studied for SET A2(synthetic CV data sets with not-separable DOFs and no noise). For

this data set, Chebychev is selected as the best distance measure for all of the performance
measures used and MT-LMNN is rejected to be performing comparable to Chebychev.

Measure AMI ARI FMS NMI
Chebychev 0.75 0.74 0.85 0.84
city block 0.56 0.54 0.72 0.63
correlation 0.29 0.30 0.59 0.33

cosine 0.28 0.30 0.59 0.33
Euclidean 0.72 0.72 0.84 0.81
Hamming 0.25 0.25 0.58 0.28
Jaccard 0.25 0.25 0.58 0.28

Minkowski 0.72 0.72 0.84 0.81
DTW 0.54 0.54 0.74 0.62

MT-LMNN 0.54 0.53 0.71 0.61
sEuclidean 0.30 0.31 0.60 0.36

h 1.00 1.00 1.00 1.00

Table S5: Mean value of four different performance measures for all the distance measure
studied for SET B1(synthetic CV data sets with not-separable DOFs with noise). For this

test case MT-LMNN is adjudged the best distance measure for all of the performance
measures considered.

Measure AMI ARI FMS NMI
Chebychev 0.36 0.36 0.64 0.42
city block 0.32 0.34 0.65 0.38
correlation 0.17 0.16 0.58 0.24

cosine 0.23 0.25 0.62 0.28
Euclidean 0.41 0.40 0.66 0.47
Hamming 0.25 0.27 0.60 0.28
Jaccard 0.25 0.27 0.60 0.28

Minkowski 0.41 0.40 0.66 0.47
DTW 0.38 0.38 0.64 0.43

MT-LMNN 0.41 0.44 0.68 0.47
sEuclidean 0.22 0.21 0.62 0.28
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Table S6: Mean value of four different performance measures for all the distance measure
studied for SET B2 (synthetic CV data sets with Not-separable DOFs with a Gaussian

noise). Note MT-LMNN performance is comparable to more sophisticated DTW.

Measure AMI ARI FMS NMI
Chebychev 0.27 0.24 0.54 0.31
city block 0.25 0.24 0.55 0.29
correlation 0.26 0.26 0.57 0.30

cosine 0.27 0.27 0.58 0.31
Euclidean 0.27 0.24 0.54 0.31
Hamming 0.25 0.25 0.58 0.28
Jaccard 0.25 0.25 0.58 0.28

Minkowski 0.27 0.24 0.54 0.31
DTW 0.32 0.32 0.60 0.37

MT-LMNN 0.25 0.22 0.60 0.31
sEuclidean 0.29 0.30 0.60 0.34

h 0.00 1.00 0.00 0.00
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Algorithm 1: MLCD

Data: Response Matrix X, Composition Matrix C
Result: Metric M0

1 Initialization;
2 for t= 1 to 3 do
3 yt = definetasks(C);
4 end
. Run a Bayesian Optimization to find γ’s

5 while Budget remains do
. Compute M0 using MT-LMNN

6 M0 = mtlmnn(X,yt);
. Define function to be optimized as k-NN Classification error

(knncl)

7 error = knncl(M0,X,yt);
. Perform Bayesian optimization until Budget expires

8 bayesopt(error,domain);

9 end
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