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S1. Concentration dependence of viscoelastic functions and critical concentration of 

the CNC/glycerol dispersions.  

Molecular theories, such as the Morse theory, used in this study are derived assuming 

infinite dilution. Therefore, the experimental results obtained at finite concentrations are 

normally extrapolated to infinite dilution, and the intrinsic modulus 𝐺∗ ≡ lim
→

∗
  is 

calculated to compare with the theoretical predictions. However, a dilute dispersion of 

CNC can be achieved at very low concentrations, and therefore the extrapolation to 

infinite dilution was found not to be so accurate. Results at finite concentrations, 𝐺∗/𝑐 

may be slightly different from those at infinite dilution, 𝐺∗  . Here, we discuss the 

experimental error arising from using 𝐺∗ as 𝐺∗ 𝑐. The threshold to distinguish dilute 

solutions and semi-dilute solutions is the overlap critical number density, 𝜈∗ , or the 

critical concentration, 𝑐∗, and these values for rod like polymers can be estimated as 
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𝜈∗ 𝐿        (S1) 

In the case of CNCs, 𝑐∗ can be described as 

 

𝑐∗ 𝜌𝑉 𝐿        (S2)  

 

Here, 𝑉  is the volume of the CNCs (=LwWwh) and 𝜌 is the density of the CNCs (1.63 

g cm‒3). Thus, the estimated 𝑐∗ is tabulated in Table S1. In the case of C-CNC and S-

CNC, the sample concentration is lower than 𝑐∗, while in the case of T-CNC, the sample 

concentration is slightly higher than 𝑐∗. Here we note that 𝑐∗ is a general measure and 

not a universal value for all physical properties. The actual threshold concentration can 

vary with physical properties.      

  The concentration dependence of viscoelastic functions can be characterized with the 

intrinsic viscosity, 𝜂 ≡ lim
→

 . For example, the concentration dependence of 

viscosity can be described as 

 

 𝜂 1 𝑘 𝜂 𝑐 ⋯        (S3) 

 

Here, 𝑘  is Huggins’ coefficient and experimentally determined as  0.5 for rigid and 

semiflexible polymers.1‒2 Equation S3 indicates that in the case of 𝜂 𝑐 1,  can 

be used as 𝜂  in the first approximation, and also that the experimental error arising 

from regarding   at finite concentrations as [η] can be estimated as 𝑘 𝜂 𝑐 . The 
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molecular origin of the difference between   at finite concentrations and 𝜂   is 

attributed to the slowdown of the rotational motion of polymer by the molecular 

interactions. Therefore, a similar discussion is applicable to 𝐺∗ .   

We estimated the [η] values for CNCs using an equation for rotational motions of rod-

like polymers in the dilute region.3 

 

𝜂
.

                (S4) 

 

The obtained values of 𝜂  and 𝜂 𝑐 are listed in Table S1. Thus, the difference between 

𝐺∗/𝑐 and 𝐺∗  can be characterized with 𝑘 𝜂 𝑐, which is estimated to be less than 5% 

for 𝑘 ~0.5. These results indicate that the CNC/glycerol dispersions at the examined 

solid concentrations c were sufficiently dilute, and thus the molecular theories developed 

for infinite dilute system were applicable to our CNC/glycerol dispersions. 

 

 

Table S1. Summary of the examined weight percentage concentration w, weight 

concentration per unit volume c, intrinsic viscosity 𝜂 , the product of 𝜂  and c, and 

the critical concentration c*.  

 C-CNC S-CNC T-CNC 

w / % w/w 0.15 0.010 0.030 

c / gcm–3 0.00189 0.00013 0.00038 

𝜂 / cm3g–1 17 80 228 

𝜂 𝑐 0.032 0.010 0.086 

c* /gcm–3 0.00362 0.00054 0.00016 
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S2. Theoretical background 

Here we briefly explain the molecular theory for semiflexible polymers which is applied 

to the CNC dispersions in this study. Conformation of polymer chains may be 

characterized with the wormlike chain model. In this model, important parameters are the 

chain contour length, 𝐿, and the persistent length, 𝐿 ≡ 𝜅/𝑘 𝑇, which is defined as the 

ratio of the chain bending rigidity 𝜅  to the thermal energy 𝑘 𝑇 . In the case of 

semiflexible polymers of 𝐿/𝐿  1, the conformation of the polymers is not straight 

and the polymers undergo the thermally-excited transverse undulations due to the small 

bending motions.4 Thus, their end-to-end lengths are always shorter than L values. As a 

result, effective extensibility occurs and produces internal motions, or tension and 

bending. The tension mode arises from constraint forces which restrict to extend 

semiflexible rods in the longitudinal direction. Thus, thermally undulated structure of the 

polymer originates the tension along the chain in addition to the bending stress, and these 

stresses contribute the relaxation modulus. According to Shankar et al., the intrinsic 

complex modulus, 𝐺∗ ≡ lim
→

∗
, for semiflexible polymers of 𝐿/𝐿  1 can be 

described as follows.4  

 

 𝐺∗ 𝐺 ∗ 𝐺 ∗ 𝐺 ∗     (S5) 

 

The 𝐺 ∗  represents the modulus originated by the entropic stress due to the 

orientation of the end-to-end vector of the polymer. The 𝐺 ∗  and 𝐺 ∗  

respectively represent the contribution of the bending stress and the tension stress. 

Corresponding molecular motions are explained with Figure S1. The theory provides the 

functional form of these three components of modulus, and we used in section 4 in Results 



S5 
 

and Discussion. The validity of the theory was examined with the experimental results of 

poly (γ-benzyl-L-glutamate) (PBLG) solutions. We note 𝐺 ∗  significantly 

contributes to the modulus, even in the case of almost rigid rods with 0.01, as 

shown in Figure 9.  

 

 

Figure S1. Schematic illustration of orientational (rotational) and internal (tension and 

curvature) motions. In the case of rigid rods, stress is originated solely from orientation 

of rods. In the case of semiflexible rods, stress is originated from the combination of the 

orientational and the internal motions.  

 

The strain-induced birefringence, Δ𝑛, mainly reflects the orientation of the chain.5 This 

is simply because the conformation change due to the thermally undulated structure is 

much smaller than the orientation. Thus, the complex strain-optical coefficient 𝐾∗, which 

is the complex ratio of the shear component of the refractive index tensor 𝑛  to 

oscillatory strain,6 can be written as follows.  

 

𝐾∗ 𝐾 ∗ 𝐶 𝐿 𝐺 ∗      (S6) 
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Here, 𝐶 𝐿  is the stress-optical coefficient and can be related to the optical anisotropy 

of unit length of structure units, Δ𝛼. In the case of 𝐿/𝐿  1, 𝐶 𝐿  is given as 

𝐶𝐿.6 In the concentrated regime, the structural birefringence due to the 

regular distribution of rods or orientational ordering may be observed, and such 

birefringence can be ignored in the dilute regime where we employed the experiments. 

To obtain 𝐺∗  (or 𝐾∗ ), normally 𝐺∗ is measured as a function of concentration c in 

the dilute regime and extrapolated to 𝑐 → 0. However, the dilute regime of the CNC 

dispersions is quite low (C-CNC: < 0.00362 gcm‒3, S-CNC: < 0.00054 gcm‒3, T-CNC: < 

0.00016 gcm‒3) as discussed in Supporting information S1, and the accurate concentration 

extrapolation could not be achieved, due to the limitation of sensitivity of our apparatus. 

Therefore, we applied the theory with the first approximation. 

 

  𝐺∗ 𝑐 𝐺∗ i𝜔𝜂        (S7) 

 

where 𝜂  is the dispersion medium viscosity. 

Experimental error due to this approximation is estimated to be less than 5% as discussed 

in Supporting information S1. Similar approximations for dilute solutions are widely used 

in the molar mass estimation by the light scattering apparatus combined with the size 

exclusion chromatography. The same approximation is applied to the birefringence data.  

 

S3. Small-angle X-ray scattering (SAXS) measurements of the CNCs in glycerol 

SAXS measurements were performed on T-CNC dispersed in water or glycerol using a 

SAXSpase (Anton Paar GmbH.), and data processing was carried out using the 

SAXSanalysis program. The T-CNC/glycerol dispersion was added to the quartz liquid 
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cells of a TCStage 150 sample holder unit. A high-flux sealed-tube X-ray beam in line 

collimation (Cu Kα radiation, λ = 0.1542 nm) was used, and scattered intensities were 

recorded during the exposure time of 15 min on a 1D hybrid photon counting detector 

(Mythen). The sample to detector distance was set as 317 mm. The scattering intensity 

recorded from glycerol was used for the background subtraction to each scattering curve 

(Figure S2a). Indirect Fourier transformation (IFT) fitting was conducted on the 

background-subtracted intensity curves under the assumption that the shape of T-CNC 

was a significantly long rod with a rectangular cross-section.7 2D pair-distance 

distribution Pc(r) functions for the cross-section of T-CNC were then calculated as a 

function of dimension. A T-CNC/water dispersion was used as a reference sample. A 

similar experiment was also conducted on the T-CNC/water dispersion.  

 Figure S2a shows background-subtracted scattering curves of the T-CNC/glycerol and 

T-CNC/water dispersions. Although the intensities for the T-CNC/water dispersion were 

slightly higher than those for the T-CNC/glycerol dispersion depending on the electron 

density difference between the dispersion medium and T-CNC, the shape of the scattering 

curves was similar. A model-independent collimation correction (desmearing) process 

was conducted on the background-subtracted scattering curves by the Lake algorithm.8 

The desmeared data were compared with the IFT fitted curves (Figure S2b). The 

desmeared data were overlapped with the IFT-fitted curves. These results showed that the 

IFT fitting was conducted well on the background-subtracted scattering curves, and the 

assumption that T-CNC is a long rod was reasonable. Figure S2c shows the Pc(r) functions 

of the T-CNC/water and T-CNC/glycerol dispersions as a function of dimension. The 

Pc(r) functions of both the T-CNC dispersions showed similar tendency regardless of 

dispersion medium; the functions became convex upward at ~5 nm, and asymptotic to 
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zero at 23‒24 nm. A shoulder-like small bump in Pc(r) of T-CNC/water around 20 nm 

(black line in Fig. S2c) indicated the existence of a small amount of components with 

larger cross-sections. However, the maximum dimensions in the cross-section of T-CNC 

(23‒24 nm) were almost the same regardless of dispersion medium (water or glycerol). 

These results show that T-CNC in glycerol had similar dimensions in cross-section to that 

in water. Namely, CNCs were dispersed in glycerol without aggregation, as in water.  
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Figure S2. (a) Background-subtracted scattering curves of the T-CNC/glycerol and T-

CNC/water dispersions (b) Comparison of the desmeared data by Lake algorithm (blue 

dashed line) for the T-CNC/glycerol dispersion with the IFT-fitted curve (red solid line). 

(c) Pc(r) functions obtained by IFT fitting for the cross section of the T-CNC in glycerol 

and water.  

 

 

 



S10 
 

S4. Length distribution functions determined from the birefringence data 

The length distribution functions were determined from birefringence data for each CNC 

as follows; 

 

1) C-CNC 

𝑣 1.80 10 ∑ 𝑒𝑥𝑝   (S8) 

where 

𝐿 25 2𝑖 1       (S9) 

2) S-CNC 

𝑣 4.10 10 ∑ 𝑒𝑥𝑝   (S10) 

where 

𝐿 25 2𝑖 1       (S11) 

3) T-CNC 

𝑣 2.42 10 ∑ 𝑒𝑥𝑝   (S12) 

where 

𝐿 100 2𝑖 1      (S13) 

The number of classes and class values Li were determined according to the length 

distribution histograms determined by TEM (Figure 1d‒1f).    
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Figure S3. Comparison of the experimental K′ and K″ values for the 0.15% w/w C-

CNC/glycerol (a), 0.01% S-CNC/glycerol (b), and 0.03% T-CNC/glycerol dispersions 

with the Kν′ and Kν″ values calculated using Eqns 5 and 6, respectively.  
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Figure S4. Fitting parameter L0 of the length distribution functions determined from the 

birefringence data as a function of length-weighted mean length Lw.  
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Figure S5. The influences of class divisions of length distributions on the length 

distribution functions Eq. 7: (a) course- and (c) fine-divided length distributions. The data 

of the S-CNC shown in Figure 5b was used as a standard (b).  
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S5. Comparison of viscoelastic data with the theory for the viscoelasticity of rigid 

rods in the dilute regime  

The experimental G′ and G″ values were compared with the theory for the viscoelasticity 

of rigid rods in the dilute regime. When a dilute dispersion of rigid rods is subjected to 

steady shear flow, rigid rods are oriented by the flow. As a result, entropy decrease, and 

then stress occur. The rate of which the orientation reverts to random orientation is 

characterized by the relaxation time τrod. Based on the theory which describes the 

orientation of rigid rods,9 the storage modulus Grod′ and loss modulus Grod″ for rigid rods 

are given by 

 

𝐺 𝜈𝑘 𝑇𝜔 𝜏 / 1 𝜔 𝜏                    (S14) 

𝐺 " 𝜈𝑘 𝑇ω𝜏 1 𝜔 𝜏 𝐴                           (S15) 

 

where ν is the number of CNCs per unit volume, kB is the Boltzmann constant, T is the 

temperature, and A is a numerical coefficient depending on the aspect ratio. In the present 

study, A was substituted with 0.29, as was reported by Yamakawa et al.10 The relaxation 

time for rotational motions of rigid rods τrod is given by3   

 

𝜏   𝜋𝜂 𝐿 18𝑘 𝑇 ln 𝐿 𝑑⁄ 0.8⁄                       (S16) 

 

where Dr is the rotational diffusion coefficient, ηs is the dispersion medium viscosity, L 

is the CNC length. Diameter d was substituted with the square root of the product of Ww 

and h (Table 1). To take the length distribution into account, the Grod′(L) and Grod″(L) 

were first calculated using the class value as L for each class of the TEM-determined 
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length distribution histograms, and then added together. The obtained values were used 

for the comparison with the experimental values. The experimental G′ and G″ values of 

the C-CNC were in good agreement with their Grod′ and Grod″ values, respectively, at 

frequencies lower than 100 s‒1 (Figure S6a). That is, the relaxation derived from the 

rotation of rods was measured. The experimental G′ and G″ values at high frequencies (> 

100 s‒1) were unmeasurable because of the low viscosity of the C-CNC/glycerol 

dispersion. The experimental G′ values of the S-CNC and T-CNC departed from the Grod′ 

values with increasing the frequencies at high frequencies (> 10 s‒1) (Figure S6b and S6c). 

The viscoelastic data of S-CNC and T-CNC was not fitted by the theory for viscoelasticity 

of rigid rods in dilute regime at high frequencies (Figure S6b and S6c). 

 

 

 

Figure S6. Comparison of experimental G′ and G″ values for the (a) 0.15% w/w C-CNC, 

(b) 0.01% w/w S-CNC, and (c) 0.03% w/w T-CNC/glycerol dispersions with their 

theoretical Grod′ and Grod″ values calculated using Eqns S14 and S15. 
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