## Boron Nitride Nanotube Nucleation during Ni-catalysed Boron Oxide Chemical Vapor Deposition

Ben McLean,<sup>a</sup> Grant B. Webber,<sup>b,c</sup> Alister J. Page<sup>a,\*</sup>

<sup>a</sup>School of Environmental & Life Sciences, The University of Newcastle, Callaghan NSW 2308 Australia

<sup>b</sup> School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia.

<sup>c</sup> Priority Research Centre for Advanced Particle Processing and Transport, The University of Newcastle, Callaghan NSW 2308 Australia



**Figure S1.** Simulation boxes at 0 ns, 5 ns and 10 ns. For 5 ns and 10 ns, the image is zoomed in on the Ni catalyst particle. Green, blue, yellow red and white spheres represent Ni, N, B, O and H atoms, respectively.



Figure S2.  $Ni_{147}$  catalyst surface at 0 ns, 5 ns and 10 ns following the periodic removal of H<sub>2</sub>. Atom colours as per Figure S1.



**Figure S3.** Ni<sub>147</sub> catalyst surface at 0 ns, 5 ns and 10 ns following the periodic removal of  $H_2O$ . Atom colours as per Figure S1.



Figure S4. Populations of all bonds present over 10 ns across all BOCVD simulations.



**Figure S5.** Free BO monomers (24) adsorbed to the  $Ni_{147}$  catalyst after 100 ps of simulation. Atom colours as per Figure S1.



**Figure S6.** (a)  $H_2$  release from  $B_2O_2$  and  $NH_3$  reaction product in gas-phase. (b)  $H_2$  release from  $B_2O_2$  and  $NH_4$  reaction product in gas-phase. (c)  $H_2$  release from  $N_2H_6$  dimer in gas-phase. Atom colours per Figure S1.



Figure S7. Growth of BN chain via addition of  $NH_2$  and BOH groups and chain oligomerisation leading to closure of hexagonal BN ring in the gas-phase. Atom colours per Figure S1.



Figure S8. Populations of pentagons, hexagons and heptagons over 10 ns across all BOCVD simulations.



**Figure S9.** Comparison of ReaxFF (vertical axis) and PBE (horizontal axis) adsorption energies (eV) of pertinent  $B_xO_xN_yH_z$  species observed during BOCVD and BNNT nucleation. All calculations employ a 4x4x5 Ni(111) slab model. In data labels, the fragment name is organised to detail the structure (e.g. BON indicates the O is bonded to the N where OBN indicates the B is bonded to N) and b, h and t standing for bridge site, hollow site and top site absorption of the fragment in the geometry prior to optimisation. Adsorption energy is defined as  $E_{ads}=E_{Ni+BxOxNyHz} - (E_{Ni} + E_{BxOxNyHz})$ .



**Figure S10.** Lowest energy geometry for each  $B_xO_xN_yH_z$  fragment adsorbed on Ni. In data labels, the fragment name is organised to detail the structure (e.g. BON indicates the O is bonded to the N where OBN indicates the B is bonded to N) and b, h and t standing for bridge site, hollow site and top site absorption of the fragment in the geometry prior to optimisation. Atom colours per Figure S1.