Supporting Information

Isolation of Crude Oil Peaks Differing by $\sim m/z$ 0.1 via Tandem Mass Spectrometry using a Novel Cyclic Ion Mobility Mass Spectrometer

Eunji Cho¹, Eleanor Riches², Martin Palmer², Kevin Giles², Jakub Ujma², Sunghwan Kim^{1,3*}

¹ Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea

² Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, United Kingdom

³ Green-Nano Materials Research Center, Daegu 41566, Republic of Korea

Corresponding author

phone: 82-53-950-5333; fax: 82-53-950-6330; e-mail: sunghwank@knu.ac.kr

< Table of Contents >

	Page
Table S1. The properties of crude oil samples used in this study.	S-3
Figure S1.The tandem mass spectra of Eocene crude oil at specified collision energies (CE).	S-4~6
Figure S2. (a) Full spectrum of Eocene crude oil sample obtained with (+) APPI cyclic ion mobility MS. (b) The expanded spectrum of Eocene crude oil at m/z 436 with (+) APPI FT-ICR MS (the expanded spectrum with (+) APPI cyclic ion mobility MS is provided in Figure 3).	S-7
Figure S3. (a) Broadband spectrum and time domain of Escalante crude oil sample obtained with (+) APPI FT-ICR MS. (b) Full spectrum obtained with (+) APPI cyclic ion mobility MS.	S-8
Figure S4. The tandem mass spectra of Escalante crude oil sample obtained at m/z 100-400 with (+) APPI cyclic ion	S-9

mobility MS.

Figure S5. The structure and information for the expected ion. S-10

Name	Eocene (EOC)	Escalante (ESA)
Sulfur, wt%	4.79	0.18
N, wt ppm	2136	3532
TAN	0.27	0.79
API	18.3	23.1
Fe, wt ppm	2.3	11.5
V, wt ppm	54.6	3.7
Ni, wt ppm	21.4	3.9

Table S1. The properties of crude oil samples used in this study.

Figure S1. The tandem mass spectra of Eocene crude oil at specified collision energies (CE).

EOC *m/z* 380

Figure S1. The tandem mass spectra of Eocene crude oil at specified collision energies (CE).

EOC *m/z* 422

Figure S1. The tandem mass spectra of Eocene crude oil at specified collision energies (CE).

Figure S2. (a) Full spectrum of Eocene crude oil sample obtained with (+) APPI cyclic ion mobility MS. (b) The expanded spectrum of Eocene crude oil at m/z 436 with (+) APPI FT-ICR MS (the expanded spectrum with (+) APPI cyclic ion mobility MS is provided in Figure 3).

Figure S3. (a) Broadband spectrum and time domain of Escalante crude oil sample obtained with (+) APPI FT-ICR MS. (b) Full spectrum obtained with (+) APPI cyclic ion mobility MS.

Figure S4. The tandem mass spectra of Escalante crude oil sample obtained in m/z 100-400 with (+) APPI cyclic ion mobility MS.

S-9

Figure S5. The structure and information for the expected ions.

Name	Dimethyl phenanthrene	Dimethyl naphthalene	Methyl-tetraline or Dimethyl indane
Structure	E	÷ ÷	
Molecular weight (g/mol)	205.10118	155.08553	145.10118
Composition	$C_{16}H_{13}^{+}$	$C_{12}H_{11}^{+}$	$C_{11}H_{13}^{+}$
DBE	10	7	5