Supporting Information

Palladium Nanoparticles Immobilized on Nitride Carbon-Coated Mesoporous Tungsten Oxide for Formic Acid Dehydrogenation

Shengyu Du, ^a Chenjun Zhang, ^a Pingping Jiang, ^a Yan Leng *,^a

^a The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China. Email: <u>yanleng@jiangnan.edu.cn</u>

Materials

Palladium chloride (PdCl₂, 99.9%, Alfa Aesar), Dicyandiamide (C₂H₄N₄, 99%, Shanghai Chemical Reagent), Formic acid (FA, HCOOH, 98%, Shanghai Chemical Reagent), Sodium formate (SF, HCOONa, 99.99%, Aladdin), Tungsten chloride (WCl₆, 99%, Aladdin), Sodium borohydride (NaBH₄, Shanghai Chemical Reagent), Triblock copolymer (Pluronic F127, EO₁₀₆-PO₇₀-EO₁₀₆, EO: ethylene oxide, PO: propylene oxide, Mw=12600, Sigma). All chemicals were commercially available and used directly.

Preparation of nonporous WO₃ and NC-coated nonporous WO₃

Seven mL of 65% nitric acid was diluted in deionized water (30 mL) with stirring for 10 min. $NaWO_4 \cdot 2H_2O$ (2 g, 6.1 mmol) was dissolved in 30 mL of deionized water with ultrasonic treatment for 5 min and slowly added to the nitric acid solution, which finally gave rise to a

light yellow precipitate. After stirring for another 30 min, the suspension was hydrothermally treated at 180 °C for 3 h. After cooling to room temperature, yellow product was centrifuged, washed with deionized water for 4 times and dried in vacuum for 12 h to yield about 1.2 g of the nonporous WO₃.

Dicyandiamide (DCA) (3 g, 35.7 mmol) was dissolved in hot deionized water and WO₃ (1 g, 4.3 mmol) was added into it with vigorous stirring at 70 °C for 12 h. On completion, water was removed by rotary evaporation and the solid was dried in vacuum condition (60 °C) for 12 h to give a mixture product (DCA-WO₃). 1.5 g of the hybrid was placed in an alumina boat in a quartz tube furnace and heated under argon at 400 °C for 2 h at a heating rate of 2 °C/min. After the system cooled down naturally, 0.89 g of NC₄₀₀@nonporous-WO₃ was obtained.

Characterization

The nitrogen sorption isotherms and pore size distribution curves were measured at the liquid nitrogen temperature (77 K) using a BELSORP-MINI analyzer. The morphology and the elemental distribution were studied by a field emission scanning electron microscope (FESEM; Hitachi S-4800, accelerated voltage: 5 kV) accompanied by Energy dispersive X-ray spectrometry (EDS; accelerated voltage: 20 kV). Scanning electron microscopy (SEM) images were performed on a SUPERSCAN SSX-550 electron microscope. Transmission electron microscope (TEM) images were recorded with a JEOL JEM-2100 electron microscope operated at 200 kV. XRD patterns were collected on the Bruker D8 Advance powder diffractometer using Ni-filtered Cu/K α radiation source at 40 kV and 20 mA, from 5 ° to 90 ° with a scan rate of 2 °/min. Raman analysis was performed on a PerkinElmer-Raman Station

400F spectrometer equipped with a liquid N₂ cooled charge-coupled device detector and a confocal microscope. A 350 mW near-infrared 785 nm laser was used for analysis under ambient conditions. TGA was performed on a STA409 instrument in N₂ at a heating rate of 10 °C/min. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis for Pd loading amount was determined by a Jarrell-Ash 1100 ICP-AES spectrometer. FT-IR spectra were carried out with a Nicolet 360 FT-IR instrument (KBr discs) in the 4000-400 cm-1 region. X-ray photoelectron spectroscopy (XPS) was conducted on a PHI 5000 Versa Probe Xray photoelectron spectrometer equipped with Al-Ka radiation (1486.6 eV).

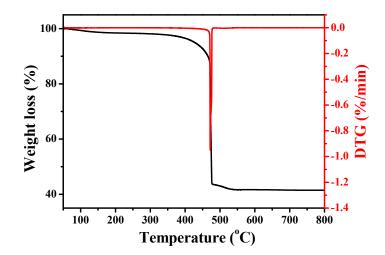


Figure S1. TGA for Pd/ NC₄₀₀@WO₃ in O₂.

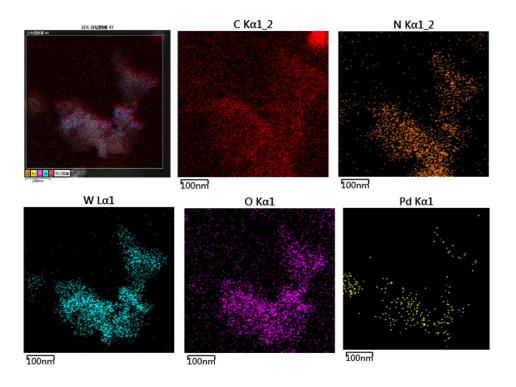


Figure S2. EDS mapping images of C, N, W, O, and Pd elements for Pd/NC₄₀₀@WO₃.

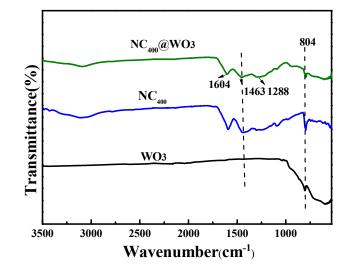


Figure S3. FT-IR spectra of WO₃, NC₄₀₀ and NC₄₀₀@WO₃.

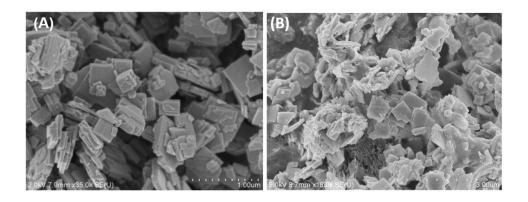


Figure S4. SEM images of (A) nonporous WO₃ and (B) NC₄₀₀@nonporous-WO₃.

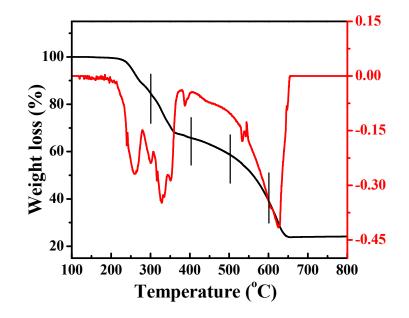


Figure S5. TGA for DCA-WO₃

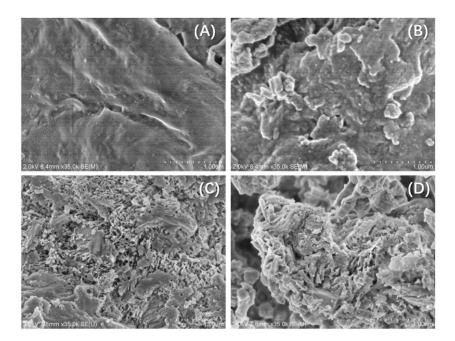


Figure S6. SEM images of (A) Pd/NC₃₀₀@WO₃, (B) Pd/NC₄₀₀@WO₃, (C) Pd/NC₅₀₀@WO₃

and (D) Pd/NC600@WO3

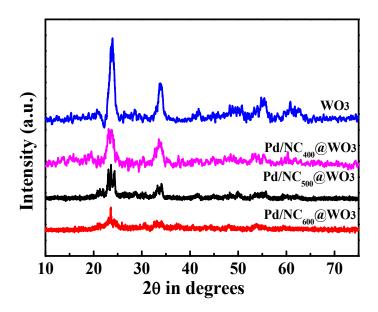


Figure S7. XRD patterns of WO₃, Pd/NC₄₀₀@WO₃, Pd/NC₅₀₀@WO₃ and Pd/NC₆₀₀@WO₃.

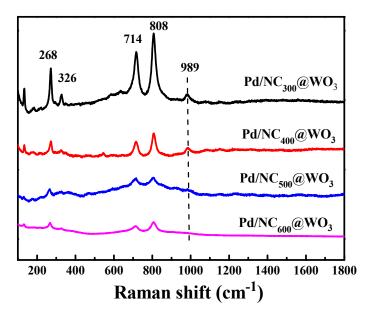
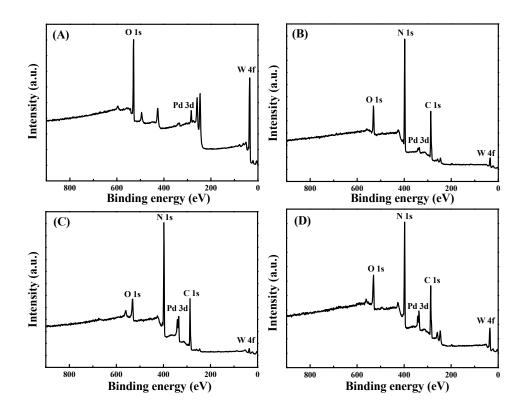



Figure S8. Raman patterns of $Pd/NC_{300}@WO_3$, $Pd/NC_{400}@WO_3$, $Pd/NC_{500}@WO_3$ and $Pd/NC_{600}@WO_3$.

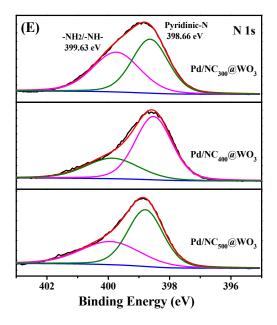
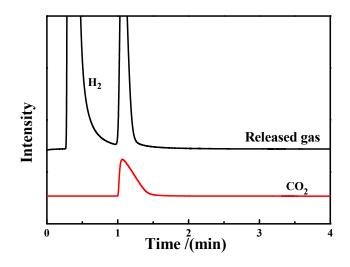



Figure S9. XPS spectra of (A) Pd/NC₃₀₀@WO₃, (B) Pd/NC₄₀₀@WO₃, (C) Pd/NC₅₀₀@WO₃

and (D) Pd/NC₆₀₀@WO₃; and (E) high resolution XPS spectra.

Sample	Pd ⁰ (eV)		Pd ²⁺ (eV)		Pd ⁰	W ⁵⁺		W ⁶⁺		W^{5+}	C-0	Oxygen	Lattice	Pyridinic
	$3d_{3/2}$	3d _{5/2}	$3d_{3/2}$	3d _{5/2}	$/Pd^{2+}$	4f _{5/2}	$4f_{7/2}$	$4f_{5/2}$	$4f_{7/2}$	/W ⁶⁺		deficiency	oxygen	Ν
					Area					Are				
					ratio					a				
										ratio				
Pd/WO ₃	340.66	335.43	343.23	337.83	1.26	-	-	37.71	35.58	-	-	532.18	530.41	-
												(24.1%)	(75.9%)	
Pd/NC ₃₀₀ @WO ₃	341.34	335.85	343.52	336.83	1.15	36.83	35.02	37.72	35.57	0.43	533.41	532.08	530.65	398.66
											(17.9%)	(50.9%)	(31.2%)	(51.1%)
Pd/NC ₄₀₀ @WO ₃	340.85	335.69	342.96	337.38	1.90	37.38	35.21	38.04	35.82	0.52	535.88	532.74	530.97	398.40
											(35.9%)	(39.0%)	(25.1%)	(68.8%)
Pd/NC ₅₀₀ @WO ₃	341.89	336.77	343.61	336.23	0.99	36.23	35.09	37.87	35.69	0.57	542.92	532.74	530.51	398.80
											(21.5%)	(38.4%)	(26.1%)	(59.3%)

Table S1. the XPS signal positions and assignments for Pd 3d, W 4f, and O 1s in Pd/NC_n@WO₃

Figure S10. Gas chromatograms of the release gas from the decomposition of FA in a FA-SF system over $Pd/NC_{400}@WO_3$.

Entry	Catalyst	T (K)	n _{FA} /n _{metal}	TOF(h ⁻¹)	Ref.	
1	Co _{0.30} Au _{0.35} Pd _{0.35} /C	298	50	80	S 1	
2	Pd/mpg-C ₃ N ₄	298	225	114	S2	
3	Ag ₁₈ Pd ₈₂ @ZIF-8	353	32	580	S 3	
4	Ag_1Pd_4 (MH_2 -	353	100	893	S4	
	UiO-66	333	100	893		
5	Pd/CN _{0.25}	298	133	752	85	
6	Au@SiO ₂	403	-	958	S 6	
7	Pd/C	333	250	87	S 7	
8	NiPd/NH ₂ -N-rGO	298	50	954	S 8	
9	4-PySI-Pd@Cu(BDC)	293	-	412	S9	

Table S2. Comparison of activities of different catalysts for hydrogen generation of FA

References

- S1. Wang, Z. L.; Yan, J. M.; Ping, Y.; Wang, H. L.; Zheng, W. T.; Jiang, Q. An Efficient CoAuPd/C Catalyst for Hydrogen Generation from Formic Acid at Room Temperature. *Angew. Chem.*, Int. Ed. 2013, 52, 4406-4409.
- S2. Lee, J. H.; Ryu, J.; Kim, J. Y.; Nam, S. W.; Han, J. H.; Lim, T. H.; Gautam, S.; Chae, K. H.; Yoon, C. W. Carbon Dioxide Mediated, Reversible Chemical Hydrogen Storage Using a Pd Nanocatalyst Supported on Mesoporous Graphitic Carbon Nitride. *J. Mater. Chem. A.* 2014, *2*, 9490-9495.
- S3. Dai, H. M.; Xia, B. Q.; Wen, L.; Du, C.; Su, J.; Luo, W.; Cheng, G. Z. Synergistic Catalysis of AgPd@ZIF-8 on Dehydrogenation of Formic Acid. *Appl. Catal. B. Environ.* 2015, 165, 57-62.
- S4. Gao, S. T.; Liu, W. H.; Feng, C.; Shang, N. C.; Wang, C. A Ag–Pd Alloy Supported on an Amine-Functionalized UIO-66 as an Efficient Synergetic Catalyst for the Dehydrogenation of Formic Acid at Room Temperature. *Catal. Sci. Technol.* 2016, *6*, 869-874.
- S5. Bi, Q. Y.; Lin, J. D.; Liu, Y. M.; He, H. Y.; Huang, F. Q.; Cao, Y. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon. *Angew. Chem., Int. Ed.* 2016, 55, 11849-11853.
- S6. Mielby, J.; Kunov-Kruse, A. J.; Kegnæs, S. Decomposition of Formic Acid over Silica Encapsulated and Amine Functionalised Gold Nanoparticles. J. Catal. 2017, 345, 149-156.

- S7. Jeon, H. J.; Chung, Y. M. Hydrogen Production from Formic Acid Dehydrogenation over Pd/C Catalysts: Effect of Metal and Support Properties on the Catalytic Performance. *Appl. Catal. B: Environ.* 2017, *210*, 212-222.
- S8. Yan, J. M; Li, S. J.; Yi, S. S.; Wulan, B. R.; Zheng, W. T.; Jiang, Q. Anchoring and Upgrading Ultrafine NiPd on Room-Temperature-Synthesized Bifunctional NH₂-N-RGO toward Low-Cost and Highly Efficient Catalysts for Selective Formic Acid Dehydrogenation. *Adv. Mater.* 2018, *30*, 1703038.
- S9. Alamgholiloo, H.; Zhang, S. B.; Ahadi, A.; Rostamnia, S.; Banaei, R.; Li, Z. C.; Liu, X.; Shokouhimehr, M. Synthesis of Bimetallic 4-Pysi-Pd@Cu(BDC) via Open Metal Site Cu-MOF: Effect of Metal and Support of Pd@Cu-MOFs in H₂ Generation from Formic Acid. *Molecular Catalysis* 2019, 467, 30-37.