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Materials

Palladium chloride (PdCl,, 99.9%, Alfa Aesar), Dicyandiamide (C,H4N4, 99%, Shanghai
Chemical Reagent), Formic acid (FA, HCOOH, 98%, Shanghai Chemical Reagent), Sodium
formate (SF, HCOONa, 99.99%, Aladdin), Tungsten chloride (WCls, 99%, Aladdin), Sodium
borohydride (NaBH,, Shanghai Chemical Reagent), Triblock copolymer (Pluronic F127,
EO106-PO79-EO1¢6, EO: ethylene oxide, PO: propylene oxide, Mw=12600, Sigma). All

chemicals were commercially available and used directly.

Preparation of nonporous WOj; and NC-coated nonporous WO;
Seven mL of 65% nitric acid was diluted in deionized water (30 mL) with stirring for 10 min.
NaWO0,-2H,;0 (2 g, 6.1 mmol) was dissolved in 30 mL of deionized water with ultrasonic

treatment for 5 min and slowly added to the nitric acid solution, which finally gave rise to a
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light yellow precipitate. After stirring for another 30 min, the suspension was hydrothermally
treated at 180 °C for 3 h. After cooling to room temperature, yellow product was centrifuged,
washed with deionized water for 4 times and dried in vacuum for 12 h to yield about 1.2 g of
the nonporous WOj;.

Dicyandiamide (DCA) (3 g, 35.7 mmol) was dissolved in hot deionized water and WO; (1 g,
4.3 mmol) was added into it with vigorous stirring at 70 °C for 12 h. On completion, water was
removed by rotary evaporation and the solid was dried in vacuum condition (60 °C) for 12 h to
give a mixture product (DCA-WO;). 1.5 g of the hybrid was placed in an alumina boat in a
quartz tube furnace and heated under argon at 400 °C for 2 h at a heating rate of 2 °C/min. After

the system cooled down naturally, 0.89 g of NC,p@nonporous-WO; was obtained.

Characterization

The nitrogen sorption isotherms and pore size distribution curves were measured at the liquid
nitrogen temperature (77 K) using a BELSORP-MINI analyzer. The morphology and the
elemental distribution were studied by a field emission scanning electron microscope (FESEM;
Hitachi S-4800, accelerated voltage: 5 kV) accompanied by Energy dispersive X-ray
spectrometry (EDS; accelerated voltage: 20 kV). Scanning electron microscopy (SEM) images
were performed on a SUPERSCAN SSX-550 electron microscope. Transmission electron
microscopy (TEM) images were recorded with a JEOL JEM-2100 electron microscope
operated at 200 kV. XRD patterns were collected on the Bruker D8 Advance powder
diffractometer using Ni-filtered Cu/Ka radiation source at 40 kV and 20 mA, from 5 ° to 90 °
with a scan rate of 2 °/min. Raman analysis was performed on a PerkinElmer-Raman Station
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400F spectrometer equipped with a liquid N, cooled charge-coupled device detector and a
confocal microscope. A 350 mW near-infrared 785 nm laser was used for analysis under
ambient conditions. TGA was performed on a STA409 instrument in N, at a heating rate of 10
°C/min. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis for Pd
loading amount was determined by a Jarrell-Ash 1100 ICP-AES spectrometer. FT-IR spectra
were carried out with a Nicolet 360 FT-IR instrument (KBr discs) in the 4000-400 cm-1 region.
X-ray photoelectron spectroscopy (XPS) was conducted on a PHI 5000 Versa Probe Xray

photoelectron spectrometer equipped with Al-Ka radiation (1486.6 eV).
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Figure S1. TGA for Pd/ NC400@WO3 in 02.
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Figure S2. EDS mapping images of C, N, W, O, and Pd elements for Pd/NC4p,@WO;.
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Figure S3. FT-IR spectra of WO3, NCy9 and NC,0@WOs.
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Figure S4. SEM images of (A) nonporous WO; and (B) NCygo@nonporous-WOs.
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Figure S5. TGA for DCA-WO;

S-5



Figure S6. SEM images of (A) Pd/NC300@WO3, (B) Pd/NC400@WO3, (C) Pd/NC5()0@WO3

and (D) Pd/NCG()()@WO3
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Figure S7. XRD patterns of WO3, Pd/NC4()()@WO3, Pd/NC500@WO3 and Pd/NC600@WO3.
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Figure S8. Raman patterns of Pd/NC300@WO3, Pd/NC400@WO3, Pd/NC5()0@WO3 and
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Figure S9. XPS spectra of (A) Pd/NC300@WO3, (B) Pd/NC40()@WO3, (C) Pd/NCS()()@WO3

and (D) Pd/NCgpo@WO3; and (E) high resolution XPS spectra.

Table S1. the XPS signal positions and assignments for Pd 3d, W 4f, and O 1s in Pd/NC,@WO;

Sample Pd’ (eV) Pd?* (eV) Pd° W5+ wer W C-0 Oxygen Lattice  Pyridinic
3ds, 3ds; 3ds, 3ds;2 /Pd?  4fs, af,, sy 4f, /W deficiency oxygen N
Area Are
ratio a
ratio
PA/WO, 340.66 33543 34323 33783 126 - - 3771 3558 - - 532.18  530.41 -
(24.1%) (75.9%)
PA/NC300@WO; 341.34 33585 34352 336.83 1.15 36.83 3502 37.72 3557 043 53341 532.08 530.65 398.66
(17.9%)  (50.9%)  (312%) (51.1%)
PA/NCyo@WO; 340.85 335.69 34296 337.38 190 3738 3521 38.04 3582 0.52 53588 532.74 530.97 398.40
(35.9%)  (39.0%)  (25.1%)  (68.8%)
PA/NCs5@WO; 341.89 336.77 343.61 33623 099 3623 3509 3787 3569 0.57 54292 532.74 530.51 398.80
21.5%)  (384%)  (26.1%)  (59.3%)
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Figure S10. Gas chromatograms of the release gas from the decomposition of FA in a FA-SF

system over Pd/NC4p0@WOs.

Table S2. Comparison of activities of different catalysts for hydrogen generation of FA

Entry Catalyst T (K) npa/myeq TOF(hT) Ref.
1 Cog30Au035Pdg35/C 298 50 80 S1
2 Pd/mpg-CsN, 298 225 114 S2
3 AgsPdp@ZIF-8 353 32 580 S3

Ag Pd,@NH,-
4 353 100 893 S4
Ui0-66
5 Pd/CNy s 298 133 752 S5
6 Au@SiO, 403 - 958 S6
7 Pd/C 333 250 87 S7
8 NiPd/NH,-N-rGO 298 50 954 S8
9 4-PySI-Pd@Cu(BDC) 293 - 412 S9
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