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I. Method optimization

Scheme S1

We initially investigated two Ullman coupling conditions for reacting 8-chloronaphthalene-1-
sulfonic acid with aniline (Scheme S1 and Table S1). 

Method A:1-3 To 8-chloronaphthalene-1-sulfonic acid (1, 1 equiv), elemental copper (cat. amount), 
and aniline (2a, 2 equiv) in H2O, were added NaH2PO4 and Na2HPO4 to adjust the pH to 6-7.  Then 
the reaction was conducted under microwave conditions at 90 °C for 20 min. 

Method B:4, 5 To 1 (1 equiv) in DMF, were added tetramethylethylenediamine (TMEDA, cat. 
amount), CuI (cat. amount), K2CO3 (1.5 equiv) and aniline (2 equiv). Then the reaction was 
conducted under microwave conditions at 150 °C for 25 min. 

Method A resulted in a 45% isolated yield of 3a and no product was obtained from method B. 
Therefore, we next optimized method A by screening copper catalysts, the amount of aniline, 
reaction time, and temperature (summarized in the table below). The optimized conditions are as 
follows: reaction in the presence of 1 (0.41 mmol, 1 equiv), 2a (0.46 mmol, 1.1 equiv) and a 
catalytic amount copper element (10 mol%) in a buffer solution (pH 6-7) of Na2HPO4 (pH 9.6) 
and NaH2PO4 (pH 4.2) for 1 h at 100 °C under microwave (100 W) conditions, through which the 
yield of 3a was improved to 63%. 
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Table S1. Reaction optimization

Entry Catalyst
(mol %)

Equiv of 
aniline

Temp
(° C) Reaction time Yield (%)b

1 CuI (10) 1.1 80 1 h trace
2 CuCl (10) 1.1 80 1 h trace
3 Cu0 (10) 1.1 80 1 h 47
4 Cu0 (15) 1.1 80 1 h 47
5 Cu0 (10) 2 80 1 h 47
7 Cu0 (10) 1.1 100 1 h 53
8 Cu0 (10) 1.1 120 1 h 52
10 Cu0 (10) 1.1 100 1.5 h 63
11 Cu0 (10) 1.1 100 2 h 63

aReaction was carried out in 5 ml sealed microwave tube. 1 (0.41 mmol, 1 equiv), 2a and catalyst 
were added into a buffer solution (pH 6-7) of Na2HPO4 and NaH2PO4 and irradiated by 
microwave (100 W).
bIsolated yields.
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II. Spectra of analogs

Sodium 8-(Phenylamino)naphthalene-1-sulfonate (3a)

Figure S1. Proton NMR for 3a.
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Figure S2. Carbon NMR for 3a.

*Fluorescence spectrum in ethylene glycol was taken at a lower gain to achieve an emission 
spectrum within the measurement parameters of the instrument.

Figure S3. Fluorescent spectra for 3a.
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Sodium 8-((4-Fluorophenyl)amino)naphthalene-1-sulfonate (3b)

Figure S4. Proton NMR for 3b.
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Figure S5. Carbon NMR for 3b.
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Figure S6. Fluorine NMR for 3b.

Figure S7. Fluorescent spectra for 3b.
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Sodium 8-((2-Fluorophenyl)amino)naphthalene-1-sulfonate (3c)

Figure S8. Proton NMR for 3c.
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Figure S9. Carbon NMR for 3c.
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Figure S10. Fluorine NMR for 3c.

*Fluorescence spectrum in ethylene glycol was taken at a lower gain to achieve an emission 
spectrum within the measurement parameters of the instrument.

Figure S11. Fluorescent spectra for 3c.
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Sodium 8-((3-Fluorophenyl)amino)naphthalene-1-sulfonate (3d)

Figure S12. Proton NMR for 3d.
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Figure S13. Carbon NMR for 3d.
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Figure S14. Fluorine NMR for 3d.

*Fluorescence spectrum in ethylene glycol was taken at a lower gain to achieve an emission 
spectrum within the measurement parameters of the instrument.

Figure S15. Fluorescent spectra for 3d.
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Sodium 8-((3-Chlorophenyl)amino)naphthalene-1-sulfonate (3e)

Figure S16. Proton NMR for 3e.
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Figure S17. Carbon NMR for 3e.

*Fluorescence spectrum in ethylene glycol was taken at a lower gain to achieve an emission 
spectrum within the measurement parameters of the instrument.

Figure S18. Fluorescent spectra for 3e.
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Sodium 8-((4-Chlorophenyl)amino)naphthalene-1-sulfonate (3f)

Figure S19. Proton NMR for 3f.
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Figure S20. Carbon NMR for 3f.

Figure S21. Fluorescent spectra for 3f.
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Sodium 8-((3,4-Dichlorophenyl)amino)naphthalene-1-sulfonate (3g)

Figure S22. Proton NMR for 3g.
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Figure S23. Carbon NMR for 3g.

*Fluorescence spectrum in ethylene glycol was taken at a lower gain to achieve an emission 
spectrum within the measurement parameters of the instrument.

Figure S24. Fluorescent spectra for 3g.
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Sodium 8-((4-Bromophenyl)amino)naphthalene-1-sulfonate (3h)

Figure S25. Proton NMR for 3h.
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Figure S26. Carbon NMR for 3h.

Figure S27. Fluorescent spectra for 3h.
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Sodium 8-(p-Tolylamino)naphthalene-1-sulfonate (3i)

Figure S28. Proton NMR for 3i.
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Figure S29. Carbon NMR for 3i.

Figure S30. Fluorescent spectra for 3i.
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Sodium 8-((4-Methoxyphenyl)amino)naphthalene-1-sulfonate (3j)

Figure S31. Proton NMR for 3j.
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Figure S32. Carbon NMR for 3j.

Figure S33. Fluorescent spectra for 3j.
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Sodium 8-((4-Oxidophenyl)amino)naphthalene-1-sulfonate (3k)

Figure S34. Proton NMR for 3k.
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Figure S35. Carbon NMR for 3k.

Figure S36. Fluorescent spectra for 3k.
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Sodium 8-((4-Cyanophenyl)amino)naphthalene-1-sulfonate (3l)

Figure S37. Proton NMR for 3l.
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Figure S38. Carbon NMR for 3l.

Figure S39. Fluorescent spectra for 3l.
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Sodium 8-((4-Nitrophenyl)amino)naphthalene-1-sulfonate (3m)

Figure S40. Proton NMR for 3m.
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Figure S41. Carbon NMR for 3m.

Figure S42. Fluorescent spectra for 3m.
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Sodium 8-([1,1'-Biphenyl]-4-ylamino)naphthalene-1-sulfonate (3n)

Figure S43. Proton NMR for 3n.
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Figure S44. Carbon NMR for 3n.

Figure S45. Fluorescent spectra for 3n.
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Sodium 8-((4-Acetamidophenyl)amino)naphthalene-1-sulfonate (3o)

Figure S46. Proton NMR for 3o.
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Figure S47. Carbon NMR for 3o.

Figure S48. Fluorescent spectra for 3o.
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III. Hammett Plot of ANS derivatives
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Figure S49. Hammett Plot for ANS derivatives. 
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