# **Supporting Information**

# Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: which are the working catalytic sites?

Lichen Liu,<sup>1</sup> Debora M. Meira,<sup>2</sup> Raul Arenal,<sup>3,4,5</sup> Patricia Concepcion,<sup>1</sup> Alberto V. Puga<sup>1</sup> and Avelino Corma<sup>1</sup>\*

<sup>1</sup>Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, España <sup>2</sup> CLS@APS sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA <sup>3</sup> Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Mariano Esquillor Edificio I+D, 50018 Zaragoza, Spain <sup>4</sup> ARAID Foundation, 50018 Zaragoza, Spain <sup>5</sup> Instituto de Ciencias de Materiales de Aragon, CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain

\*Corresponding author. E-mail: <u>acorma@itq.upv.es</u>

# **Experiments**

# 1. Synthesis of different types of Pt species on various supports

TiO<sub>2</sub> (nanopowder, from Sigma-Aldrich, product No. 718467-100G), Al<sub>2</sub>O<sub>3</sub> (from NanoScale NanoActive®, with a surface area of  $\sim$ 300 m<sup>2</sup>/g) and nanosized CeO<sub>2</sub> (from Rhodia with a surface area of  $\sim$ 120 m<sup>2</sup>/g) were used as the support to prepare supported Pt catalysts, by conventional wet impregnation.

### 1.1 Synthesis of Pt/TiO<sub>2</sub> with H<sub>2</sub>PtCl<sub>6</sub> as the precursor

2 g of TiO<sub>2</sub> support was dispersed in 50 mL aqueous solution of H<sub>2</sub>PtCl<sub>6</sub> (containing certain amount of Pt, determined by the loading of Pt in the final catalyst) under rigorous stirring. After 2 h of stirring at room temperature, water was removed by rotavapor. The obtained solid was dried at 100 °C overnight and then calcined in flow air at 400 °C for 2 h with a ramp of 2 °C/min, resulting the formation of singly dispersed Pt atoms on TiO<sub>2</sub> when the Pt loading is ~0.03 wt%. Supported Pt catalysts with clusters and nanoparticles were prepared by reducing the Pt/TiO<sub>2</sub> catalysts at 450 °C by H<sub>2</sub>. The size of Pt particles depends on the Pt loading. The final Pt loadings in various samples were determined by ICP analysis.

#### 1.2 Synthesis of Pt/TiO<sub>2</sub> with platinum(II) acetylacetonate as the precursor

0.5 g of TiO<sub>2</sub> support was dispersed in 40 mL ethanol solution of platinum(II) acetylacetonate under rigorous stirring. After 2 h of stirring at room temperature, water was removed by rotavapor. The obtained solid was dried at 60 °C overnight and then calcined in flow air at 350 °C for 2 h with a ramp of 1 °C/min, resulting the formation of singly dispersed Pt atoms on TiO<sub>2</sub> when the Pt loading is ~0.04 wt%. Supported Pt catalysts containing Pt clusters and nanoparticles were prepared by reducing the Pt/TiO<sub>2</sub> catalysts at 450 °C by H<sub>2</sub>. The size of Pt particles supported on TiO<sub>2</sub> depends on the Pt loading. The final Pt loadings in various samples were determined by ICP analysis.

#### 1.3 Synthesis of PtNP/TiO<sub>2</sub> samples by loading colloid Pt nanoparticles on TiO<sub>2</sub>

Colloid Pt nanoparticles were synthesized by heating the ethanol solution containing H<sub>2</sub>PtCl<sub>6</sub> in the presence of polyvinylpyrrolidone (PVP, K55). In a typical procedure, 16.6 mg of PVP, 45 mL ethanol and 5.0 mL of H<sub>2</sub>PtCl<sub>6</sub> solution (6.0 mmol/L) was mixed at room temperature. The solution

was then kept under reflux at 90 °C for 3 h. The color of the solution would turns from light yellow to grey after 3 h, indicating the formation of colloid Pt nanoparticles in ethanol. 3.0 g of TiO2 powder was then added to the ethanol solution and kept stirring for 2 h. The ethanol solvent was removed by heating the solution at 90 °C in oil bath. Afterwards, the solid sample was subjected to calcination in air at 400 °C for 2 h with a ramp rate of 2 °C/min, giving to the PtNP/TiO<sub>2</sub>-air sample. The PtNP/TiO<sub>2</sub>-450H<sub>2</sub> was obtained by reducing the PtNP/TiO<sub>2</sub>-air sample by H<sub>2</sub> at 450 °C for 3 h. The final Pt loading was 0.2 wt%, determined by ICP analysis.

#### 1.4 Synthesis of Pt/Al<sub>2</sub>O<sub>3</sub> samples

2 g of Al<sub>2</sub>O<sub>3</sub> support was dispersed in 50 mL aqueous solution of H<sub>2</sub>PtCl<sub>6</sub> (containing certain amount of Pt, determined by the loading of Pt in the final catalyst) under rigorous stirring. After 2 h of stirring at room temperature, water was removed by rotavapor. The obtained solid was dried at 100 °C overnight and then calcined in flow air at 450 °C for 3 h with a ramp of 1 °C/min, resulting the formation of singly dispersed Pt atoms on Al<sub>2</sub>O<sub>3</sub>. Supported Pt catalysts with clusters and nanoparticles were prepared by reducing the Pt/ Al<sub>2</sub>O<sub>3</sub> catalysts at 450 °C by H<sub>2</sub>. The loading of Pt/Al<sub>2</sub>O<sub>3</sub> was 0.2 wt%, determined by ICP.

To reduce the single Pt atoms supported on Al<sub>2</sub>O<sub>3</sub> under mild conditions, the Pt/Al<sub>2</sub>O<sub>3</sub>-SA sample was mixed with NaBH<sub>4</sub> or hydrazine aqueous solution at 50 °C for 2 h. After the reduction treatment, the solid sample was isolated by centrifugation and then used for catalytic hydrogenation reaction.

#### 1.5 Synthesis of Pt/CeO<sub>2</sub> samples

2 g of CeO<sub>2</sub> support was dispersed in 50 mL aqueous solution of H<sub>2</sub>PtCl<sub>6</sub> (containing certain amount of Pt, determined by the loading of Pt in the final catalyst) under rigorous stirring. After 2 h of stirring at room temperature, water was removed by rotavapor. The obtained solid was dried at 100 °C overnight and then calcined in flow air at 450 °C for 3 h with a ramp of 1 °C/min, resulting the formation of singly dispersed Pt atoms on CeO<sub>2</sub>. Supported Pt catalysts with clusters and nanoparticles were prepared by reducing the Pt/CeO<sub>2</sub> catalysts at 500 °C by H<sub>2</sub>. The loading of Pt/CeO<sub>2</sub> was 0.2 wt%, determined by ICP.

#### 2. Characterization on the Pt catalysts

Samples for electron microscopy studies were prepared by dropping the suspension of the powder

catalyst using ethanol as the solvent directly onto holey-carbon coated Cu grids. The measurements were performed in a JEOL 2100F microscope operating at 200 kV both in transmission (TEM) and scanning-transmission modes (STEM). STEM images were obtained using a High Angle Annular Dark Field detector (HAADF), which allows Z-contrast imaging. High-resolution STEM measurement was performed on FET Titan low-base microscope at 300 kV equipped with a Cs probe corrector, a monochromator and an ultrabright X-FEG electron source. The convergence angle was 25 mrad and the inner and outer angles for HAADF imaging were 70 and 200 mrad, respectively.

Hydrogen /deuterium (H/D) exchange experiments were carried out in a flow reactor at 25 and 80 °C. The feed gas consisted of 4 mL/min H<sub>2</sub>, 4 mL/min D<sub>2</sub> and 18 mL/min argon, and the total weight of catalyst was ~7 mg. Reaction products (H<sub>2</sub>, HD and D<sub>2</sub>) were analysed with a mass spectrometer (Omnistar, Balzers). For the 0.03Pt/TiO<sub>2</sub>-SA sample, it was measured after activation in N<sub>2</sub> at 150 °C. For 0.03Pt/TiO<sub>2</sub>-450H<sub>2</sub> and 0.2Pt/TiO<sub>2</sub>-450H<sub>2</sub> samples, they were reduced by H<sub>2</sub> at 200 °C in the reactor before the H/D exchange experiments. After the activation process, the temperature was decreased to 25 °C and, once stabilized, the H<sub>2</sub> feed was change to the reactant gas composition.

X-ray absorption near-edge structure (XANES) and extended X-ray absorption Fine Structure (EXAFS) at Pt L<sub>3</sub>-edge (11564 eV) of Pt/Al<sub>2</sub>O<sub>3</sub> samples were measured at 20-BM-B of the Advanced Photon Source at Argonne National Laboratory. A Si (111) fixed-exit, double-crystal monochromator was used and 0.5 eV energy resolution. Harmonic rejection was facilitated using a Rh-coated mirror (4mrad) as well as a 15% detuning of the beam intensity at ~1000 eV above the edge of interest. Data was collected in fluorescence mode using a four elements Vortex Si Drift detector. Details on the beamline optics and instruments can be found elsewhere.<sup>1</sup> The samples were prepared as pellets and placed in a furnace with Kapton® windows.<sup>2</sup> For the Pt/TiO<sub>2</sub> sample, XAS data of Pt L<sub>3</sub>-edge was collected using an unfocused beam at 20-ID-C beamline at the APS. Both measuements were performed in fluorescence mode using a four elements Vortex Si Drift detector. Details on the beamline optics and instruments can be found elsewhere (Heald, 2011, Heald, Cross, Brewe, & Gordon, 2007). The samples were prepared as pellets and placed in a furnace with Kapton a placed in a furnace with Kapton elsewhere (Heald, 2011, Heald, Cross, Brewe, & Gordon, 2007). The samples were prepared as pellets and placed in a furnace with Kapton elsewhere (Heald, 2011, Heald, Cross, Brewe, & Gordon, 2007).

The EXAFS of three as-received Pt/Al<sub>2</sub>O<sub>3</sub> samples were measured directly at room temperature without any pre-treatments, to study the chemical states and coordination environment of Pt species

after having contact with air. In order to follow the agglomeration of single Pt atoms into Pt clusters during the H<sub>2</sub> reduction treatment, the Pt/Al<sub>2</sub>O<sub>3</sub>-SA sample was reduced by a H<sub>2</sub>/He flow of 100 mL/min (H<sub>2</sub>:He = 3.5:1) at 200 °C for 30 min, corresponding to the Pt/Al<sub>2</sub>O<sub>3</sub>-200H<sub>2</sub>. XANES spectra were recorded during the heating. After the reduction treatment, the sample was cooled down to room temperature in H<sub>2</sub> flow and EXAFS spectra were recorded (k<sub>max</sub> = 13 Å<sup>-1</sup>). Similarly, the Pt/Al<sub>2</sub>O<sub>3</sub>-SA sample was reduced under the same conditions but up to 450 °C, corresponding to the Pt/Al<sub>2</sub>O<sub>3</sub>-450H<sub>2</sub> sample. After the reduction treatment at 450 °C, the following measurements were performed in the same way as for Pt/Al<sub>2</sub>O<sub>3</sub>-200H<sub>2</sub> sample. For the *in situ* XAS experiments under CO+O<sub>2</sub> reaction conditions, the samples were exposed to the feed gas (CO:O<sub>2</sub> = 2:1, 100 mL min<sup>-1</sup>) and then heated up to 225 °C with a ramp rate of 5 °C min<sup>-1</sup>. The sample was kept at 225 °C for 1 h. Then, the temperature was further increased to 325 °C with a ramp rate of 5 °C min<sup>-1</sup>, and then maintained at 325 °C for 2 h. XANES spectra were recorded during the heating and EXAFS was measured at 225 °C and 325 °C (k<sub>max</sub> = 13 Å<sup>-1</sup>) in the presence of CO and O<sub>2</sub>.

The as-received 0.2Pt/TiO<sub>2</sub>-450H<sub>2</sub> sample was measured directly by EXAFS directly without any pre-treatment. Then, the 0.2Pt/TiO<sub>2</sub>-450H<sub>2</sub> sample was reduced in situ under 30 mL/min (3.5% of H<sub>2</sub> in He). The temperature was increased to 50 °C (5 °C/min) for 1h. After that, the temperature was decreased to room temperature and 6 EXAFS spectra were recorded and averaged ( $k_{max} = 12 \text{ Å}^{-1}$ ). To avoid beam damage between each EXAFS measurement the sample position was shifted by 500 microns. Then, the same procedure was repeated but the reduction temperature increased to 200 °C and 450 °C.

EXAFS oscillations were extracted using Athena code and analysed using Arthemis software.<sup>3</sup> The local environment of the Pt atoms in the Pt/Al<sub>2</sub>O<sub>3</sub> samples was determined using the phase shift and amplitude functions of Pt-O, Pt-Al and Pt-Pt contributions. These contributions were calculated using PtO<sub>2</sub>, and Pt<sup>o</sup> structures. For the Pt-Al contribution, we used the PtO structure and replaced in the FEFF file the oxygen in the second shell by an aluminum. In the case of Pt/TiO<sub>2</sub> sample, the local environment of the Pt atoms was determined using the phase shift and amplitude functions of Pt-O, Pt-Pt and Pt-Ti contributions. These contributions were calculated using PtO<sub>2</sub>, Pt<sup>o</sup> and PtTi structures. The photoelectron energy origin correction ( $\Delta E_0$ ) and the amplitude reduction factor (S<sub>0</sub><sup>2</sup>) were found for the Pt foil and fixed for the samples. To decrease the number of parameters the Debye-Waller ( $\sigma_i^2$ )

was kept free but the same for all path, with exception of the second shell contribution in the Pt/Al<sub>2</sub>O<sub>3</sub> fresh samples. In this case, it was fixed to 0.01. The coordination numbers (N<sub>i</sub>) and distances (R<sub>i</sub>) were adjusted freely and independently for each path and each sample. The range used to transform the EXAFS oscillations ( $k^2 \chi(k)$ ) was 3-11 and the interval where the fit was performed ( $\Delta R$ ) was 1-3.

The FTIR spectra were collected with a Bruker "vertex 70" spectrometer equipped with a DTGS detector (4 cm<sup>-1</sup> resolution, 32 scans). An IR cell allowing in situ treatments in controlled atmospheres and temperatures from 25 °C to 500 °C has been connected to a vacuum system with gas dosing facility. Self-supporting pellets (ca. 10 mg cm<sup>-2</sup>) were prepared from the sample powders and treated in hydrogen flow (20 ml min<sup>-1</sup>) at 400 °C for 1 h in the case of Pt/CeO<sub>2</sub>-500H<sub>2</sub> samples and in N<sub>2</sub> at 100 °C for 1 h in the 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-SA and 0.2Pt/CeO<sub>2</sub>-SA samples. After activation, different experiments were performed. Thus, the 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-SA sample was cooled down to 25°C and exposed to a CO+O<sub>2</sub> (1:2) flow (10 ml min<sup>-1</sup>) at 25 °C. Then, the temperature is increased at a rate of 5 °C min<sup>-1</sup> to 225 °C and 325°C. IR spectra were collected at each temperature on the cooled down pellet. In the case of 0.2Pt/CeO<sub>2</sub>-500H<sub>2</sub> and 0.2Pt/CeO<sub>2</sub>-SA samples, after activation, they are cooled down and exposed to an O<sub>2</sub> flow (10 ml min<sup>-1</sup>) for 1h at 25 °C and 80 °C. Spectra were collected at each temperature.

#### 3. Catalytic studies on the Pt catalysts

#### 3.1 Hydrogenation of 3-nitrostyrene

The hydrogenation of 3-nitrostyrene was performed in batch reactor. A certain amount of solid catalyst (10 mg or 20 mg), 0.5 mmol of 3-nitrostyrene, 50  $\mu$ L of dodecane as internal standard, 2 mL of toluene as solvent was placed in the batch reactor. Then the reactor was purged with H<sub>2</sub> for several times. The reaction was performed at 40 or 50 °C with 3 bar of H<sub>2</sub>. 50  $\mu$ L of reaction mixture was taken out of the reactor at different reaction time and analyzed by GC with FID detector.

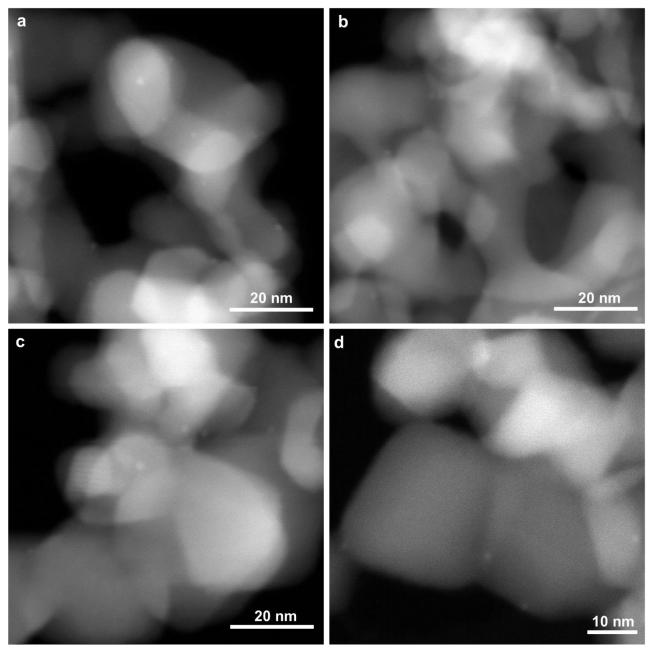
## 3.2 Hydrogenation of styrene

The hydrogenation of styrene was performed in batch reactor. A certain amount of solid Pt/Al<sub>2</sub>O<sub>3</sub> catalyst (10 mg), 1.0 mmol of styrene, 50  $\mu$ L of hexadecane as internal standard, 2 mL of toluene as solvent was placed in the batch reactor. Then the reactor was purged with H<sub>2</sub> for several times. The reaction was performed at 50 °C with 3 bar of H<sub>2</sub>. 50  $\mu$ L of reaction mixture was taken out of the reactor at different reaction time and analyzed by GC with FID detector.

# 3.3 CO oxidation with supported Pt catalysts

The CO oxidation was performed in a fix-bed reactor. 120 mg of solid Pt/oxide catalyst was used for each test. The feed gas was 2% of CO and 1% of O<sub>2</sub> balanced with He. The total flow was 85 mL/min. The product was analyzed by gas chromatograph with TCD detector.

# 3.4 Propane dehydrogenation reaction with Pt/Al<sub>2</sub>O<sub>3</sub> catalysts


The reaction was performed with a fix-bed reactor under atmospheric pressure using N<sub>2</sub>/propane as feed gas at 600 °C. The products were analyzed by a GC which can detect cracking products (methane, ethene and ethane), propylene, C4, C5 and aromatics. Before reaction, 140 mg of the solid catalyst was heated up N<sub>2</sub> flow (16 mL/min) with a ramp rate of 10 °C/min from room temperature up to 600 °C. After reaching 600 °C, the atmosphere was changed to reaction feed gas (5 mL/min of propane and 16 mL/min of N<sub>2</sub> as balanced gas) and the propane dehydrogenation started.

# 3.5 Photocatalytic H<sub>2</sub> evolution with Pt/TiO<sub>2</sub> catalysts

The photocatalyst powder (25 mg) was dispersed in a water/ethanol mixture (1:1 v/v, 25 mL) by sonication for 15 min. The resulting suspension was then transferred to a quartz cell (volume  $\approx$  50 mL, equipped with a gas inlet valve, a gas outlet valve and a pressure gauge) and purged with argon (5 mL/min for 10 min). Finally, the cell was pressurized with argon (1.5 bar) and tightly closed. The suspension was stirred at 500 rpm and irradiated with a medium pressure Hg lamp (125 W, irradiation intensity $\approx$  1.5 kW/m<sup>2</sup>). The production of H<sub>2</sub> quantified by a GC with TCD detector.

#### **References for the supporting information**

- Heald, S. M., Cross, J. O., Brewe, D. L., & Gordon, R. A. (2007). The PNC/XOR X-ray microprobe station at APS sector 20. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 582 (1), 215–217. https://doi.org/10.1016/j.nima.2007.08.109
- Kropf, A. J., Wu, T., Lobo-Lapidus, R., Wang, H., Heald, S. M., Miller, J. T., ... Hu, Y. (2013). In situ intermediate-energy X-ray catalysis research at the advanced photon source beamline 9-BM. *Catalysis Today*, 205, 141–147. https://doi.org/10.1016/j.cattod.2012.09.034
- Ravel, B., & Newville, M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. *Journal of Synchrotron Radiation*, 12, 537–541. https://doi.org/10.1107/S0909049505012719



**Figure S1.** STEM images of 0.03Pt/TiO<sub>2</sub>-450H<sub>2</sub>, showing the presence of subnanometric Pt clusters supported on TiO<sub>2</sub>.

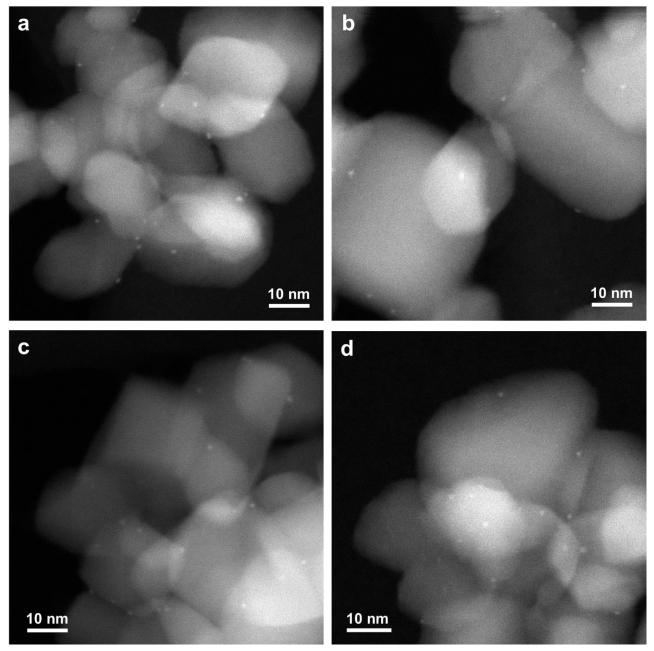
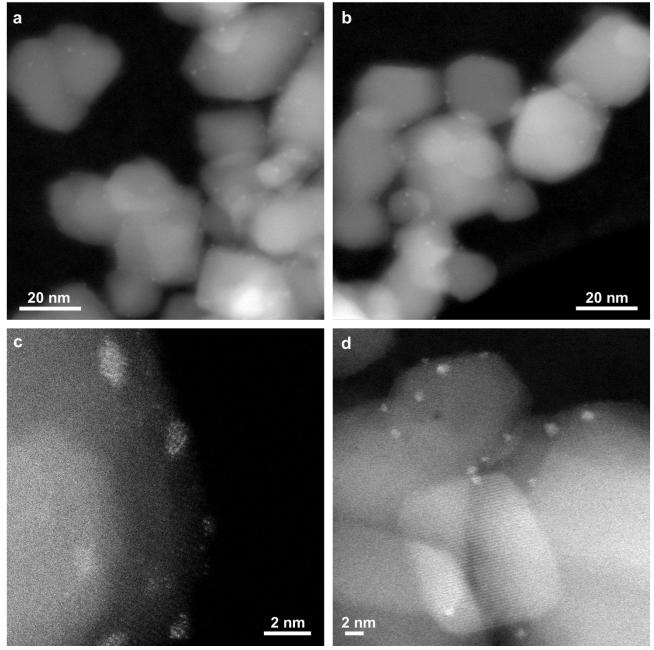
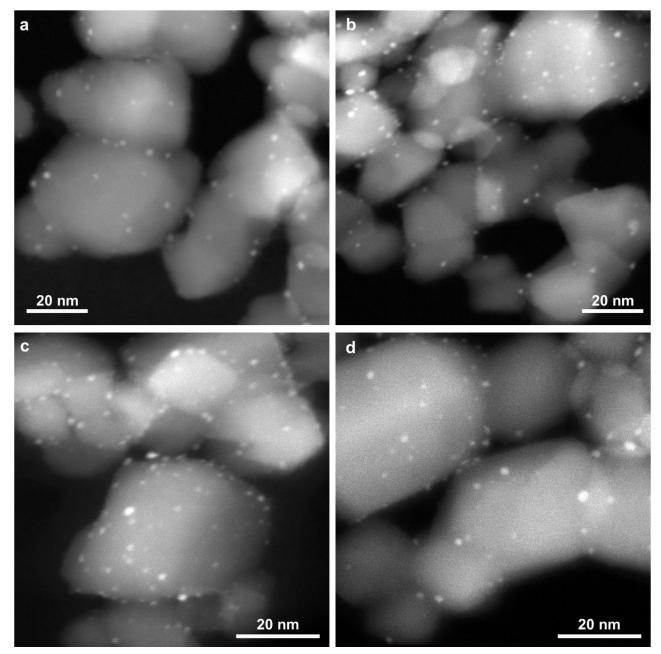




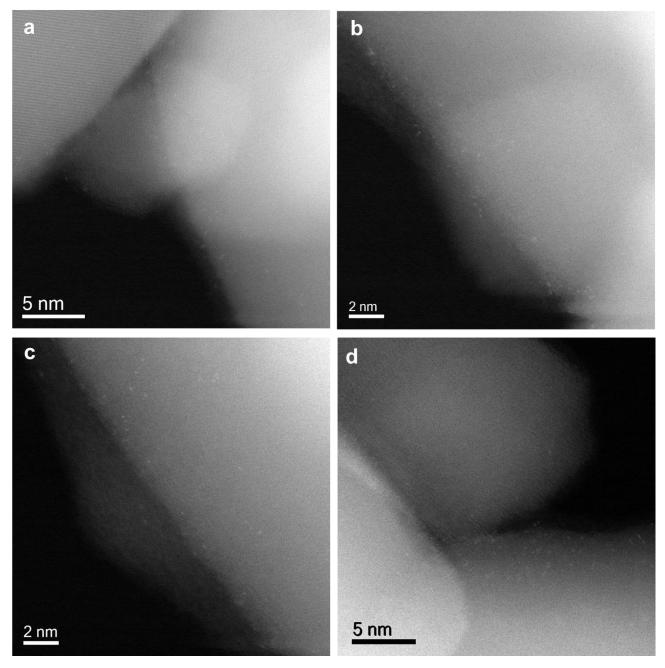
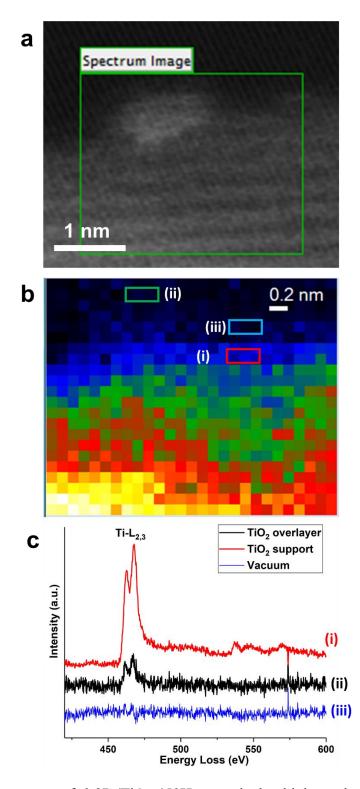
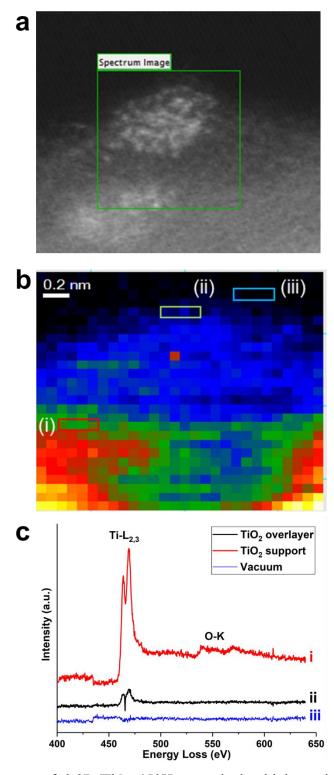

Figure S2. STEM images of 0.1Pt/TiO<sub>2</sub>-450H<sub>2</sub>, showing the presence of subnanometric Pt clusters supported on TiO<sub>2</sub>.

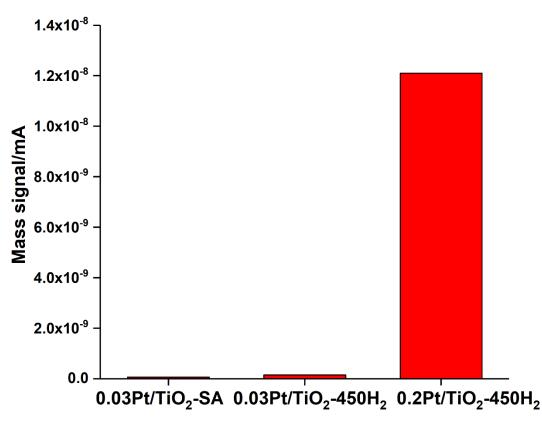


**Figure S3.** STEM images of 0.2Pt/TiO<sub>2</sub>-450H<sub>2</sub>, showing the presence of Pt nanoparticles supported on TiO<sub>2</sub>.

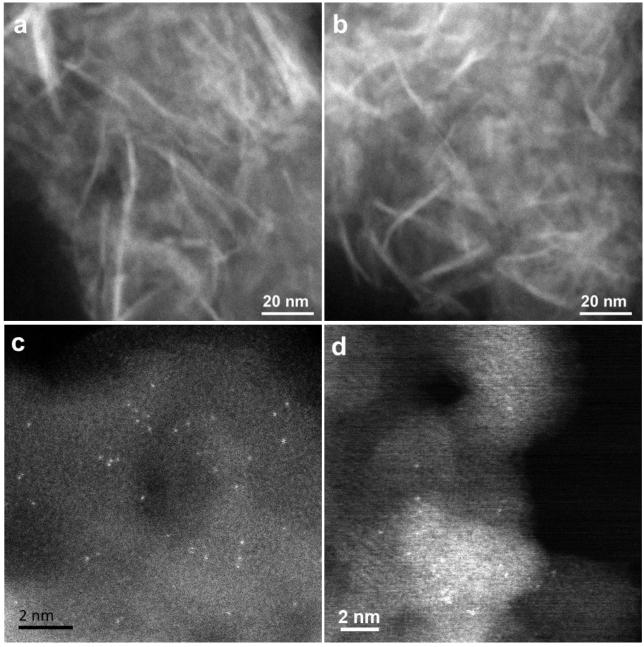


**Figure S4**. STEM images of 0.5Pt/TiO<sub>2</sub>-450H<sub>2</sub>, showing the presence of Pt nanoparticles supported on TiO<sub>2</sub>.



Figure S5. High-resolution STEM image of  $Pt/TiO_2$ -SA sample after the hydrogenation of 3nitrostyrene reaction. These images confirm the stability of single Pt atoms under mild reaction conditions.

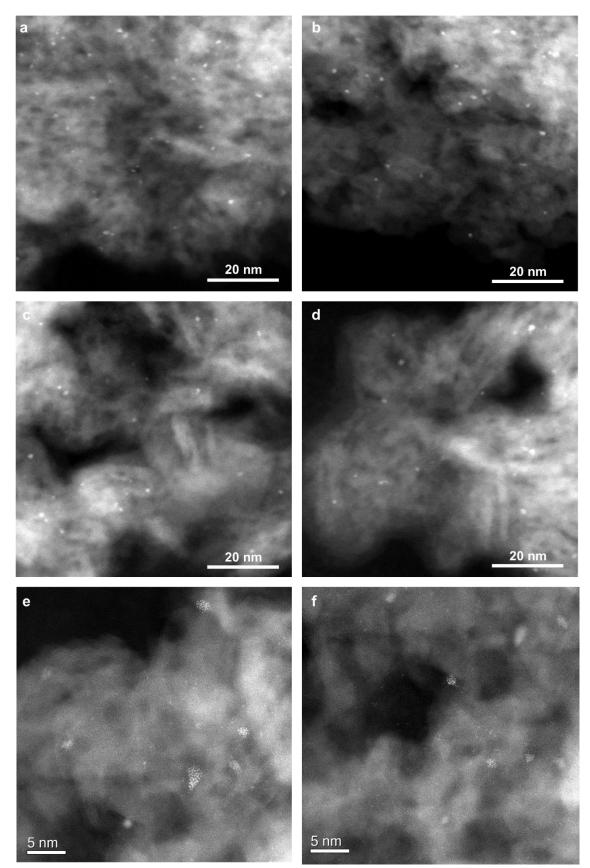



**Figure S6.** Atomic structure of 0.2Pt/TiO<sub>2</sub>-450H<sub>2</sub> sample by high-resolution STEM and EELS spectroscopy. (a) A typical STEM image of Pt nanoparticle supported on TiO<sub>2</sub> with atomic resolution. (b) EELS mapping of the Ti-L edge in the selected area shown in (a). (c) Ti-L<sub>2,3</sub> edge EELS spectra of three different areas shown in (b).

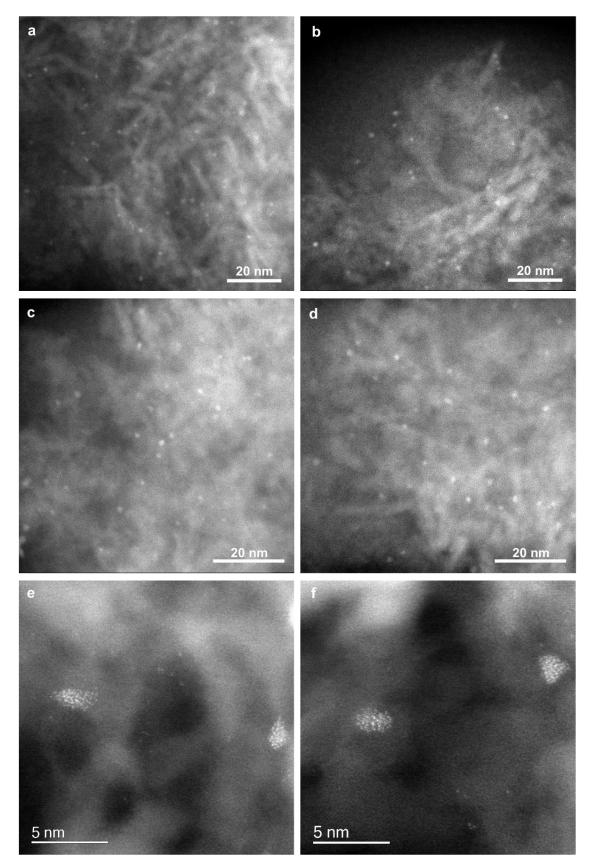


**Figure S7.** Atomic structure of 0.2Pt/TiO<sub>2</sub>-450H<sub>2</sub> sample by high-resolution STEM and EELS spectroscopy. (a) A typical STEM image of Pt nanoparticle supported on TiO<sub>2</sub> with atomic resolution. (b) EELS mapping of the Ti-L edge in the selected area shown in (a). (c) Ti-L<sub>2,3</sub> edge EELS spectra of three different areas shown in (b).

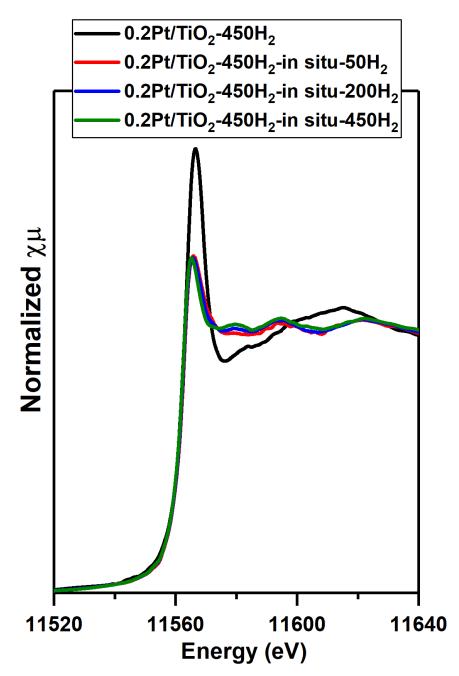



**Figure S8.**  $H_2$ - $D_2$  exchange activity on different types of Pt species supported on TiO<sub>2</sub> at room temperature. The formation rate of HD is expressed in this figure as the signal in mass spectrometer.

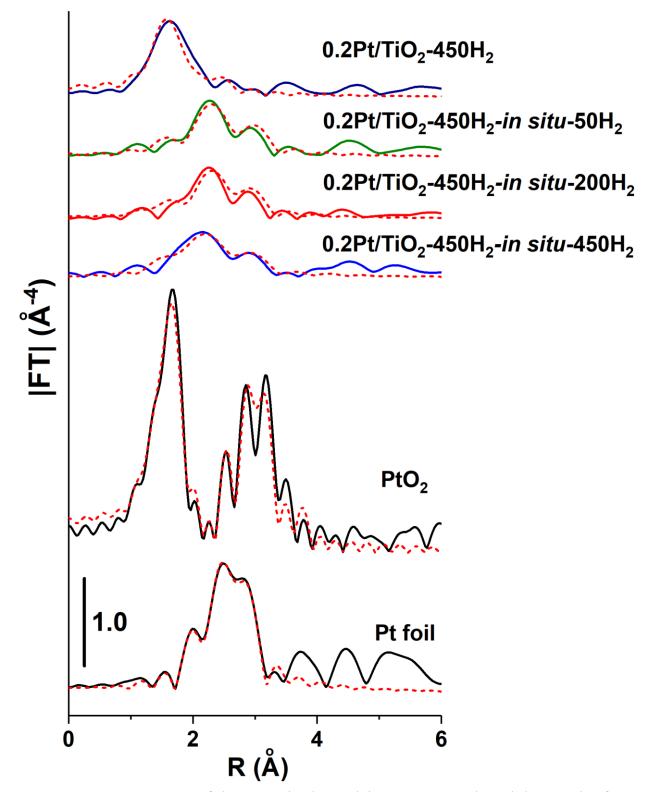



**Figure S9. STEM image of as-prepared 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-SA with atomically dispersed Pt species.** No Pt nanoparticles can be observed in the fresh catalyst and Pt species exist as isolated Pt atoms on Al<sub>2</sub>O<sub>3</sub> support.




**Figure S10.** STEM images of 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-200H<sub>2</sub> sample, showing the presence of both singly dispersed Pt atoms, Pt clusters and a few Pt nanoparticles.




**Figure S11.** STEM images of 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-300H<sub>2</sub> sample, showing the presence of a mixture of single Pt atoms, Pt clusters and nanoparticles.

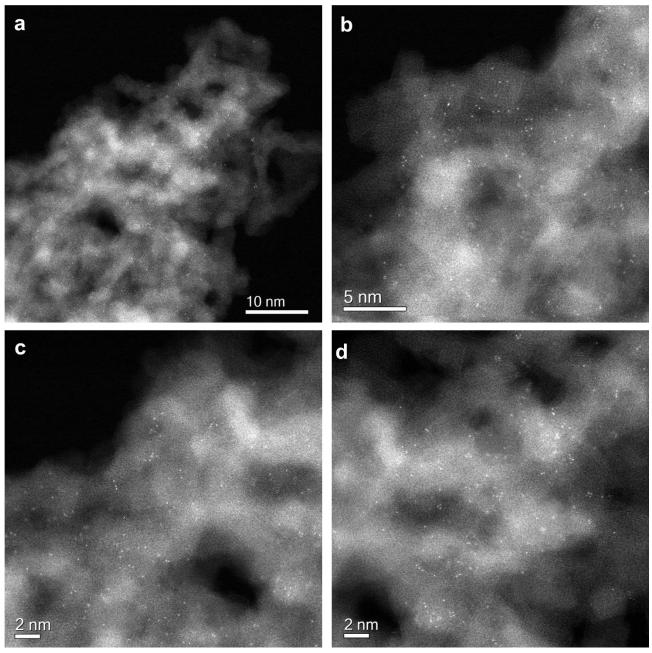


**Figure S12.** STEM images of 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-450H<sub>2</sub> sample, showing the presence of a large fraction of Pt nanoparticles and a few single Pt atoms.

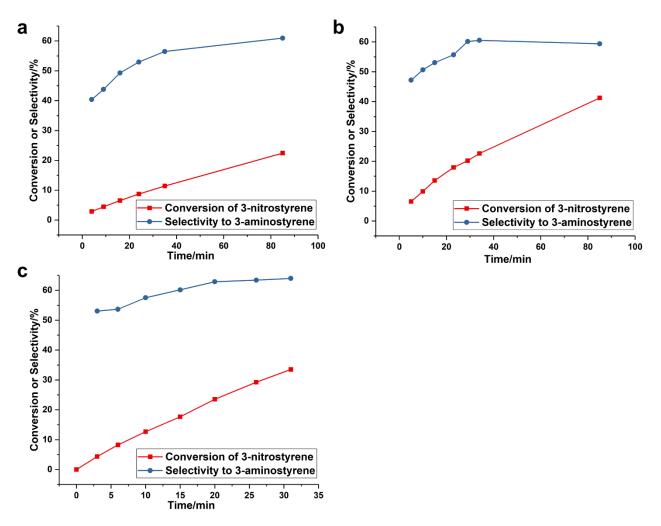


**Figure S13.** XANES spectra of the as-received  $0.2Pt/TiO_2-450H_2$  sample and the sample after prereduction treatment at different temperature. The spectra of Pt foil and PtO<sub>2</sub> reference are also included in this figure.

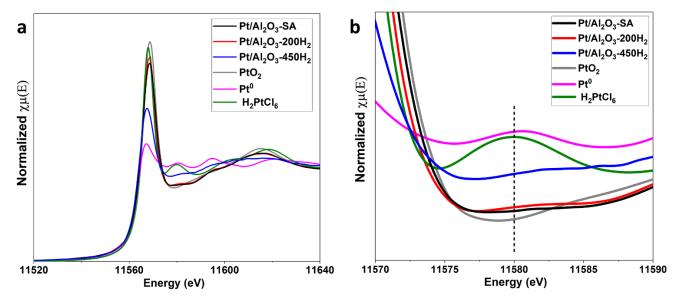



**Figure S14.** EXAFS spectra of the as-received 0.2Pt/TiO<sub>2</sub>-450H<sub>2</sub> sample and the sample after prereduction treatment at different temperature. The spectra of Pt foil and PtO<sub>2</sub> reference are also included in this figure.

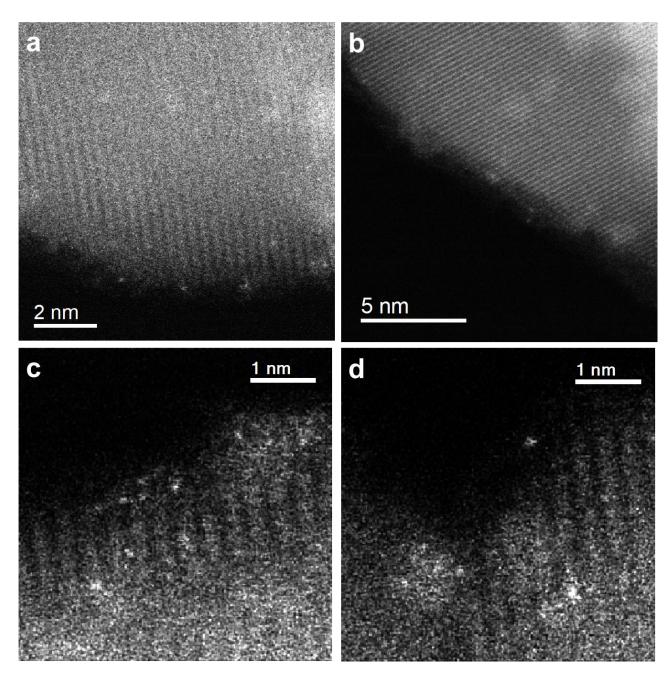
| Sample and treatment                                                    | N <sub>Pt-O</sub> | R <sub>Pt-O</sub> | N <sub>Pt-Ti</sub> | R <sub>Pt-Ti</sub> | N <sub>Pt-Pt</sub> | R <sub>Pt-Pt</sub> |
|-------------------------------------------------------------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|
| Pt foil                                                                 |                   |                   |                    |                    | 12                 | 2.77               |
| PtO <sub>2</sub>                                                        | 6                 | 1.99              |                    |                    |                    |                    |
| 0.2Pt/TiO <sub>2</sub> -450H <sub>2</sub>                               | 3.6 ± 0.5         | $1.99 \pm 0.01$   | $1.0 \pm 0.5$      | $2.61 \pm 0.03$    |                    |                    |
| 0.2Pt/TiO <sub>2</sub> -450H <sub>2</sub> -in<br>situ 50H <sub>2</sub>  | $1 \pm 1$         | 2.0 ± 0.1         |                    |                    | 7 ± 1              | 2.77 ± 0.01        |
| 0.2Pt/TiO <sub>2</sub> -450H <sub>2</sub> -in<br>situ 200H <sub>2</sub> | 0.8 ± 0.4         | 1.93 ± 0.05       |                    |                    | 5.6 ± 0.6          | 2.74 ± 0.01        |
| 0.2Pt/TiO <sub>2</sub> -450H <sub>2</sub> -in<br>situ 450H <sub>2</sub> | 2 ± 1             | 2.04 ± 0.06       |                    |                    | 6 ± 1              | 2.72 ± 0.02        |


**Table S1.** Fit results of EXAFS spectra of the as-received 0.2Pt/TiO<sub>2</sub>-450H<sub>2</sub> sample and the sample after pre-reduction treatment at different temperature.

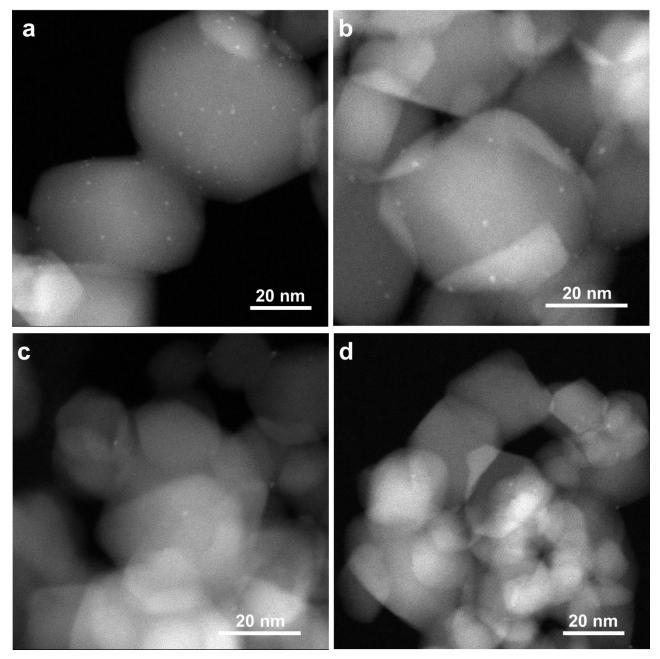
 $\Delta E_0=9$ , R<sub>factor</sub>=0.7.


According to the fit results of the EXAFS spectra, the as-revised  $0.2Pt/TiO_2-450H_2$  sample showed a dominant contribution at ~2 Å, corresponding to Pt-O bonding. Such feature in the EXAFS spectra of the as-received sample should be caused by the re-oxidation of small Pt nanoparticles in air. After reduction by H<sub>2</sub> at 50 °C, the as-received  $0.2Pt/TiO_2-450H_2$  sample will be almost completed reduced to metallic Pt, with a low Pt-O coordination number associated with the Pt-O-Ti interfacial structure. Interestingly, when the pre-reduction temperature was increased to 450 °C, a higher Pt-O contribution is observed. Considering we have observed the partial decoration of Pt particles by TiO<sub>2</sub> overlayers in the  $0.2Pt/TiO_2-450H_2$  sample, the Pt-O contribution should be related to the strong metal-support interaction between Pt and TiO<sub>2</sub> overlayers.

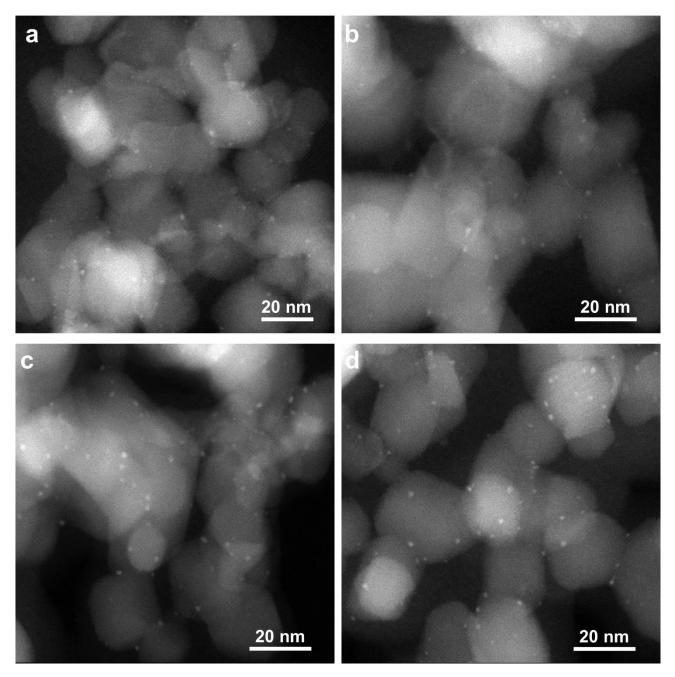



**Figure S15.** High-resolution STEM image of Pt/Al<sub>2</sub>O<sub>3</sub>-SA sample after the hydrogenation of 3nitrostyrene reaction. These images confirm the stability of single Pt atoms under mild reaction conditions.

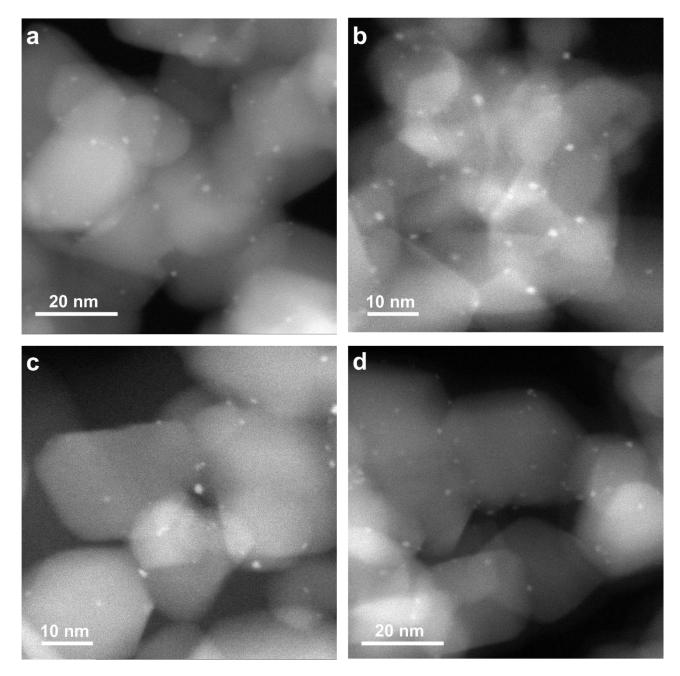



**Figure S16. Hydrogenation of 3-nitrostyrene with various 0.2Pt/Al<sub>2</sub>O<sub>3</sub> catalysts.** Reaction conditions: 0.5 mmol 3-nitrostyrene, 2 mL toluene as solvent, 20 mg of solid catalyst, 50 °C and 3 bar of H<sub>2</sub>. (a) 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-200H<sub>2</sub>, (b) 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-300H<sub>2</sub> and (c) 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-4500H<sub>2</sub>.

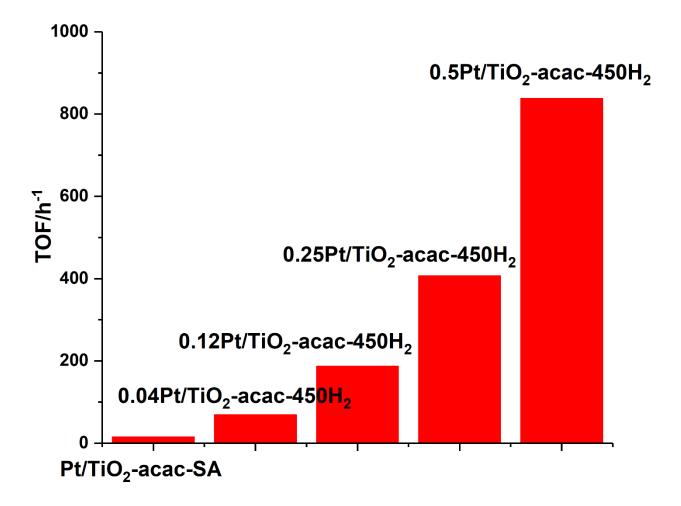



**Figure S17.** (a) XANES spectra of Pt/Al<sub>2</sub>O<sub>3</sub> samples and the references (Pt<sup>0</sup>, PtO<sub>2</sub> and H<sub>2</sub>PtCl<sub>6</sub>). (b) Enlarged XANES spectra at ~11580 eV, showing the absence of Pt-Cl bonding in Pt/Al<sub>2</sub>O<sub>3</sub> samples.

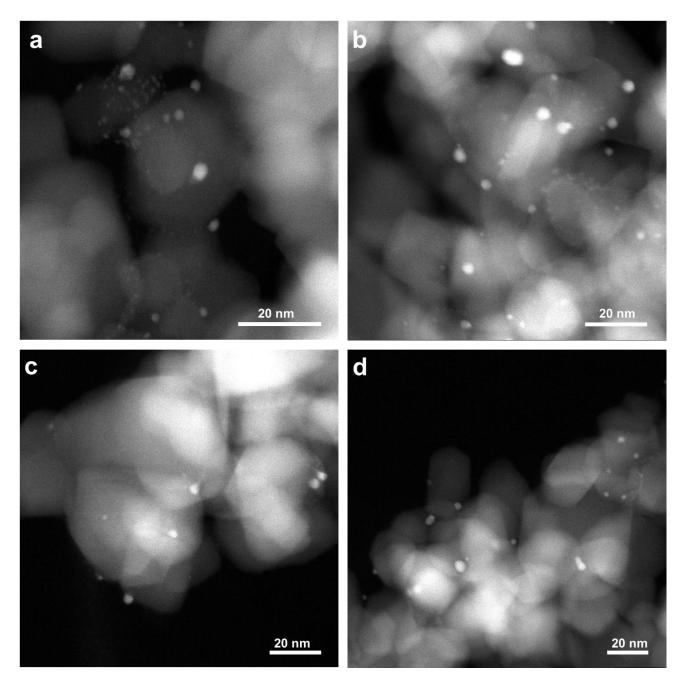



**Figure S18.** STEM images of 0.04%Pt/TiO<sub>2</sub>-acac-SA sample prepared by impregnation using Pt(acac)<sub>2</sub> as precursor. Singly dispersed Pt atoms can be observed in this sample.

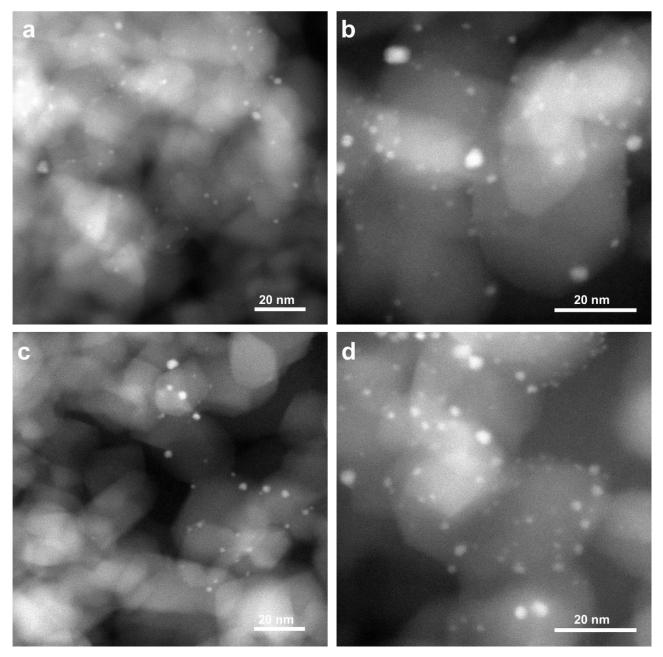



**Figure S19.** STEM images of 0.04%Pt/TiO<sub>2</sub>-acac-450H<sub>2</sub> sample prepared by impregnation using Pt(acac)<sub>2</sub> as precursor.

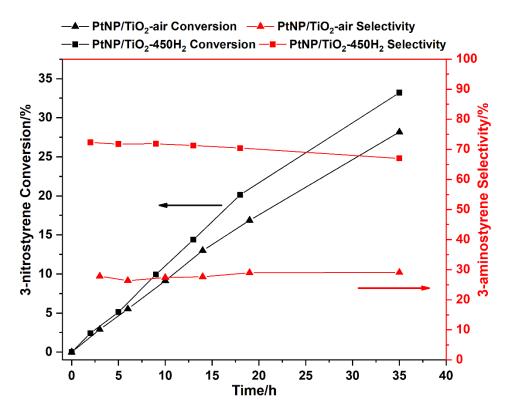



**Figure S20.** STEM images of 0.25%Pt/TiO<sub>2</sub>-acac-450H<sub>2</sub> sample prepared by impregnation using Pt(acac)<sub>2</sub> as precursor.




**Figure S21.** STEM images of 0.5%Pt/TiO<sub>2</sub>-acac-450H<sub>2</sub> sample prepared by impregnation using Pt(acac)<sub>2</sub> as precursor.




**Figure S22.** Catalytic performance of Pt/TiO<sub>2</sub> samples prepared by impregnation and using Pt(acac)<sub>2</sub> as the Pt precursor for hydrogenation of 3-nitrostyrene. Reaction conditions: 40 °C, 3 bar of H<sub>2</sub>, 10 mg of solid catalyst, 0.5 mmol of 3-nitrostyrene and 2 mL toluene as solvent.



**Figure S23.** STEM images of PtNP/TiO<sub>2</sub>-air sample prepared by deposition of Pt nanoparticles on TiO<sub>2</sub> support. The PVP polymer used in the synthesis of Pt colloid nanoparticles was removed by calcination in air. Pt nanoparticles of 1-5 nm dispersed on TiO<sub>2</sub> can be observed in this sample.



**Figure S24.** STEM images of  $PtNP/TiO_2-450H_2$  sample obtained by reducing the  $PtNP/TiO_2$ -air sample by H<sub>2</sub> at 450 °C. Pt nanoparticles of 1-5 nm dispersed on TiO<sub>2</sub> can be observed in this sample.



**Figure S25.** Catalytic performance of PtNP/TiO<sub>2</sub>-air and PtNP/TiO<sub>2</sub>-450H<sub>2</sub> for hydrogenation of 3nitrostyrene. Reaction conditions: 40 °C, 3 bar of H<sub>2</sub>, 10 mg of solid catalyst, 0.5 mmol of 3nitrostyrene and 2 mL toluene as solvent.

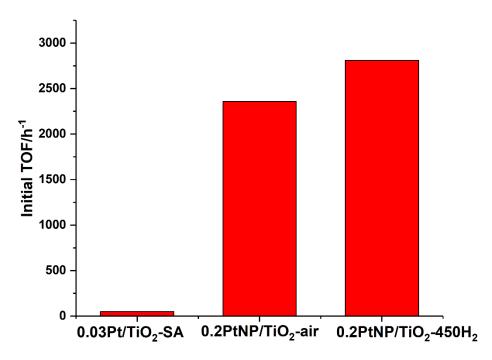
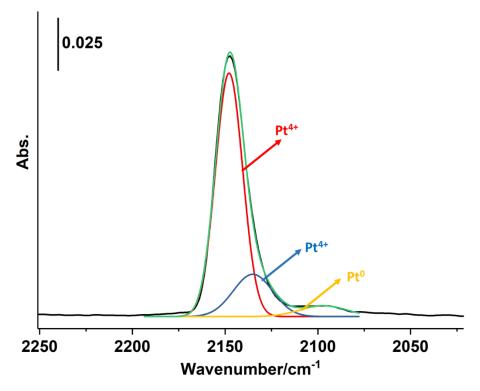




Figure S26. Initial TOF of PtNP/TiO<sub>2</sub>-air and PtNP/TiO<sub>2</sub>-450H<sub>2</sub> for hydrogenation of 3-nitrostyrene.



**Figure 27.** CO-IR spectra of the Pt/Al<sub>2</sub>O<sub>3</sub>-SA sample obtained at low temperature (-170 °C). The majority of the Pt species exist as cationic Pt atoms in the fresh Pt/Al<sub>2</sub>O<sub>3</sub>-SA sample.

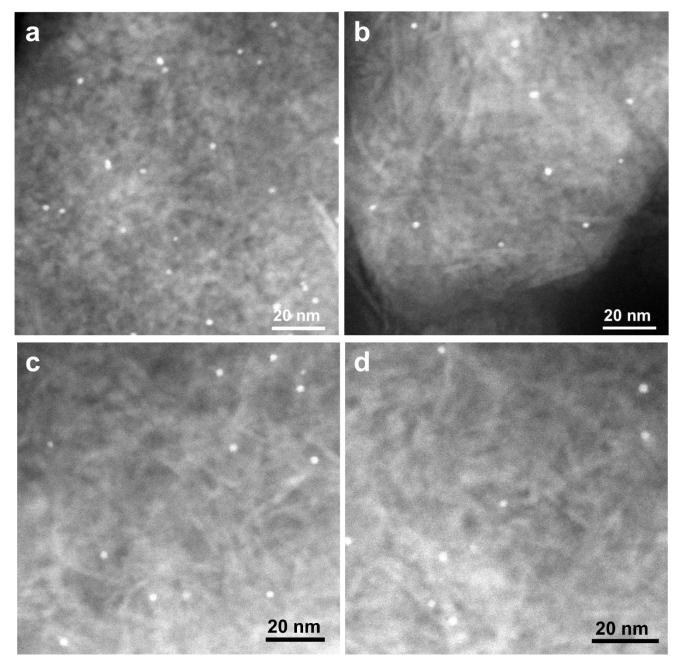
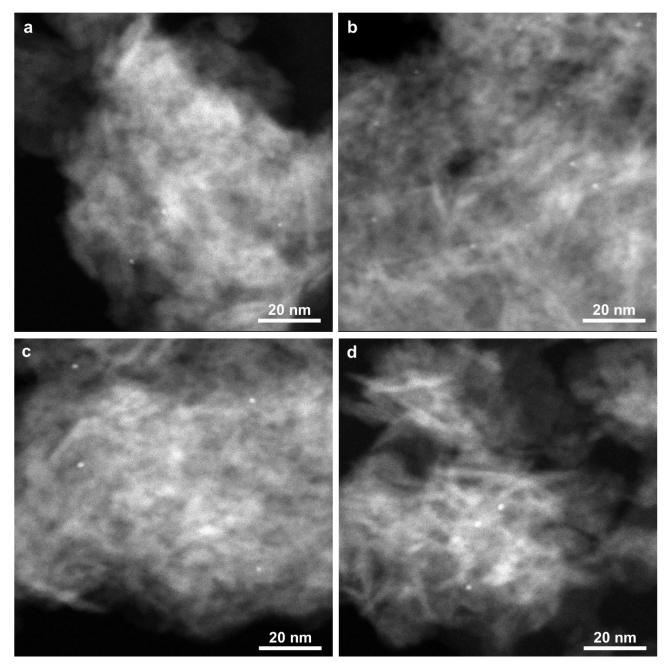




Figure S28. STEM image of 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-SA catalyst after CO+O<sub>2</sub> reaction at 325 °C. Pt nanoparticles can be observed in the fresh catalyst.



**Figure S29. STEM images of 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-SA sample after CO oxidation at 150 °C.** A few small Pt nanoparticles can be observed in the used catalyst.

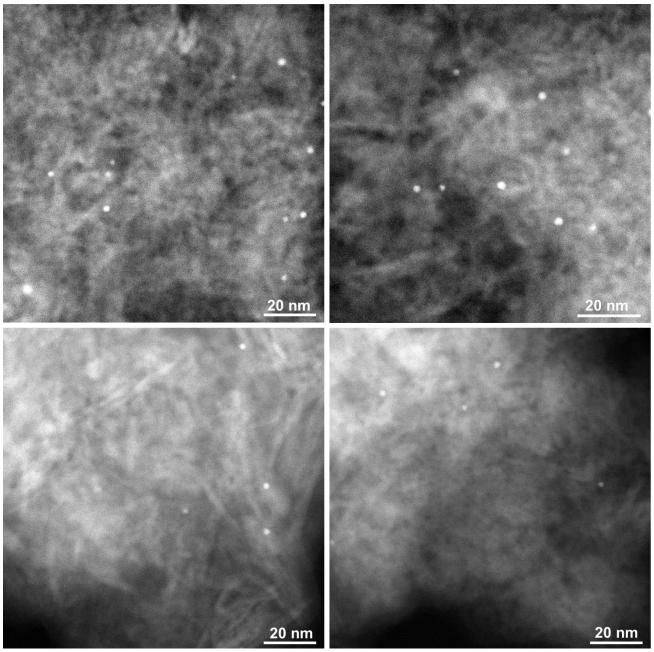



Figure S30. STEM images of 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-SA sample after CO oxidation at 225 °C. Pt nanoparticles can be observed in the used catalyst, due to the agglomeration of highly dispersed Pt atoms.

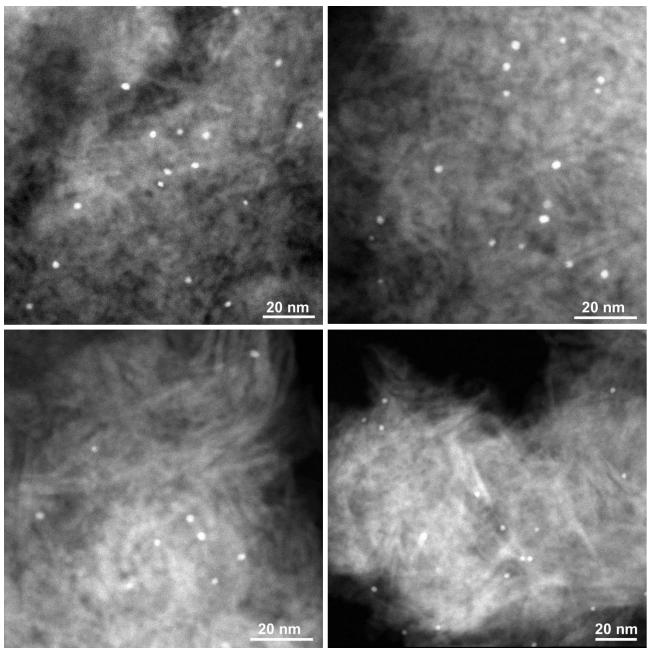
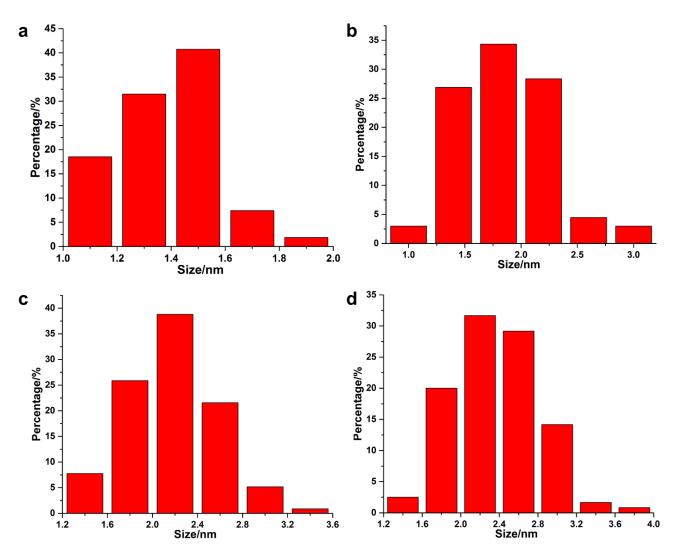
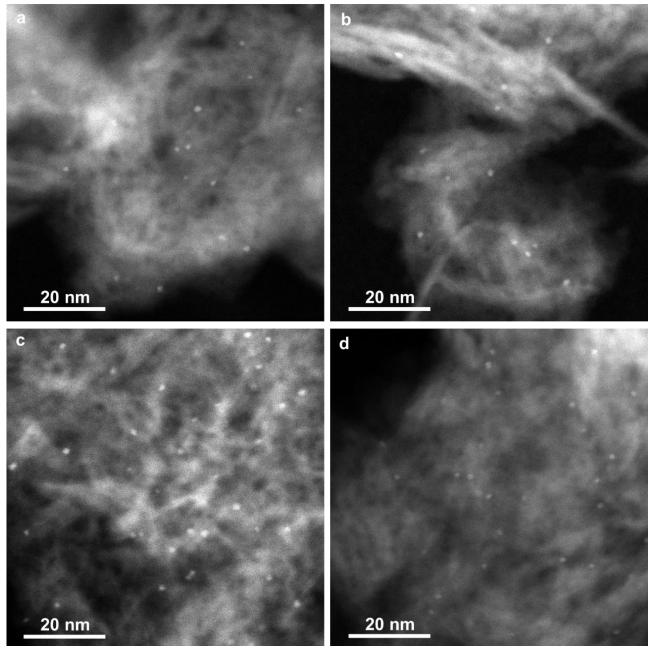
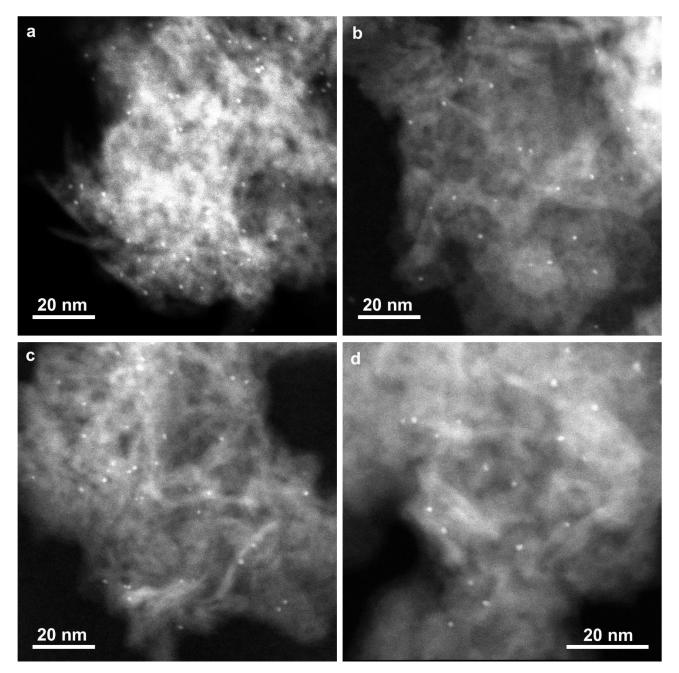
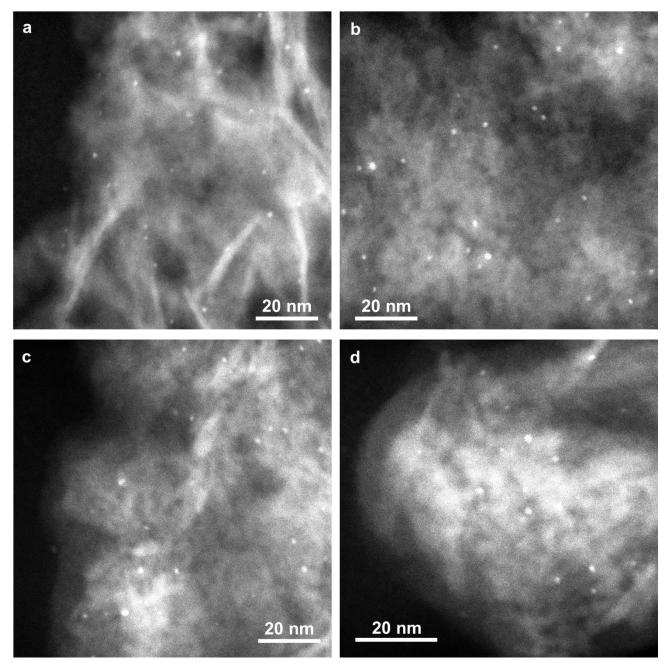
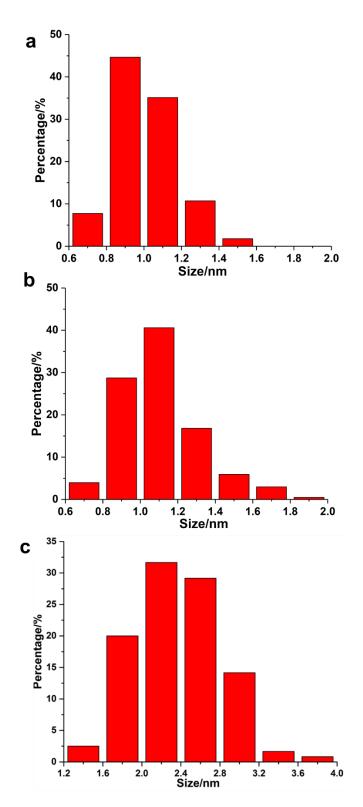



Figure S31. STEM images of 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-SA sample after CO oxidation at 275 °C. Pt nanoparticles can be observed in the used catalyst, due to the agglomeration of highly dispersed Pt atoms.

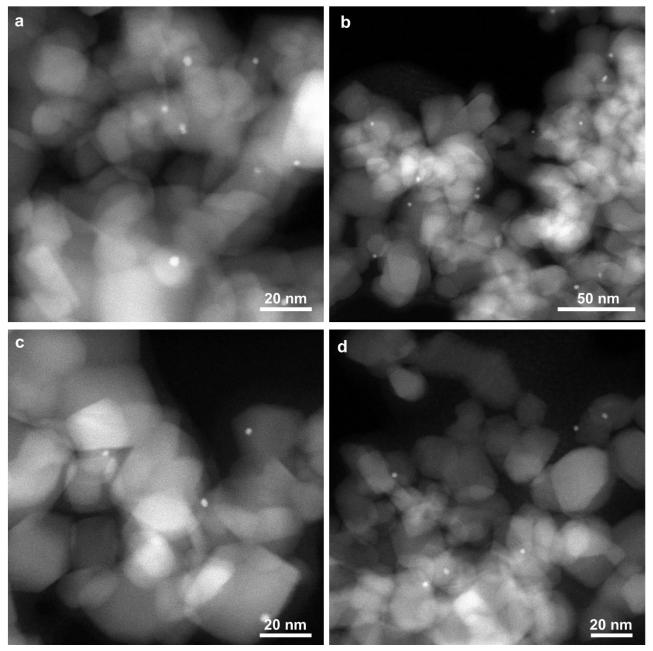






Figure S32. Size distributions of Pt nanoparticles observed in Pt/Al<sub>2</sub>O<sub>3</sub>-SA sample after CO oxidation reaction at different temperature. (a) 150 °C, (b) 225 °C, (c) 275 °C and (d) 325 °C.

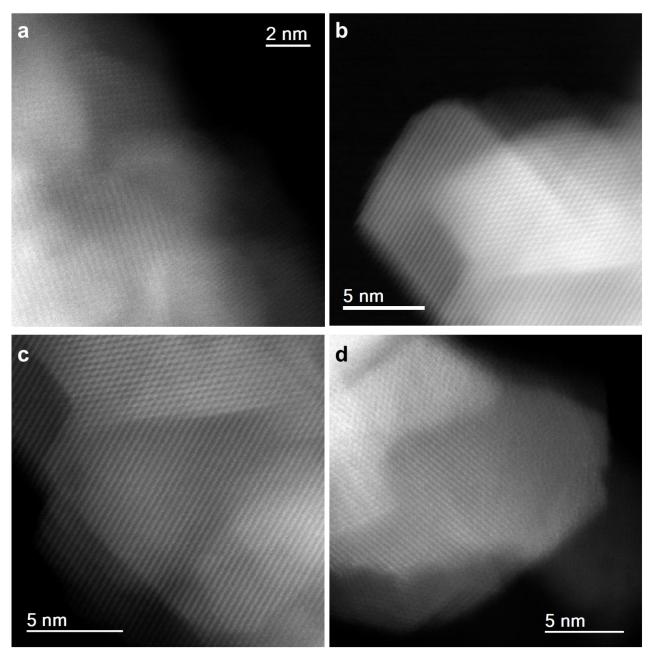



**Figure S33. STEM images of 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-200H<sub>2</sub> sample after CO oxidation reaction at 325 °C.** As can be seen, the size of Pt increases slightly compared to the pristine 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-200H<sub>2</sub> sample.




**Figure S34. STEM images of 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-300H<sub>2</sub> sample after CO oxidation reaction at 325 °C.** As can be seen, the size of Pt remains almost unchanged compared to the pristine 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-300H<sub>2</sub> sample.




**Figure S35. STEM images of 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-450H<sub>2</sub> sample after CO oxidation reaction at 325 °C.** As can be seen, the size of Pt remains almost unchanged compared to the pristine 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-450H<sub>2</sub> sample.



**Figure S36.** Particle size distribution of Pt particles in different  $0.2Pt/Al_2O_3$  samples after CO+O<sub>2</sub> reaction at 325 °C. (a)  $0.2Pt/Al_2O_3$ -300H<sub>2</sub>, (b)  $0.2Pt/Al_2O_3$ -450H<sub>2</sub> and (c)  $0.2Pt/Al_2O_3$ -SA. As can be seen in this figure, after CO oxidation reaction, the average size of Pt particles in  $0.2Pt/Al_2O_3$ -300H<sub>2</sub> and  $0.2Pt/Al_2O_3$ -450H<sub>2</sub> is around 1 nm while Pt particles present in the used  $0.2Pt/Al_2O_3$ -SA sample are mostly larger than 2 nm.



**Figure S37. STEM images of 0.03Pt/TiO<sub>2</sub>-SA after CO oxidation reaction**, showing the presence of Pt nanoparticles supported on TiO<sub>2</sub>. These images indicate that, singly dispersed Pt atoms on TiO<sub>2</sub> surface are not stable and they can agglomerate into nanoparticles or clusters under reaction conditions.



**Figure S38. STEM image of as-prepared 0.2Pt/CeO<sub>2</sub>-SA with atomically dispersed Pt species.** No Pt nanoparticles can be observed in the fresh catalyst.

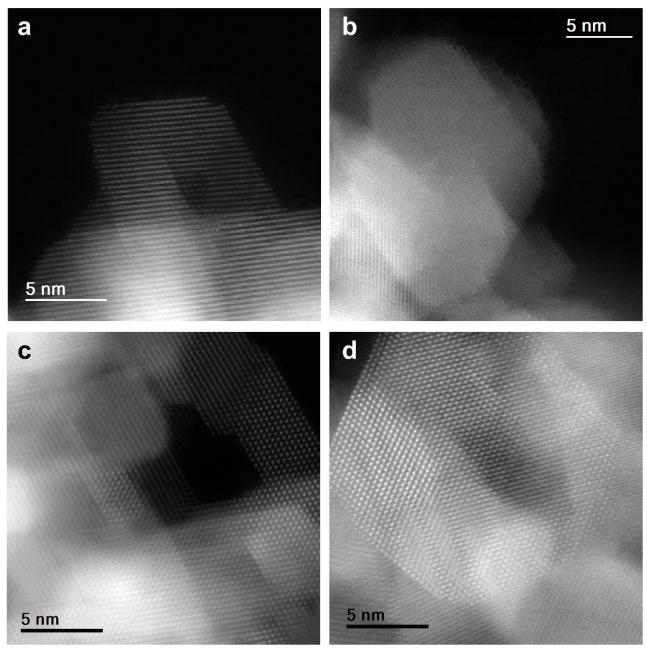
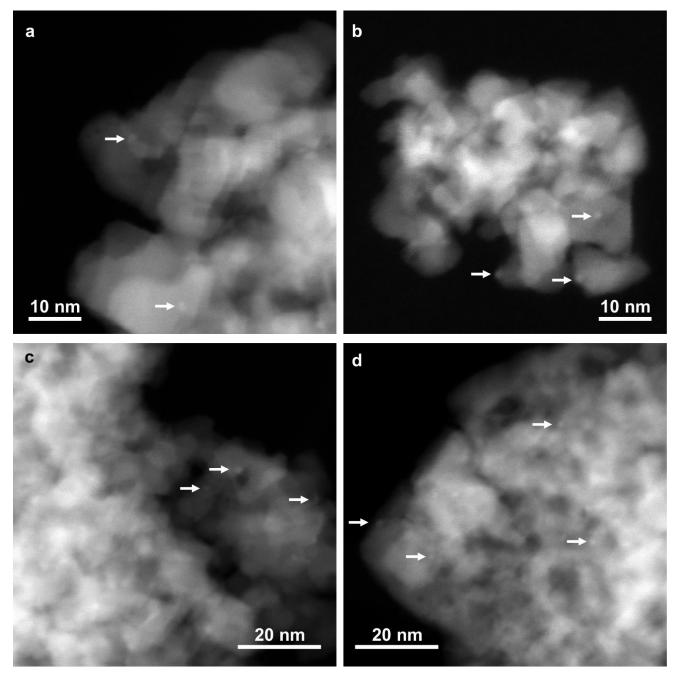




Figure S39. STEM image of  $0.2Pt/CeO_2$ -SA after CO+O<sub>2</sub> reaction. No Pt nanoparticles can be observed in the fresh catalyst. Pt remains to be atomically dispersed in the used catalyst after CO+O<sub>2</sub> reaction, suggesting the higher stability of Pt atoms on CeO<sub>2</sub>.



**Figure S40. STEM images of 0.2Pt/CeO<sub>2</sub>-500H<sub>2</sub> sample**, showing the presence of Pt nanoparticles of 1-2 nm formed after reduction of the pristine 0.2Pt/CeO<sub>2</sub>-SA sample at 500 °C by H<sub>2</sub>.

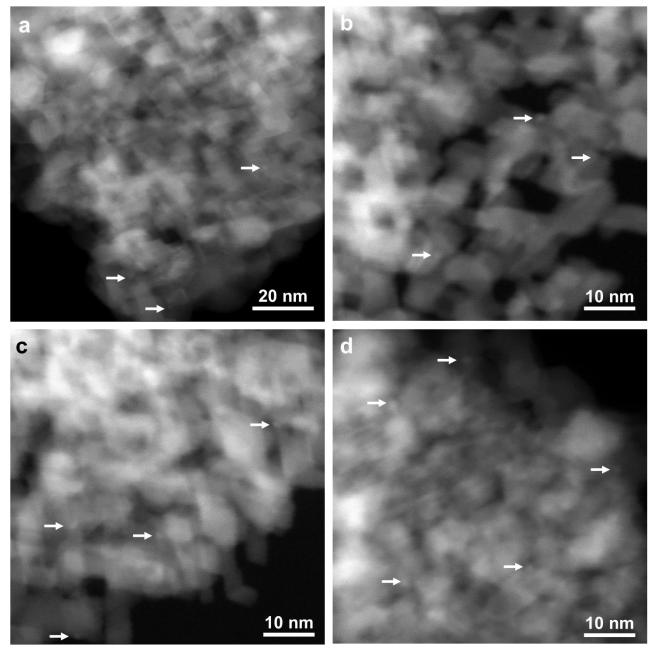



Figure S41. STEM images of 0.2Pt/CeO<sub>2</sub>-500H<sub>2</sub> sample after CO+O<sub>2</sub> reaction. Pt nanoparticles are still present in the used catalyst.

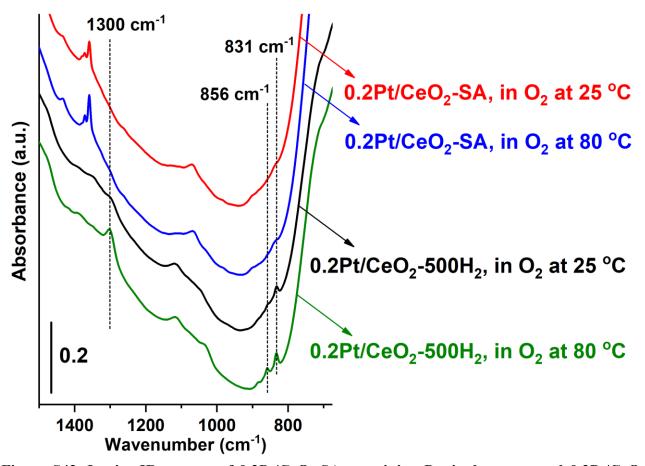
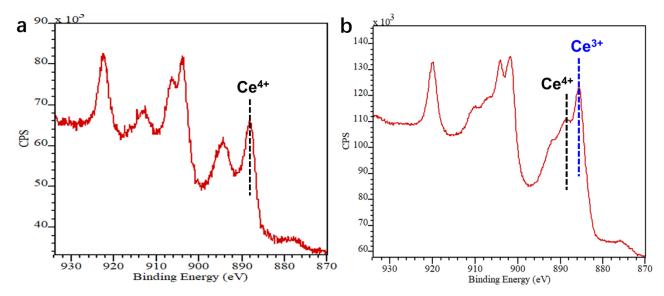




Figure S42. In situ IR spectra of  $0.2Pt/CeO_2$ -SA containing Pt single atoms and  $0.2Pt/CeO_2$ -500H<sub>2</sub> sample containing Pt nanoparticles in O<sub>2</sub>. After the activation treatment, the sample was exposed to O<sub>2</sub> and then the IR spectrum was recorded in O<sub>2</sub> atmosphere. The absorption bands at 831, 856 and 1300 cm<sup>-1</sup> corresponding to peroxide species were only observed with the 0.2Pt/CeO<sub>2</sub>-500H<sub>2</sub> sample, which can be associated to the activation of O<sub>2</sub> on this 0.2Pt/CeO<sub>2</sub> sample. However, no signal of activated oxygen species could be observed with the 0.2Pt/CeO<sub>2</sub>-SA sample.



**Figure S43. XPS spectra of Ce 3d region of 0.2Pt/CeO<sub>2</sub> samples.** (c) 0.2Pt/CeO<sub>2</sub>-SA sample and (b) 0.2Pt/CeO<sub>2</sub>-500H<sub>2</sub>, measured after pre-reduction by H<sub>2</sub>.

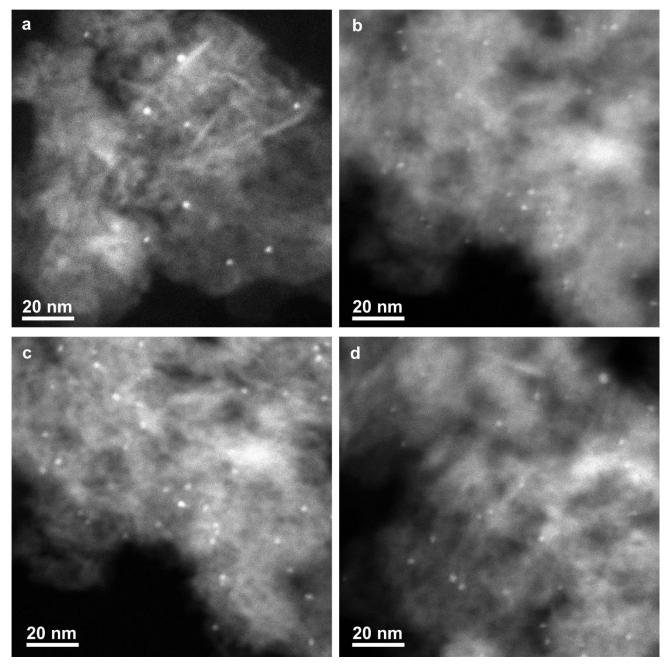



Figure S44. STEM images of 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-SA sample after propane dehydrogenation reaction at 600 °C. As can be seen, a large number of Pt nanoparticles are formed in the used catalyst,

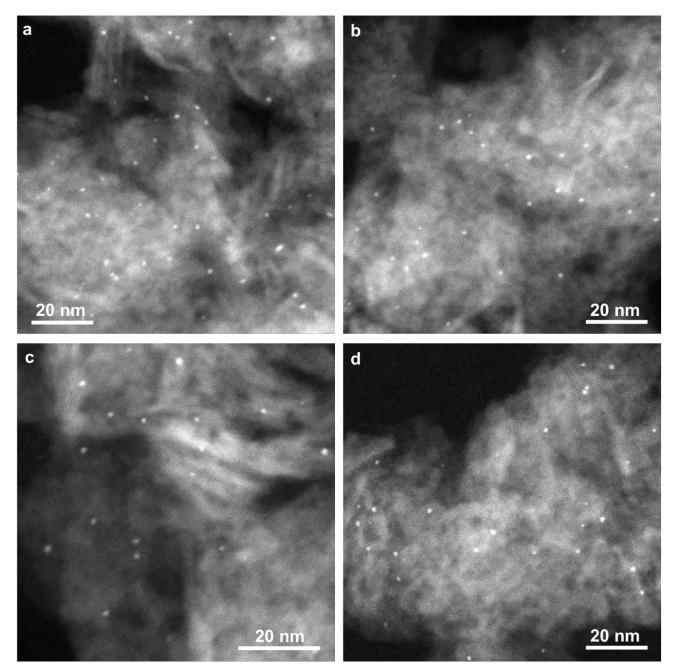



Figure S45. STEM images of 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-200H<sub>2</sub> sample after propane dehydrogenation at 600 °C.

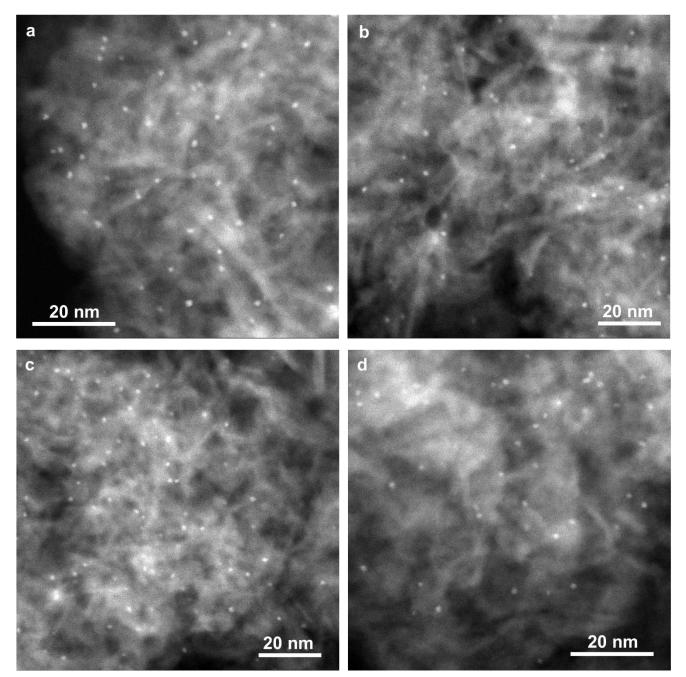



Figure S46. STEM images of 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-450H<sub>2</sub> sample after propane dehydrogenation at 600 °C.

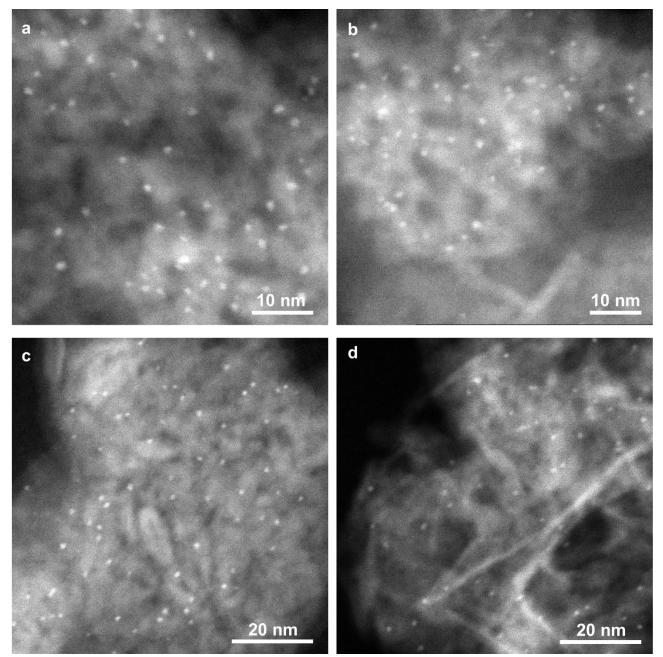



Figure S47. STEM images of the pristine  $0.2Pt/Al_2O_3-600H_2$  sample, prepared by reduction of  $Pt/Al_2O_3$ -SA sample at 600 °C by H<sub>2</sub>.

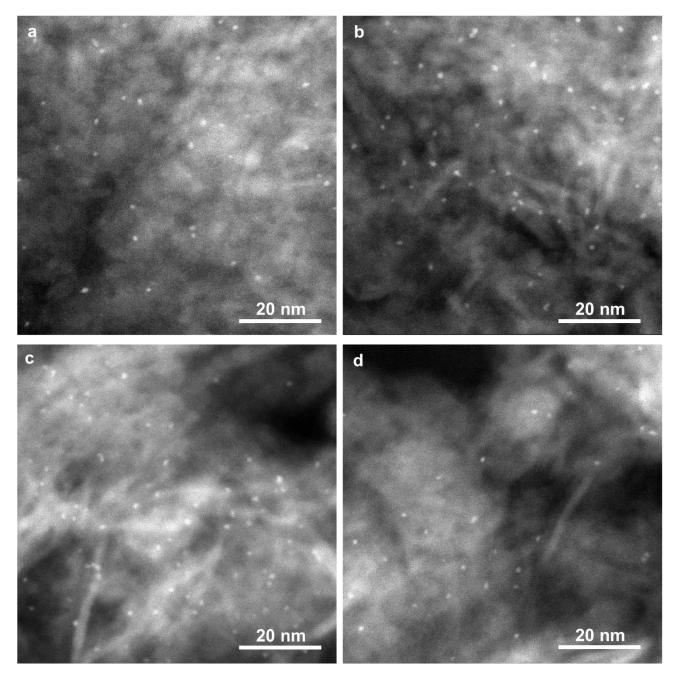



Figure S48. STEM images of 0.2Pt/Al<sub>2</sub>O<sub>3</sub>-600H<sub>2</sub> sample after propane dehydrogenation at 600 °C.