Supporting Information

Cobalt catalyzed oxidative annulation of benzothiophene-[b]-1,1-dioxide through diasteroselective double C-H activation

Subban Kathiravan* and Ian A. Nicholls*

Bioorganic & Biophysical Chemistry Laboratory, Department of Chemistry & Biomedical Sciences and Linnaeus University Centre for Biomaterials Chemistry Linnaeus University, Linnaeus University, SE-391 82 Kalmar, Sweden Ian.nicholls@lnu.se and suppan.kathiravan@lnu.se

Table of Contents:

1. General information	S-2
2. General procedure for the preparation of 8-aminoquinolinyl amides	S-3
3. Synthesis of benzothiophene [b]-1,1-dioxide	S-3
4. Synthesis of benzothiophene-2- <i>d</i>	S-3
5. Synthesis of benzothiophene-[b]-1,1-dioxide-d	S-3
6. Synthesis of [Cp*Co(CO)I ₂]	S-3
7. Optimization of reaction conditions	S-4
8. Optimization of directing group	S-6
9. Control experiment's	S-6
10. General procedure for C-H activation	S-8
11. 1 mmol scale experiment	S-8
12. Spectroscopic and analytical Data	S-9
13. X-ray crystallographic data	S-20
14. NMR spectra	S-39
15. Gram scale experiment	S-68
16. References	S-68

1. General Information:

Reactions were run using standard glassware and techniques.

The C-H activation was carried out in a sealed Pyrex pressure tube purchased from SciLabware.com. Unless otherwise stated, all reactions and manipulations were performed under an atmosphere of ambient air unless. Yields refer to isolated compounds, estimated to be \geq 95% pure as determined by ¹H-NMR. All the solvents were used as received. THF was distilled from sodium

benzopheneone ketyl. All the chemicals were purchased from Aldrich and Chemtronica, Sweden. For column chromatography silica gel (60 Å) from Chemtronica was used. A series of petroleum ether (40-65 °C) – ethylacetate compositions were used to identify optimal detection for use with Aldrich TLC sheets (silica gel on aluminium foils with fluorescence indicator 254 nm).

Analytical information: The melting points recorded are uncorrected. ¹H NMR, ¹³C and ¹⁹F NMR spectroscopy, and IR spectroscopy were used to characterize all isolated compounds. In addition, all the compounds are further characterized by HRMS. Nuclear magnetic resonance spectra were recorded on a Varian 500 & Bruker 400 MHz instrument. All ¹H NMR experiments are reported in units, parts per million (ppm), and were measured relative to the signals for residual chloroform (7.26 ppm) in the deuterated solvent, unless otherwise stated. All ¹³C NMR spectra were reported in ppm relative to deuterated chloroform (77.23 ppm), unless otherwise stated, and all were obtained with H decoupling.

2. General procedure for the preparation of 8-aminoquinolinyl amides (1)

The amides were prepared according to the reported procedure.^{S1}

3. Synthesis of benzothiophene-[*b*]-1,1-dioxide (2)

The benzothiophene [b]-1,1-dioxide was prepared according to the reported procedure.^{S2}

4. Synthesis of benzothiophene-2-*d*

The benzothiophene-2-d was synthesized according to the procedure reported by Glorius et al.^{S3}

n-BuLi (1.6 M solution in hexane, 6 mL, 1.5 equiv) was added dropwise to a solution of benzothiophene (0.8 g, 1 equiv) in dry THF (20 mL) at -78 °C. The resulting mixture was stirred at the same temperature for further 2h and D₂O (6 mL) was added. The white suspension was warmed to room temperature and stirred for another 1h. H₂O (15 mL) was added and the product was extracted with diethylether (3 × 15 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. Spectroscopic data were in accordance with the literature.

5. Synthesis of benzothiophene-[b]-1,1-dioxide-d

To a stirred solution of benzothiophene-d (0.3 g, 2.2 mmol, 1 equiv), in CHCl₃ (20 mL) was added *m*CPBA (0.95 g, 5.5 mmol, 2.5 equiv) slowly at room temperature with vigorous stirring. After overnight stirring, saturated NaHCO₃ was added and the organic layer was extracted three times with DCM (10 mL). The solvent was dried with Na₂SO₄ and evaporated to dryness. The crude product was continued for the C-H activation without further purification resulted in 70 % isolated yield as a colorless solid.

6. Synthesis of [Cp*Co(CO)I₂]

The $[Cp*Co(CO)I_2]$ catalyst was prepared according to the reported procedure. ^{S4}

7. Optimization of reaction conditions

7.1. Optimization of general conditions

Table S1. Screening of additive.^a

Entry	Additive	Yield (%)
1	NaOAc	15
2	KOAc	85
3	NaOPiv	50
4	KOPiv	40
5	NaHCO ₃	30
6	Na ₂ HPO ₄	25
7	K ₂ CO ₃	10

^aReaction conditions: Amide 1 (0.2 mmol), benzothiophene-[*b*]-1,1-dioxide 2 (0.3 mmol), Co(acac)₂ (0.04 mmol), additive (0.8 mmol), Ag₂O (0.4 mmol), [TFE+ *t*AmylOH (1:1)] (2 mL) reaction run in a sealed tube at 110 °C under air for 24 h.

Table S2. Screening of oxidant.^a

Entry	Oxidant	Yield (%)
1	Ag ₂ O	85
2	Ag_2CO_3	15
3	AgF	NR
4	AgOPiv	10
5	AgOTf	NR
6	Mn(OAc) ₂	NR
7	Mn(OAc) ₃	NR
8	AgNO ₃	NR

^aReaction conditions: Amide 1 (0.2 mmol), benzothiophene-[*b*]-1,1-dioxide 2 (0.3 mmol), Co(acac)₂ (0.04 mmol), KOAc (0.8 mmol), oxidant (0.4 mmol), [TFE+ *t*AmylOH (1:1)] (2 mL) reaction run in a sealed tube at 110 °C under air for 24 h.

Table S3. Screening of catalyst.^a

Entry	Catalyst	Yield (%)
1	$Co(acac)_2$	85
2	Co(OH) ₂	NR
3	Co(OAc) ₂ •H ₂ O	35
4	CoCl ₂	10
5	$[Cp*Co(CO)I_2]$	NR
6	Ni(OAc) ₂	NR
7	Ni(acac) ₂	NR
8	Cu(OAc) ₂	NR

^aReaction conditions: Amide **1** (0.2 mmol), benzothiophene-[*b*]-1,1-dioxide **2** (0.3 mmol), catalyst (0.04 mmol), KOAc (0.8 mmol), Ag₂O (0.4 mmol), [TFE+ *t*AmylOH (1:1)] (2 mL) reaction run in a sealed tube at 110°C under air for 24 h.

Table S4. Screening of Solvent.^a

Entry	Solvent	Yield (%)
1	TFE+ <i>t</i> AmylOH (1:1)	85
2	TFE	60
3	<i>t</i> AmylOH	30
4	TFE+1-BuOH (1:1)	14
5	TFE+Ethyleneglycol	NR
	(1:1)	
6	TFE+MeOH (1:1)	NR
7	TFE+EtOH (1:1)	NR
8	TFE+Toluene (1:1)	NR

^aReaction conditions: Amide **1** (0.2 mmol), benzothiophene-[*b*]-1,1-dioxide **2** (0.3 mmol), catalyst (0.04 mmol), KOAc (0.8 mmol), Ag₂O (0.4 mmol), solvent (2 mL) reaction run in a sealed tube at 110°C under air for 24 h.

Table S5. Screening of Temperature.^a

Entry	Temperature (°C)	Yield (%)
1	110	85
2	80	60
3	60	30
4	RT	14

^aReaction conditions: Amide **1** (0.2 mmol), benzothiophene-[*b*]-1,1-dioxide **2** (0.3 mmol), catalyst (0.04 mmol), KOAc (0.8 mmol), Ag₂O (0.4 mmol), [TFE+ *t*AmylOH (1:1)] (2 mL) reaction run in a sealed tube at (temperature) under air for 24 h.

8. Optimization of directing group

Table S6. Directing group optimization

9. Control experiments

10. General procedure for cobalt catalyzed C-H activation

8-aminoquinolinamide **1** (1 equiv.), benzothiophene [*b*]-1,1-dioxide **2** (1.5 equiv), Co(acac)₂ (20 mol%), KOAc (4 equiv), Ag₂O (2 equiv), were placed in a 10 mL vial are dissolved in 1 mL of TFE+^{*t*}Amyl-OH (1:1). The vial was placed in a preheated hot block and stirred at 110 °C for 36 h. TLC was used to monitor reaction progress. The solvent was evaporated and the products were separated by column chromatography using a step gradient moving from petroleum ether (40-65 °C) to pure ethyl acetate as eluent. In most cases the compounds were eluted with ethyl acetate.

11. 1 mmol scale experiment

8-aminoquinolinamide **1a** (1.22 mmol), benzothiophene [*b*]-1,1-dioxide **2a** (1.02 mmol), Co(acac)₂ (0.2 mmol), KOAc (4.8 mmol) and Ag₂O (2.4 mmol) were placed in a 50 mL vial and dissolved in 5 mL of TFE+^{*t*}Amyl-OH (1:1). The vial was placed in a preheated hot block and stirred at 110 °C for 36 h. TLC was used to monitor reaction progress. The solvent was evaporated and the product (**3a**) was separated by column chromatography using a step gradient moving from petroleum ether (40-65 °C) to pure ethyl acetate as eluent as brown solid (0.29g, 67%).

12. Spectroscopic and Analytical Data

(6aR)-6-(quinolin-8-yl)-6a,11a-dihydro-11*H*-11 λ^6 -[1]benzothieno[3,2-*c*]isoquinoline-5,11,11(6*H*)-trione (3a):

The general procedure was followed using benzamide **1a** (107 mg, 0.43 mmol, 1.2 equiv.) and benzothiophene [*b*]-1,1-dioxide **2a** (60 mg, 0.36 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded **3a** in 85% (126 mg) isolated yield. Brown solid, m.pt – 248 °C, ¹H NMR (500 MHz, Chloroform-*d*) δ 8.97 (s, 1H), 8.37 (t, *J* = 6.4 Hz, 1H), 8.27 (t, *J* = 6.5 Hz, 1H), 7.86 (t, *J* = 6.4 Hz, 1H), 7.80 (t, *J* = 6.7 Hz, 1H), 7.80 (t, *J* = 6.7 Hz)

1H), 7.70 (d, J = 5.0 Hz, 2H), 7.65 (d, J = 5.4 Hz, 1H), 7.54 – 7.48 (m, 2H), 7.44 (q, J = 6.9 Hz, 1H), 7.31 (q, J = 7.1 Hz, 1H), 7.07 (q, J = 6.8, 6.3 Hz, 1H), 7.06 – 6.99 (m, 1H), 6.53 (d, J = 5.6 Hz, 1H), 5.93 (d, J = 6.7 Hz, 1H), 5.01 (d, J = 5.6 Hz, 1H), 2.17 (s, 1H). ¹³C NMR (500 MHz, Chloroform-*d*) δ 162.83, 150.86, 144.74, 138.65, 136.80, 136.23, 135.47, 132.98, 132.27, 132.24, 130.71, 130.36, 130.01, 129.49, 129.33, 128.86, 128.58, 128.45, 126.46, 126.19, 122.49, 121.70, 64.64, 57.69. IR (neat): 1665, 1519, 1483, 1321, 1258. HRMS (ESI) M/Z calculated for C₂₄H₁₆N₂O₃S [M+H]⁺ : 413.0954, found: 413.0910.

(6a)-4-methyl-6-(quinolin-8-yl)-6a,11a-dihydro-11*H*-11λ⁶-[1]benzothieno[3,2-*c*]isoquinoline-

5,11,11(6*H*)-trione (3b):

The general procedure was followed using benzamide **1b** (113 mg, 0.43 mmol, 1 equiv.) and benzothiophene [b]-1,1-dioxide **2a** (60 mg, 0.36 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded **3b** in 69% (106 mg) isolated yield. Brown solid, m.pt – 113 °C. ¹H NMR (500 MHz, Chloroform-*d*) 8.99 (s, 1H), 8.26 (d, *l* = 8.2

Hz, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 8.2 Hz, 1H), 7.54 (q, J = 8.7 Hz, 3H), 7.48 – 7.38 (m, 2H), 7.33 – 7.26 (m, 2H), 7.12 (d, J = 7.2 Hz, 1H), 7.00 (t, J = 7.6 Hz, 1H), 6.48 (s, 1H), 5.95 (d, J = 7.6 Hz, 1H), 4.97 (d, J = 5.6 Hz, 1H), 2.77 (s, 3H). ¹³C **NMR (500 MHz, Chloroform-***d***)** δ 163.56, 150.67, 143.66, 138.52, 136.85, 136.60, 135.77, 134.71, 132.47, 132.22, 132.05, 130.60, 129.33, 128.30, 128.10, 127.43, 127.28, 126.50, 122.53, 121.62, 65.73, 57.07, 23.45. **IR (neat)**: 1639, 1467, 1368, 1301, 1255, 1149, 1123. **HRMS (ESI)** M/Z calculated for C₂₅H₁₇N₂O₃S [M+H]⁺ : 427.1111, found: 427.1110.

(6a)-3-methyl-6-(quinolin-8-yl)-6a,11a-dihydro-11H-11 λ^6 -[1]benzothieno[3,2-*c*]isoquinoline-5,11,11(6*H*)-trione (3c):

The general procedure was followed using benzamide 1c (113 mg, 0.43 mmol, 1 equiv.) and benzothiophene [b]-1,1-dioxide 2a (60 mg, 0.36 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded 3c in 69% (106 mg) isolated yield. Yellow solid, m.pt – 220 °C, ¹H NMR (500 MHz, Chloroform-*d*) 8.97 (s, 1H), 8.27 (s, 1H), 8.18 (s, 1H), 7.83 (dd, *J* = 27.9, 8.5 Hz, 2H), 7.60

(d, *J* = 7.6 Hz, 1H), 7.52 (d, *J* = 8.5 Hz, 2H), 7.44 (t, *J* = 8.0 Hz, 2H), 7.32 (t, *J* = 8.2 Hz, 1H), 7.11 – 6.98 (m, 2H), 6.50 (s, 1H), 5.93 (d, *J* = 7.6 Hz, 1H), 4.98 (d, *J* = 5.9 Hz, 1H), 2.49 (s, 3H). ¹³C NMR (500 MHz, Chloroform-*d*) δ 163.03, 150.75, 140.69, 138.71, 137.76, 136.80, 136.34, 135.62, 133.80, 132.18, 130.64, 130.46, 129.79, 129.33, 129.25, 129.16, 128.78, 128.38, 125.17, 122.53, 121.64, 64.51, 57.75, 21.51. IR (neat): 1646, 1498, 1426, 1366, 1303, 1279, 1150. HRMS (ESI) M/Z calculated for C₂₅H₁₇N₂O₃S [M+H]⁺: 427.1111, found: 427.1110.

(6a)-4-methyl-6-(quinolin-8-yl)-6a,11a-dihydro-11H-11 λ^6 -[1]benzothieno[3,2-*c*]isoquinoline-5,11,11(6*H*)-trione (3d):

The general procedure was followed using benzamide **1d** (113 mg, 0.43 mmol, 1 equiv.) and benzothiophene [b]-1,1-dioxide **2a** (60 mg, 0.36 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded **3d** in 62% (95 mg) isolated yield. Yellow solid, m.pt – 113 °C, ¹H NMR (500 MHz, Chloroform-d) δ 8.97 (s, 1H), 8.25 (t, *J* = 7.7 Hz, 2H), 7.86 (d, *J* = 7.7 Hz, 1H), 7.79 (d, *J* = 8.2 Hz, 1H), 7.52 – 7.40

(m, 4H), 7.34 – 7.25 (m, 1H), 7.10 – 7.00 (m, 2H), 6.52 (d, J = 5.8 Hz, 1H), 5.92 (d, J = 7.7 Hz, 1H), 4.95 (d, J = 5.8 Hz, 1H), 2.53 (s, 3H). ¹³C NMR (500 MHz, Chloroform-*d*) δ 163.02, 150.80, 144.80, 143.84, 138.68, 136.76, 136.36, 135.57, 132.28, 132.22, 131.27, 130.65, 130.05, 129.32, 129.28, 128.59, 128.38, 126.87, 126.46, 126.08, 122.49, 121.65, 64.68, 57.73, 21.69. IR (neat): 1722, 1659, 1611, 1369, 1300, 1275, 1262, 1151, 1125. HRMS (ESI) M/Z calculated for C₂₅H₁₇N₂O₃S [M+H]⁺: 427.1111, found: 427.1110.

(6a)-4-methoxy-6-(quinolin-8-yl)-6a,11a-dihydro-11H-11 λ^6 -[1]benzothieno[3,2-c]isoquinoline-5,11,11(6H)-trione (3e):

The general procedure was followed using benzamide **1e** (120 mg, 0.43 mmol, 1.2 equiv.) and benzothiophene [b]-1,1-dioxide **2a** (60 mg, 0.36 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded **3e** in 59% (84 mg) isolated yield. Yellow solid, m.pt – 204 °C, ¹H NMR (500 MHz, Chloroform-d) δ 8.89 (s, 1H), 8.25 – 8.11 (m, 2H), 7.83 – 7.66 (m, 2H), 7.39 (d, J = 21.8 Hz, 5H), 7.30 – 7.15 (m, 2H), 6.97

(dd, J = 14.8, 5.9 Hz, 2H), 6.44 (s, 1H), 5.84 (d, J = 6.3 Hz, 1H), 4.87 (s, 1H), 2.44 (s, 3H).¹³C NMR (500 MHz, Chloroform-*d*) 162.02, 149.74, 142.83, 137.71, 135.80, 135.33, 134.57, 131.33, 131.18, 130.26, 129.63, 129.04, 128.31, 128.26, 127.58, 127.35, 125.87, 125.47, 125.07, 121.49, 120.62, 63.69, 56.71, 20.64. IR (neat): 2247, 2122, 1659, 1622. HRMS (ESI) M/Z calculated for C₂₅H₁₈N₂O₄S [M+H]⁺: 443.1060, found: 443.1060.

(6a)-2-methoxy-6-(quinolin-8-yl)-6a,11a-dihydro-11*H*-11 λ^6 -[1]benzothieno[3,2-*c*]isoquinoline-5,11,11(6*H*)-trione (3f):

The general procedure was followed using benzamide **1f** (120 mg, 0.43 mmol, 1.2 equiv.) and benzothiophene [b]-1,1-dioxide **2a** (60 mg, 0.36 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded **3f** in 60% (95 mg) isolated yield. Colorless solid, m.pt – >250 °C, ¹H NMR (500 MHz, Chloroform-*d*) δ 8.98 (s, 1H), 8.29 (t, *J* = 10.7 Hz, 2H), 7.86 (d, *J* = 7.7

Hz, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.55 – 7.48 (m, 1H), 7.45 (t, J = 7.7 Hz, 1H), 7.37 – 7.29 (m, 1H), 7.15 (d, J = 12.0 Hz, 2H), 7.12 – 7.00 (m, 2H), 6.53 (d, J = 5.8 Hz, 1H), 5.95 (d, J = 7.7 Hz, 1H), 4.96 (d, J = 5.8 Hz, 1H), 3.97 (s, 3H). ¹³C NMR (500 MHz, Chloroform-*d*) δ 163.15, 162.89, 150.75, 138.63, 136.41, 135.58, 132.39, 132.24, 132.14, 130.64, 129.33, 128.54, 128.34, 128.03, 126.49, 122.49, 122.17, 121.62, 116.25, 113.36, 64.85, 57.76, 55.78. IR (neat): 1645, 1607, 1500, 1372, 1306, 1263, 1152, 1030. HRMS (ESI) M/Z calculated for C₂₅H₁₈N₂O₄S [M+H]⁺: 443.1060, found: 443.1059.

(6a)-2-*tert*-butyl-6-(quinolin-8-yl)-6a,11a-dihydro-11*H*-11 λ^{6} -[1]benzothieno[3,2-*c*]isoquinoline-5,11,11(6*H*)-trione (3g):

The general procedure was followed using benzamide **1g** (131 mg, 0.43 mmol, 1.2 equiv.) and benzothiophene [b]-1,1-dioxide **2a** (60 mg, 0.36 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded **3g** in 79% (131 mg) isolated yield. Colorless solid, m.pt – 210 °C, ¹H NMR (500 MHz, Chloroform-*d*) δ 8.94 (s, 1H), 8.27 (dd, *I* = 9.7, 5.7 Hz, 2H), 7.85 (dd, *I* =

7.8, 3.8 Hz, 1H), 7.81 – 7.75 (m, 1H), 7.67 (d, J = 4.0 Hz, 2H), 7.52 – 7.39 (m, 2H), 7.32 – 7.26 (m, 1H), 7.10 – 6.99 (m, 2H), 6.52 (s, 1H), 5.92 (dd, J = 8.0, 3.8 Hz, 1H), 4.99 (t, J = 4.9 Hz, 1H), 1.43 (s, 9H). ¹³C **NMR (500 MHz, Chloroform-***d***)** δ 162.99, 156.76, 150.81, 144.79, 138.73, 136.77, 136.32, 135.57, 132.27, 132.23, 130.64, 129.81, 129.31, 128.55, 128.38, 127.66, 126.92, 126.42, 125.93, 125.73, 122.46, 121.67, 77.35, 77.10, 76.85, 65.03, 57.83, 35.28, 31.21. **IR (neat)**: 1700, 1651, 1609, 1500, 1423, 1387, 1309, 1152, 1123. **HRMS (ESI)** M/Z calculated for C₂₈H₂₃N₂O₃S [M+H]⁺: 469.1580, found: 469.1579.

(6a)-3-chloro-6-(quinolin-8-yl)-6a,11a-dihydro-11H-11 λ^6 -[1]benzothieno[3,2-c]isoquinoline-5,11,11(6H)-trione (3h):

The general procedure was followed using benzamide **1h** (121 mg, 0.43 mmol, 1.2 equiv.) and benzothiophene [b]-1,1-dioxide **2a** (60 mg, 0.36 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded **3h** in 55% (89 mg) isolated yield. Colorless solid, m.pt – 180 °C, ¹H NMR (500 MHz, Chloroform-*d*) δ 9.01

-8.93 (m, 1H), 8.33 (d, J = 2.2 Hz, 1H), 8.31 - 8.25 (m, 1H), 7.89 - 7.79 (m,

2H), 7.70 - 7.62 (m, 2H), 7.52 (dd, J = 8.3, 4.2 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.32 (t, J = 7.8 Hz, 1H), 7.05 (t, J = 7.7 Hz, 2H), 6.52 (d, J = 5.9 Hz, 1H), 5.95 (d, J = 7.7 Hz, 1H), 4.98 (d, J = 5.8 Hz, 1H). ¹³C NMR (500 MHz, Chloroform-*d*) δ 161.68, 150.87, 144.51, 138.44, 136.90, 135.88, 135.22, 133.04, 132.40, 132.16, 131.01, 130.86, 130.23, 130.09, 129.36, 128.63, 126.49, 124.59, 122.56, 121.79, 64.04, 57.67. IR (neat): 1658, 1592, 1571, 1498, 1391, 1374, 1309, 1151, 1123. HRMS (ESI) M/Z calculated for C₂₄H₁₅ClN₂O₃S [M+H]⁺: 447.0565, found: 447.0563.

(6a)-2-chloro-6-(quinolin-8-yl)-6a,11a-dihydro-11*H*-11 λ^6 -[1]benzothieno[3,2-*c*]isoquinoline-5,11,11(6*H*)-trione (3i):

The general procedure was followed using benzamide **1i** (121 mg, 0.43 mmol, 1.2 equiv.) and benzothiophene [b]-1,1-dioxide **2a** (60 mg, 0.36 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded **3i** in 60% (95 mg) isolated yield.

Colorless solid, m.pt – >250 °C, ¹H NMR (500 MHz, Chloroform-*d*) δ 8.98 (s, 1H), 8.29 (t, *J* = 9.0 Hz, 2H), 7.85 (dd, *J* = 25.9, 8.0 Hz, 2H), 7.70 (s, 1H), 7.61 (d, *J* = 8.2 Hz, 1H), 7.49 (dt, *J* = 29.0, 7.2 Hz, 2H), 7.38 – 7.23 (m, 2H), 7.07 (d, *J* = 7.8 Hz, 2H), 6.53 (d, *J* = 5.9 Hz, 1H), 5.95 (d, *J* = 7.8 Hz, 1H), 4.95 (d, *J* = 5.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.13, 150.88, 139.31, 138.51, 136.89, 135.99, 135.23, 132.42, 132.25, 131.63, 130.87, 130.75, 129.38, 128.74, 128.64, 128.59, 127.99, 127.94, 126.52, 122.60, 121.78, 64.19, 57.74. IR (neat): 1656, 1594, 1423, 1315, 1280, 1154. HRMS (ESI) M/Z calculated for C₂₄H₁₅ClN₂O₃S [M+H]⁺: 447.0565, found: 447.0565.

(6a)-3-bromo-6-(quinolin-8-yl)-6a,11a-dihydro-11H-11 λ^6 -[1]benzothieno[3,2-c]isoquinoline-5,11,11(6H)-trione (3j):

The general procedure was followed using benzamide **1j** (140 mg, 0.43 mmol, 1.2 equiv.) and benzothiophene [b]-1,1-dioxide **2a** (60 mg, 0.36 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded **3j** in 64% (114 mg) isolated yield. Brown solid, m.pt – 230 °C, ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.05 – 8.98 (m, 1H), 8.59 – 8.51 (m, 1H), 8.20 (d, *J* = 1.9 Hz, 1H), 8.10 – 7.96 (m, 4H),

7.68 (d, J = 7.9 Hz, 2H), 7.58 (t, J = 7.9 Hz, 1H), 7.39 (t, J = 7.8 Hz, 1H), 7.22 (d, J = 8.7 Hz, 1H), 6.74 (d, J = 7.2 Hz, 1H), 6.32 (d, J = 5.9 Hz, 1H), 5.87 (d, J = 7.8 Hz, 1H), 5.71 (d, J = 6.0 Hz, 1H). ¹³C **NMR (126 MHz, DMSO-***d***₆)** δ 161.12, 151.77, 144.30, 138.40, 137.53, 136.44, 136.01, 135.55, 133.29, 132.03, 131.86, 131.68, 131.57, 131.41, 129.54, 129.33, 129.22, 126.59, 124.12, 122.70, 122.65, 63.02, 57.99, 31.17. **IR (neat)**: 1644, 1303, 1275, 1149, 762. **HRMS (ESI)** M/Z calculated for C₂₄H₁₅BrN₂O₃S [M+H]⁺: 491.0060, found: 491.0059.

(6a)-2-bromo-6-(quinolin-8-yl)-6a,11a-dihydro-11H-11 λ^6 -[1]benzothieno[3,2-c]isoquinoline-5,11,11(6H)-trione (3k):

The general procedure was followed using benzamide **1k** (140 mg, 0.43 mmol, 1.2 equiv.) and benzothiophene [b]-1,1-dioxide **2a** (60 mg, 0.36 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded **3k** in 62% (110 mg) isolated yield. Yellow solid, m.pt – >250 °C, ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.01 (s, 1H), 8.54 (s, 1H), 8.08 – 7.98 (m, 3H), 7.98 – 7.88 (m, 2H), 7.69 (s, 1H), 7.57 (d, *J* = 7.7 Hz, 1H), 7.38 (d, *J* = 7.7 Hz, 1H), 7.21 (d, *J* = 7.7 Hz, 1H), 6.75 (s, 1H),

6.34 (s, 1H), 5.88 (s, 1H), 5.68 (t, *J* = 4.4 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.73, 151.73, 144.39, 138.35, 137.51, 136.12, 135.57, 133.87, 133.32, 132.11, 131.86, 131.69, 131.35, 129.52, 129.48, 129.26, 129.19, 128.81, 127.08, 126.58, 122.73, 122.62, 63.01, 58.03. **IR (neat)**: 1651, 1310,

1275, 1152, 1124, 762. **HRMS (ESI)** M/Z calculated for $C_{24}H_{15}BrN_2O_3S [M+H]^+$: 491.0060, found: 491.0060.

(6a)-4-fluoro-6-(quinolin-8-yl)-6a,11a-dihydro-11H-11 λ^6 -[1]benzothieno[3,2-c]isoquinoline-5,11,11(6H)-trione (3l):

The general procedure was followed using benzamide **11** (114 mg, 0.43 mmol, 1.2 equiv.) and benzothiophene [b]-1,1-dioxide **2a** (60 mg, 0.36 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded **31** in 50% (78 mg) isolated yield. Yellow solid, m.pt – >250 °C, ¹H NMR (400 MHz, Chloroform-d) δ 8.90 (s, 1H), 8.72 (s, 1H), 8.27 – 8.04 (m, 2H), 7.74 (dd, J = 27.1, 9.0 Hz, 4H), 7.59 (s, 1H), 7.52 – 7.13 (m,

7H), 7.13 – 6.79 (m, 2H), 6.44 (s, 1H), 6.01 – 5.84 (m, 1H), 4.93 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.56, 160.91, 158.90, 150.99, 149.76, 143.73, 143.36, 138.85, 138.66, 137.29, 135.82, 135.66, 135.26, 134.78, 134.74, 134.64, 134.36, 133.75, 133.30, 133.20, 132.14, 131.43, 131.40, 130.37, 129.95, 129.79, 129.76, 129.32, 128.36, 128.29, 127.88, 127.47, 127.36, 125.97, 125.48, 125.41, 124.01, 123.97, 122.75, 121.59, 121.52, 120.76, 120.66, 118.60, 118.37, 117.77, 117.72, 116.68, 116.64, 114.92, 114.71, 63.73, 56.40, 45.00. ¹⁹F NMR (376 MHz, CDCl₃) δ -107.37, -107.86. IR (neat): 1655, 1610, 1468, 1388, 1305, 1255, 1153, 1125, 906. HRMS (ESI) M/Z calculated for C₂₄H₁₅FN₂O₃S [M+H]⁺: 431.0860, found: 431.0859.

(6a)-3-fluoro-6-(quinolin-8-yl)-6a,11a-dihydro-11H-11 λ^6 -[1]benzothieno[3,2-c]isoquinoline-5,11,11(6H)-trione (3m):

The general procedure was followed using benzamide **1m** (114 mg, 0.43 mmol, 1.2 equiv.) and benzothiophene [b]-1,1-dioxide **2a** (60 mg, 0.36 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded **3m** in 62% (96 mg) isolated yield. Yellow solid, m.pt – >250 °C, ¹H NMR (500 MHz, Chloroform-*d*) δ 8.98 (d,

J = 4.7 Hz, 1H), 8.31 - 8.26 (m, 1H), 8.04 (dd, J = 9.0, 2.9 Hz, 1H), 7.90 - 3.02

7.79 (m, 2H), 7.73 – 7.67 (m, 1H), 7.52 (dd, J = 8.3, 4.3 Hz, 1H), 7.49 – 7.37 (m, 3H), 7.36 – 7.29 (m, 1H), 7.27 (d, J = 5.5 Hz, 1H), 7.06 (dd, J = 10.1, 4.0 Hz, 2H), 6.52 (d, J = 5.8 Hz, 1H), 5.94 (d, J = 7.3 Hz, 1H), 4.99 (d, J = 5.7 Hz, 1H). ¹³C NMR (126 MHz, **Chloroform-***d*) δ 165.01, 163.02, 161.78, 150.86, 138.48, 136.94, 135.87, 135.24, 132.35, 132.22, 131.92, 131.86, 130.84, 129.35, 128.61, 126.53, 122.58, 122.08, 122.05, 121.78, 120.45, 120.26, 117.05, 116.86, 64.00, 63.93, 60.42, 57.74. ¹⁹F **NMR (376 MHz, DMSO)** δ -108.70, -109.85. **IR (neat)**: 1648, 1022, 990. **HRMS (ESI)** M/Z calculated for C₂₄H₁₅FN₂O₃S [M+H]⁺: 431.0860, found: 431.0860.

(6a)-2-fluoro-6-(quinolin-8-yl)-6a,11a-dihydro-11*H*-11 λ^6 -[1]benzothieno[3,2-*c*]isoquinoline-5,11,11(6*H*)-trione (3n):

The general procedure was followed using benzamide **1n** (114 mg, 0.43 mmol, 1.2 equiv.) and benzothiophene [b]-1,1-dioxide **2a** (60 mg, 0.36 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded **3n** in 67% (104 mg) isolated yield. Brown solid, m.pt – >250 °C, ¹H NMR (500 MHz, Chloroform-*d*) δ 8.98 (s, 1H), 8.43 – 8.34 (m, 1H), 8.28 (d, *J* = 8.2 Hz, 1H), 7.84 (dd, *J* = 24.6, 7.8 Hz,

2H), 7.56 – 7.50 (m, 1H), 7.46 (s, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.33 (s, 2H), 7.07 (d, J = 7.2 Hz, 2H), 6.55 (d, J = 5.9 Hz, 1H), 5.96 (d, J = 7.7 Hz, 1H), 4.97 (d, J = 5.8 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 166.22, 164.19, 162.06, 150.86, 138.44, 136.85, 135.26, 133.02, 132.94, 132.42, 132.21, 130.83, 129.36, 128.79, 128.71, 128.55, 126.49, 122.54, 121.75, 117.80, 117.63, 115.81, 115.63, 64.37, 57.72. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.02. IR (neat): 1648, 1606, 1497, 1388, 1312, 1279, 1149, 1128. HRMS (ESI) M/Z calculated for C₂₄H₁₅FN₂O₃S [M+H]⁺: 431.0860, found: 431.0858.

(6a)-6-(quinolin-8-yl)-3-(trifluoromethyl)-6a,11a-dihydro-11H-11 λ^6 -[1]benzothieno[3,2c]isoquinoline-5,11,11(6H)-trione (30):

The general procedure was followed using benzamide **10** (136 mg, 0.43 mmol, 1.2 equiv.) and benzothiophene [b]-1,1-dioxide **2a** (60 mg, 0.36 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded **30** in 64% (110 mg) isolated yield. Yellow solid, m.pt – 146 °C, ¹H NMR (500 MHz, Chloroform-d) δ 9.00 – 8.95 (m, 1H), 8.63 (d, J = 2.0 Hz, 1H), 8.31 – 8.27

(m, 1H), 7.95 (dd, J = 8.1, 2.0 Hz, 1H), 7.90 – 7.80 (m, 3H), 7.52 (dd, J = 8.3, 4.0 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.32 (t, J = 7.8 Hz, 1H), 7.07 (ddd, J = 7.8, 5.7, 2.0 Hz, 2H), 6.55 (d, J = 5.7 Hz, 1H), 5.95 (d, J = 7.8 Hz, 1H), 5.06 (d, J = 5.6 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 161.53, 150.94, 144.44, 138.35, 136.94, 135.72, 135.03, 132.83, 132.56, 132.53, 132.12, 130.97, 130.33, 129.97, 129.59, 129.43, 129.40, 129.37, 129.34, 128.74, 128.69, 127.23, 127.20, 127.17, 127.14, 126.48, 124.57, 122.55, 122.40, 121.84, 64.13, 57.64. ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -62.97. IR (neat): 1658, 1310, 1152, 1124. HRMS (ESI) M/Z calculated for C₂₅H₁₅F₃N₂O₃S [M+H]⁺: 481.0828, found: 481.0827.

(6a)-6-(quinolin-8-yl)-1,3-bis(trifluoromethyl)-6a,11a-dihydro-11H-11 λ^6 -[1]benzothieno[3,2c]isoquinoline-5,11,11(6H)-trione (3p):

The general procedure was followed using benzamide **1p** (165 mg, 0.43 mmol, 1 equiv.) and benzothiophene [b]-1,1-dioxide **2a** (60 mg, 0.36 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded **3p** in 70% (116 mg) isolated yield. Brown solid, m.pt – 106 °C, ¹H NMR (500 MHz, Chloroform-*d*) δ 8.97 (d, J = 4.4 Hz, 1H), 8.89 (d, J = 3.9 Hz, 1H), 8.28 (d, J = 4.7 Hz, 2H),

7.91 – 7.86 (m, 1H), 7.80 (dt, J = 8.4, 2.2 Hz, 1H), 7.53 (dt, J = 8.1, 3.9 Hz, 1H), 7.48 (dt, J = 11.0, 5.5 Hz, 1H), 7.35 – 7.28 (m, 1H), 7.06 (dt, J = 18.6, 5.6 Hz, 2H), 6.53 (s, 1H), 5.99 (d, J = 7.7 Hz, 1H), 5.44 (d, J = 4.7 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 159.94, 150.97, 144.22, 138.08, 136.98, 134.82, 133.87, 132.81, 132.67, 132.54, 132.07, 131.10, 130.89, 130.51, 129.24, 128.72, 128.38, 128.17, 127.05, 126.50, 123.85, 123.81, 122.99, 121.89, 61.91, 57.96. ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -57.25, -63.24, -63.25. IR (neat): 1667, 1623, 1449, 1467, 1272. HRMS (ESI) M/Z calculated for C₂₆H₁₄F₆N₂O₃S [M+H]⁺: 549.0702, found: 549.0701.

(6a)-2-nitro-6-(quinolin-8-yl)-6a,11a-dihydro-11H-11 λ^6 -[1]benzothieno[3,2-c]isoquinoline-5,11,11(6H)-trione (3q):

The general procedure was followed using benzamide 1q (126 mg, 0.43 mmol, 1.2 equiv.) and benzothiophene [b]-1,1-dioxide 2a (60 mg, 0.36 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded 3q in 75% (95 mg) isolated yield. Colorless solid, m.pt – >250 °C, ¹H NMR (500 MHz, Chloroform-d) δ 8.97 (d, J = 4.1 Hz, 1H), 8.55 (d, J = 9.8 Hz, 2H), 8.45 (d,

J = 8.4 Hz, 1H), 8.30 (d, J = 8.3 Hz, 1H), 7.86 (dd, J = 21.8, 8.0 Hz, 2H), 7.57 – 7.46 (m, 2H), 7.34 (t, J = 7.9 Hz, 1H), 7.08 (q, J = 7.8 Hz, 2H), 6.57 (d, J = 5.8 Hz, 1H), 5.97 (d, J = 7.7 Hz, 1H), 5.11 (d, J = 5.6 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 160.93, 151.05, 150.21, 144.32, 138.16, 136.91, 135.46, 134.78, 134.51, 132.66, 131.96, 131.65, 131.13, 129.37, 128.88, 128.71, 128.09, 126.46, 124.98, 124.08, 122.67, 121.94, 63.95, 57.73. IR (neat): 1658, 1522, 1335, 1314, 1152. HRMS (ESI) M/Z calculated for C₂₄H₁₅N₃O₅S [M+H]⁺: 458.0805, found: 458.0804.

(12b)-5-(quinolin-8-yl)-4b,12b-dihydro-13*H*-13 λ^6 -benzo[*g*][1]benzothieno[3,2-*c*]isoquinoline-6,13,13(5*H*)-trione (3r):

The general procedure was followed using benzamide 1r (128 mg, 0.43 mmol, 1.2 equiv.) and benzothiophene [b]-1,1-dioxide 2a (60 mg, 0.36 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded 3r in 49% (81 mg) isolated yield. Brown solid, m.pt –208 °C, ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.11 – 9.03 (m, 1H), 8.83 (s, 1H), 8.62 (dd, *J* = 8.4, 1.7 Hz, 1H), 8.37 – 8.23 (m,

3H), 8.12 – 8.03 (m, 2H), 7.91 – 7.71 (m, 4H), 7.64 (q, J = 7.5 Hz, 2H), 7.46 (t, J = 7.9 Hz, 1H), 7.28 (q, J = 7.3 Hz, 1H), 6.91 – 6.81 (m, 1H), 6.47 (dd, J = 12.1, 5.7 Hz, 1H), 6.05 – 5.83 (m, 2H). ¹³C **NMR (101 MHz, DMSO-***d*₆**)** δ 170.82, 162.75, 162.62, 151.73, 151.69, 144.61, 144.55, 139.02, 138.60, 137.53, 136.67, 136.43, 136.13, 136.09, 135.54, 134.96, 133.42, 133.24, 133.14, 132.00, 131.57, 131.17, 130.59, 130.50, 129.96, 129.56, 129.49, 129.46, 129.33, 129.20, 129.14, 129.10, 129.01, 128.45, 128.28, 128.23, 128.11, 126.65, 126.61, 126.49, 126.23, 125.73, 124.60, 123.25, 122.80, 122.68, 122.61, 64.04, 60.82, 60.23, 58.50, 58.05, 21.24, 14.56. **IR (neat)**: 2247, 2122, 1659, 1622. **HRMS (ESI)** M/Z calculated for C₂₈H₁₈N₂O₃S [M+H]⁺: 463.1111, found: 463.1110.

(6a)-9-bromo-2-*tert*-butyl-6-(quinolin-8-yl)-6a,11a-dihydro-11*H*-11 λ^6 - [1]benzothieno[3,2c]isoquinoline-5,11,11(6*H*)-trione (4a):

The general procedure was followed using benzamide **1g** (74 mg, 0.29 mmol, 1.2 equiv.) and 6-bromobenzothiophene [b]-1,1-dioxide **4a** (60 mg, 0.24 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded **4a** in 65% (86 mg) isolated yield. Brown solid, m.pt -154 °C, ¹H NMR (500 MHz, Chloroform-d) δ 8.95 (d, J = 2.4 Hz, 1H), 8.27 (d, J = 8.3 Hz, 2H), 7.99 (d, J = 1.9 Hz, 1H), 7.86 – 7.80 (m, 1H), 7.72 – 7.66 (m, 1H), 7.65 (d, J = 1.9

Hz, 1H), 7.50 (dd, J = 8.3, 4.2 Hz, 1H), 7.38 (t, J = 7.8 Hz, 1H), 7.17 – 7.10 (m, 2H), 6.51 (d, J = 5.8 Hz, 1H), 5.80 (d, J = 8.2 Hz, 1H), 5.00 (d, J = 5.8 Hz, 1H), 1.44 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.89, 156.96, 150.83, 144.66, 140.44, 136.87, 136.04, 135.29, 134.44, 132.45, 129.92, 129.87, 129.35, 128.52, 127.86, 126.79, 126.65, 125.67, 125.62, 125.40, 124.53, 121.73, 65.36, 57.36, 35.30, 31.18. IR (neat): 1662, 1608, 1462, 1421, 1362, 1318, 1151, 1136. HRMS (ESI) M/Z calculated for C₂₈H₂₃N₂O₃S [M+H]⁺: 547.0686, found: 547.0685.

2-*tert*-butyl-8-bromo-6-(quinolin-8-yl)-6a-11a-dihydro-11H-11 λ^6 -[1]benzothieno[3,2c]isoquinoline-5,11,11(6H)-trione (4b):

The general procedure was followed using benzamide 1g (74 mg, 0.29 mmol, 1.2 equiv.) and 5-bromobenzothiophene [b]-1,1-dioxide 4b (60 mg, 0.24 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded 4b in 62% (81 mg) isolated yield. Brown solid, m.pt –116 °C, ¹H NMR (500 MHz, Chloroform-*d*) δ 9.00 – 8.95 (m, 1H), 8.30 (dd, *J* = 14.2, 8.3 Hz, 2H), 7.86

(d, J = 8.3 Hz, 1H), 7.76 – 7.63 (m, 3H), 7.60 – 7.50 (m, 2H), 7.39 (t, J = 7.8 Hz, 1H), 7.27 (d, J = 1.5 Hz, 1H), 7.13 (d, J = 7.3 Hz, 1H), 6.46 (d, J = 5.8 Hz, 1H), 6.03 (s, 1H), 5.00 (d, J = 5.8 Hz, 1H), 1.44 (s, 9H). ¹³C **NMR (126 MHz, Chloroform-***d***)** δ 162.87, 156.95, 150.93, 144.53, 137.65, 137.54, 136.94, 133.82, 132.29, 131.81, 129.92, 129.41, 128.64, 127.85, 126.80, 126.78, 126.51, 125.70, 125.49, 123.76, 121.80, 77.29, 77.03, 76.78, 65.10, 57.48, 35.30, 31.18, 27.01. **IR (neat)**: 1655, 1609, 1256, 1013. **HRMS (ESI)** M/Z calculated for C₂₈H₂₃N₂O₃S [M+H]⁺: 547.0686, found: 547.0684.

2-*tert*-butyl-8-methyl-6-(quinolin-8-yl)-6a-11a-dihydro-11H-11 λ^6 [1]benzothieno[3,2c]isoquinoline-5,11,11(6H)-trione (4c):

The general procedure was followed using benzamide **1g** (121 mg, 0.39 mmol, 1.2 equiv.) and 5-methylbenzothiophene [b]-1,1-dioxide **4c** (60 mg, 0.33 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded **4c** in 69% (110 mg) isolated yield. Brown solid, m.pt – >250 °C, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.87 (s, 1H), 8.18 (d, *J* = 4.2 Hz, 2H),

7.75 – 7.69 (m, 1H), 7.64 (d, J = 8.2 Hz, 1H), 7.62 – 7.56 (m, 2H), 7.40 (dd, J = 8.3, 4.1 Hz, 1H), 7.22 (ddd, J = 17.3, 8.6, 3.1 Hz, 1H), 7.17 – 7.10 (m, 1H), 7.00 (d, J = 4.5 Hz, 1H), 6.33 (s, 1H), 5.59 (s, 1H), 4.89 (d, J = 3.1 Hz, 1H), 1.83 (s, 3H), 1.35 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 161.96, 155.68, 149.77, 143.81, 142.16, 135.61, 135.53, 135.00, 134.80, 131.26, 130.28, 128.77, 128.25, 128.01, 127.15, 126.56, 125.90, 125.34, 125.11, 124.68, 121.13, 120.59, 64.17, 56.80, 34.23, 30.17. IR (neat): 1656, 1520, 1302, 1166, 1131, 1021, 993. HRMS (ESI) M/Z calculated for C₂₉H₂₆N₂O₃S [M+H]⁺: 483.1737, found: 483.1736.

(6a)-2-*tert*-butyl-8-chloro-6-(quinolin-8-yl)-6a,11a-dihydro-11*H*-11 λ^{6} -[1]benzothieno[3,2c]isoquinoline-5,11,11(6*H*)-trione (4d):

The general procedure was followed using benzamide **1g** (109 mg, 0.36 mmol, 1.2 equiv.) and benzothiophene [b]-1,1-dioxide **4d** (60 mg, 0.30 mmol, 1 equiv.). Purification by column chromatography on silica gel (100% PE \rightarrow 80% PE \rightarrow 50% PE \rightarrow 100% EA) yielded **4d** in 79% (119 mg) isolated yield. Brown solid, m.pt – >250 °C, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.87 (s, 1H), 8.26 – 8.16 (m, 2H), 7.80 – 7.74 (m, 1H),

7.70 (dd, J = 8.4, 2.9 Hz, 1H), 7.65 – 7.54 (m, 2H), 7.46 – 7.39 (m, 1H), 7.30 (td, J = 9.5, 4.8 Hz, 2H), 7.09 – 7.02 (m, 1H), 6.39 (s, 1H), 5.80 (s, 1H), 4.92 (d, J = 4.6 Hz, 1H), 1.35 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 161.85, 155.92, 149.88, 143.59, 137.56, 136.58, 136.18, 135.85, 135.05, 131.21, 129.93, 128.89, 128.38, 127.72, 127.60, 126.79, 125.78, 125.45, 124.68, 124.56, 122.65, 120.76, 64.16, 56.48, 34.26, 30.15. IR (neat): 1651, 1315, 1052, 1022, 1005. HRMS (ESI) M/Z calculated for C₂₈H₂₃ClN₂O₃S [M+H]⁺: 503.1191, found: 503.1190.

(6a)-2-*tert*-butyl-7-chloro-6-(quinolin-8-yl)-6a,11a-dihydro-11*H*-11 λ^{6} -[1]benzothieno[3,2c]isoquinoline-5,11,11(6*H*)-trione (4e):

The general procedure was followed using benzamide **1g** (109 mg, 0.36 mmol, 1.2 equiv.) and benzothiophene [b]-1,1-dioxide **4e** (60 mg, 0.30 mmol, 1 equiv.). Purification by column chromatography on silica gel using petroleum ether and isopropanol (100% PE \rightarrow 95% PE \rightarrow 90% PE \rightarrow 80% PE) yielded **4e** in 60% (96 mg) isolated yield. R_f = 0.5 Brown solid, m.pt – >250 °C, ¹H NMR (400 MHz. Chloroform-*d*) δ 8.83 (s, 1H), 8.22 (dd. *J* =

8.3, 2.8 Hz, 1H), 8.11 (d, J = 8.3 Hz, 1H), 7.80 (dd, J = 7.5, 2.7 Hz, 1H), 7.73 (d, J = 8.3 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.53 (s, 1H), 7.43 (td, J = 7.8, 2.7 Hz, 1H), 7.35 (dd, J = 8.3, 4.0 Hz, 1H), 7.16 (dt, J = 19.7, 5.3 Hz, 3H), 6.75 (d, J = 7.2 Hz, 1H), 6.31 (s, 1H), 4.86 (d, J = 2.9 Hz, 1H), 1.36 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 162.36, 155.77, 149.65, 140.41, 134.45, 133.11, 132.32, 131.06,

C NNIK (101 NHZ, CDCI3) 6 162.36, 135.77, 149.65, 140.41, 134.43, 135.11, 132.32, 131.06, 130.16, 128.89, 128.37, 127.85, 126.95, 126.11, 124.84, 124.58, 124.40, 120.55, 120.41, 65.30, 55.95, 34.26, 30.17. **IR (neat)**: 2247, 2123, 1662, 1616, 1376, 1315. **HRMS (ESI)** M/Z calculated for $C_{28}H_{23}CIN_2O_3S [M+H]^+$: 503.1191, found: 503.1190.

13. X-ray crystallography data

~ -

			CC.	DC - 195	2987	
Figure S1.	The X-ray	crystal o	data and	structure	refinement	for 30

Table S7. Crystal data and structure refinement for 30

Identification code	Nivedha_SK3CF3		
Chemical formula	$C_{25}H_{15}F_{3}N_{2}O_{3}S$		
Formula weight	480.45 g/mol		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal size	0.170 x 0.220 x 0.250 mm	l	
Crystal habit	clear light brown BLock		
Crystal system	monoclinic		
Space group	C 1 2/c 1		
Unit cell dimensions	a = 14.3324(4) Å	$\alpha = 90^{\circ}$	
	b = 10.8827(3) Å	$\beta = 99.6348(13)^{\circ}$	
	c = 28.1221(7) Å	$\gamma = 90^{\circ}$	
Volume	4324.5(2) Å ³		
Z	8		
Density (calculated)	1.476 g/cm^3		
Absorption coefficient	0.207 mm ⁻¹		
F(000)	1968		
Theta range for data collection	2.36 to 25.00°		
Index ranges	-16<=h<=16, -12<=k<=12,	, -33<=l<=33	
Reflections collected	15994		
Independent reflections	3790 [R(int) = 0.0220]		
Coverage of independent reflections	99.6%		
Absorption correction	multi-scan		
Max. and min. transmission	0.9660 and 0.9500		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)		

Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	
Data / restraints / parameters	3790 / 0 / 307	
Goodness-of-fit on F ²	1.049	
Final R indices	3255 data; I>2σ(I)	R1 = 0.0426, wR2 = 0.1035
	all data	R1 = 0.0508, $wR2 = 0.1088$
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.042) where P=(F_o^2 +2 F_c^2)/	26P) ² +7.4366P] /3
Largest diff. peak and hole	0.643 and -0.372 eÅ	-3
R.M.S. deviation from mean	0.044 eÅ ⁻³	

Table S8. Atomic coordinates and equivalent isotropic atomic displacement parameters (\AA^2) for 30. U(eq) is defined as one third of the trace of the orthogonalized U_{ii} tensor.

U(eq) is defined as	one third of the trace	of the orthogonalized	U _{ij} tensor.

	x/a	y/b	z/c	U(eq)	
C1	0.90090(17)	0.5700(2)	0.12128(8)	0.0367(5)	
C2	0.8661(2)	0.6680(2)	0.14448(11)	0.0555(7)	
C3	0.9291(3)	0.7528(3)	0.16799(13)	0.0753(10)	
C4	0.0246(3)	0.7425(3)	0.16816(12)	0.0717(10)	
C5	0.0606(2)	0.6497(3)	0.14346(10)	0.0539(7)	
C6	0.99685(17)	0.5641(2)	0.12048(8)	0.0372(5)	
C7	0.90051(14)	0.41516(19)	0.05871(7)	0.0281(5)	
C8	0.88083(14)	0.28556(19)	0.04319(7)	0.0285(5)	
C9	0.89816(17)	0.2428(2)	0.99897(8)	0.0384(5)	
C10	0.88482(18)	0.1203(2)	0.98703(8)	0.0414(6)	
C11	0.85402(16)	0.0397(2)	0.01903(8)	0.0348(5)	
C12	0.83395(16)	0.0818(2)	0.06265(8)	0.0332(5)	
C13	0.84791(14)	0.20443(19)	0.07479(7)	0.0273(4)	
C14	0.82740(14)	0.24479(19)	0.12265(7)	0.0283(5)	
C15	0.84372(15)	0.46363(19)	0.09641(7)	0.0294(5)	
C16	0.80846(15)	0.40549(19)	0.17780(7)	0.0285(5)	
C17	0.72148(15)	0.46566(19)	0.17915(7)	0.0295(5)	
C18	0.58296(18)	0.5460(2)	0.13966(10)	0.0486(6)	
C19	0.5568(2)	0.5880(3)	0.18274(11)	0.0587(8)	
C20	0.6153(2)	0.5672(3)	0.22445(10)	0.0537(7)	
C21	0.70144(17)	0.5041(2)	0.22450(8)	0.0392(5)	
C22	0.7660(2)	0.4777(3)	0.26651(9)	0.0545(7)	
C23	0.8482(2)	0.4183(3)	0.26404(9)	0.0597(8)	
C24	0.86991(18)	0.3831(2)	0.21904(8)	0.0437(6)	
C25	0.83996(19)	0.9064(2)	0.00779(9)	0.0432(6)	
F1	0.74959(13)	0.87636(16)	0.00171(9)	0.0890(7)	
F2	0.88631(16)	0.83585(15)	0.04170(6)	0.0809(6)	
F3	0.86840(16)	0.87295(15)	0.96745(6)	0.0802(6)	
N1	0.83157(12)	0.36701(15)	0.13223(6)	0.0266(4)	
N2	0.66127(13)	0.48637(18)	0.13693(7)	0.0359(4)	
01	0.05377(12)	0.33527(16)	0.11790(6)	0.0457(4)	
02	0.08074(12)	0.47181(18)	0.05185(6)	0.0511(5)	
03	0.80843(13)	0.16943(15)	0.15195(6)	0.0454(4)	
S1	0.02359(4)	0.43687(5)	0.08679(2)	0.03295(16)	

C1-C6	1.381(3)	C1-C2	1.386(3)
C1-C15	1.519(3)	C2-C3	1.380(4)
С2-Н2	0.93	C3-C4	1.372(5)
С3-Н3	0.93	C4-C5	1.375(4)
C4-H4	0.93	C5-C6	1.387(3)
С5-Н5	0.93	C6-S1	1.756(2)
C7-C8	1.489(3)	C7-C15	1.534(3)
C7-S1	1.824(2)	С7-Н7	0.98
C8-C9	1.389(3)	C8-C13	1.390(3)
C9-C10	1.379(3)	С9-Н9	0.93
C10-C11	1.381(3)	C10-H10	0.93
C11-C12	1.384(3)	C11-C25	1.492(3)
C12-C13	1.383(3)	C12-H12	0.93
C13-C14	1.491(3)	C14-O3	1.225(2)
C14-N1	1.356(3)	C15-N1	1.486(3)
С15-Н15	0.98	C16-C24	1.356(3)
C16-C17	1.414(3)	C16-N1	1.439(3)
C17-N2	1.365(3)	C17-C21	1.417(3)
C18-N2	1.310(3)	C18-C19	1.403(4)
C18-H18	0.93	C19-C20	1.342(4)
С19-Н19	0.93	C20-C21	1.413(4)
С20-Н20	0.93	C21-C22	1.403(4)
C22-C23	1.356(4)	C22-H22	0.93
C23-C24	1.406(3)	С23-Н23	0.93
C24-H24	0.93	C25-F2	1.314(3)
C25-F1	1.319(3)	C25-F3	1.319(3)
O1-S1	1.4312(17)	O2-S1	1.4320(17)

Table S9. Bond lengths (Å) for 30.

Table S10. Bond angles (°) for 30.

C6-C1-C2	118.7(2)	C6-C1-C15	114.8(2)
C2-C1-C15	126.5(2)	C3-C2-C1	118.8(3)
С3-С2-Н2	120.6	С1-С2-Н2	120.6
C4-C3-C2	121.3(3)	С4-С3-Н3	119.4
С2-С3-Н3	119.4	C3-C4-C5	121.1(3)
С3-С4-Н4	119.4	С5-С4-Н4	119.4
C4-C5-C6	117.1(3)	С4-С5-Н5	121.5
С6-С5-Н5	121.5	C1-C6-C5	122.8(2)
C1-C6-S1	110.70(17)	C5-C6-S1	126.5(2)
C8-C7-C15	115.58(17)	C8-C7-S1	111.82(14)
C15-C7-S1	104.05(14)	С8-С7-Н7	108.4
С15-С7-Н7	108.4	S1-C7-H7	108.4
C9-C8-C13	119.4(2)	C9-C8-C7	121.76(19)
C13-C8-C7	118.83(18)	C10-C9-C8	120.2(2)

С10-С9-Н9	119.9	С8-С9-Н9	119.9
C9-C10-C11	120.1(2)	С9-С10-Н10	120.0
С11-С10-Н10	120.0	C10-C11-C12	120.3(2)
C10-C11-C25	121.8(2)	C12-C11-C25	118.0(2)
C13-C12-C11	119.7(2)	C13-C12-H12	120.2
С11-С12-Н12	120.2	C12-C13-C8	120.35(19)
C12-C13-C14	117.69(19)	C8-C13-C14	121.95(19)
O3-C14-N1	122.03(19)	O3-C14-C13	120.63(19)
N1-C14-C13	117.34(17)	N1-C15-C1	110.01(17)
N1-C15-C7	111.16(16)	C1-C15-C7	105.81(17)
N1-C15-H15	109.9	С1-С15-Н15	109.9
С7-С15-Н15	109.9	C24-C16-C17	120.6(2)
C24-C16-N1	119.75(19)	C17-C16-N1	119.60(18)
N2-C17-C16	119.02(18)	N2-C17-C21	122.7(2)
C16-C17-C21	118.2(2)	N2-C18-C19	124.5(2)
N2-C18-H18	117.7	C19-C18-H18	117.7
C20-C19-C18	118.8(2)	С20-С19-Н19	120.6
С18-С19-Н19	120.6	C19-C20-C21	120.0(2)
С19-С20-Н20	120.0	С21-С20-Н20	120.0
C22-C21-C20	123.6(2)	C22-C21-C17	119.5(2)
C20-C21-C17	116.8(2)	C23-C22-C21	120.7(2)
С23-С22-Н22	119.6	C21-C22-H22	119.6
C22-C23-C24	120.1(2)	С22-С23-Н23	120.0
С24-С23-Н23	120.0	C16-C24-C23	120.7(2)
С16-С24-Н24	119.6	C23-C24-H24	119.6
F2-C25-F1	108.4(2)	F2-C25-F3	105.8(2)
F1-C25-F3	105.0(2)	F2-C25-C11	112.3(2)
F1-C25-C11	111.3(2)	F3-C25-C11	113.6(2)
C14-N1-C16	116.95(16)	C14-N1-C15	124.43(16)
C16-N1-C15	117.93(16)	C18-N2-C17	117.0(2)
01-S1-O2	118.40(11)	O1-S1-C6	110.50(11)
O2-S1-C6	111.25(11)	O1-S1-C7	109.65(10)
O2-S1-C7	111.11(10)	C6-S1-C7	93.05(10)

Table S11. Torsion angles (°) for 30.

C6-C1-C2-C3	-3.2(4)	C15-C1-C2-C3	175.8(3)
C1-C2-C3-C4	0.9(5)	C2-C3-C4-C5	2.3(5)
C3-C4-C5-C6	-3.1(5)	C2-C1-C6-C5	2.5(4)
C15-C1-C6-C5	-176.6(2)	C2-C1-C6-S1	-177.1(2)
C15-C1-C6-S1	3.7(2)	C4-C5-C6-C1	0.6(4)
C4-C5-C6-S1	-179.8(2)	C15-C7-C8-C9	156.3(2)
S1-C7-C8-C9	-85.0(2)	C15-C7-C8-C13	-26.4(3)
S1-C7-C8-C13	92.4(2)	C13-C8-C9-C10	-1.4(3)
C7-C8-C9-C10	175.9(2)	C8-C9-C10-C11	0.1(4)
C9-C10-C11-C12	1.7(4)	C9-C10-C11-C25	-179.2(2)
C10-C11-C12-C13	-2.2(3)	C25-C11-C12-C13	178.7(2)
C11-C12-C13-C8	0.8(3)	C11-C12-C13-C14	-178.61(19)
C9-C8-C13-C12	1.0(3)	C7-C8-C13-C12	-176.37(19)
C9-C8-C13-C14	-179.62(19)	C7-C8-C13-C14	3.0(3)
			25

C12-C13-C14-O3	7.4(3)	C8-C13-C14-O3	-172.0(2)
C12-C13-C14-N1	-173.20(19)	C8-C13-C14-N1	7.4(3)
C6-C1-C15-N1	94.4(2)	C2-C1-C15-N1	-84.7(3)
C6-C1-C15-C7	-25.8(2)	C2-C1-C15-C7	155.2(2)
C8-C7-C15-N1	37.7(2)	S1-C7-C15-N1	-85.25(17)
C8-C7-C15-C1	157.14(18)	S1-C7-C15-C1	34.15(18)
C24-C16-C17-N2	-179.8(2)	N1-C16-C17-N2	-0.2(3)
C24-C16-C17-C21	1.4(3)	N1-C16-C17-C21	-179.04(19)
N2-C18-C19-C20	0.5(5)	C18-C19-C20-C21	-0.1(4)
C19-C20-C21-C22	-179.3(3)	C19-C20-C21-C17	0.1(4)
N2-C17-C21-C22	178.9(2)	C16-C17-C21-C22	-2.4(3)
N2-C17-C21-C20	-0.6(3)	C16-C17-C21-C20	178.1(2)
C20-C21-C22-C23	-179.0(3)	C17-C21-C22-C23	1.5(4)
C21-C22-C23-C24	0.4(5)	C17-C16-C24-C23	0.5(4)
N1-C16-C24-C23	-179.1(2)	C22-C23-C24-C16	-1.4(5)
C10-C11-C25-F2	126.3(3)	C12-C11-C25-F2	-54.6(3)
C10-C11-C25-F1	-111.9(3)	C12-C11-C25-F1	67.2(3)
C10-C11-C25-F3	6.3(3)	C12-C11-C25-F3	-174.6(2)
O3-C14-N1-C16	-2.7(3)	C13-C14-N1-C16	177.89(17)
O3-C14-N1-C15	-173.0(2)	C13-C14-N1-C15	7.6(3)
C24-C16-N1-C14	72.6(3)	C17-C16-N1-C14	-106.9(2)
C24-C16-N1-C15	-116.4(2)	C17-C16-N1-C15	64.0(2)
C1-C15-N1-C14	-146.6(2)	C7-C15-N1-C14	-29.8(3)
C1-C15-N1-C16	43.2(2)	C7-C15-N1-C16	160.05(17)
C19-C18-N2-C17	-0.9(4)	C16-C17-N2-C18	-177.8(2)
C21-C17-N2-C18	1.0(3)	C1-C6-S1-O1	-96.69(18)
C5-C6-S1-O1	83.7(2)	C1-C6-S1-O2	129.67(17)
C5-C6-S1-O2	-49.9(2)	C1-C6-S1-C7	15.60(17)
C5-C6-S1-C7	-164.0(2)	C8-C7-S1-O1	-41.54(17)
C15-C7-S1-O1	83.88(15)	C8-C7-S1-O2	91.23(16)
C15-C7-S1-O2	-143.34(14)	C8-C7-S1-C6	-154.58(15)
C15-C7-S1-C6	-29.16(15)		

Table S12. Anisotropic atomic displacement parameters (Å²) for **30.** The anisotropic atomic displacement factor exponent takes the

form: -	$2\pi^2$ [h ² a ² U ₁	$_{1} + + 2 h k a^{*} b^{*}$	U ₁₂]	
	TI	TI	TT	

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0492(14)	0.0288(11)	0.0347(12)	0.0023(9)	0.0142(10)	-0.0067(10)
C2	0.0735(19)	0.0304(13)	0.0707(19)	-0.0085(13)	0.0354(16)	-0.0081(13)
C3	0.108(3)	0.0392(16)	0.089(2)	-0.0248(16)	0.047(2)	-0.0241(17)
C4	0.096(3)	0.0476(18)	0.073(2)	-0.0188(16)	0.0206(19)	-0.0379(17)
C5	0.0583(17)	0.0504(16)	0.0526(16)	0.0004(13)	0.0080(13)	-0.0232(13)
C6	0.0451(13)	0.0337(12)	0.0332(12)	0.0044(10)	0.0081(10)	-0.0103(10)
C7	0.0321(11)	0.0303(11)	0.0228(10)	0.0048(8)	0.0073(8)	-0.0020(9)
C8	0.0280(11)	0.0323(11)	0.0251(10)	0.0011(9)	0.0046(8)	-0.0009(9)
C9	0.0482(14)	0.0425(13)	0.0271(11)	-0.0006(10)	0.0134(10)	-0.0053(11)
C10	0.0523(15)	0.0454(14)	0.0285(12)	-0.0080(10)	0.0124(10)	-0.0004(11)
C11	0.0365(12)	0.0334(12)	0.0332(12)	-0.0054(10)	0.0014(9)	0.0019(9)
C12	0.0379(12)	0.0297(11)	0.0326(11)	0.0019(9)	0.0078(9)	-0.0016(9)

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C13	0.0271(11)	0.0295(11)	0.0257(10)	-0.0007(9)	0.0054(8)	0.0002(8)
C14	0.0292(11)	0.0307(11)	0.0260(10)	0.0008(9)	0.0073(8)	-0.0029(9)
C15	0.0321(11)	0.0275(11)	0.0300(11)	0.0031(9)	0.0094(9)	-0.0003(9)
C16	0.0324(11)	0.0287(11)	0.0258(10)	-0.0037(9)	0.0090(9)	-0.0030(9)
C17	0.0352(11)	0.0262(11)	0.0289(11)	-0.0011(9)	0.0105(9)	-0.0035(9)
C18	0.0417(14)	0.0557(16)	0.0498(15)	0.0106(13)	0.0119(12)	0.0139(12)
C19	0.0537(17)	0.0604(18)	0.0688(19)	0.0081(15)	0.0303(15)	0.0259(14)
C20	0.0642(18)	0.0533(16)	0.0511(16)	-0.0065(13)	0.0310(14)	0.0139(14)
C21	0.0472(14)	0.0376(13)	0.0362(13)	-0.0077(10)	0.0168(11)	-0.0011(10)
C22	0.0680(19)	0.0678(18)	0.0292(13)	-0.0172(12)	0.0126(12)	0.0032(15)
C23	0.0635(18)	0.083(2)	0.0289(13)	-0.0127(13)	-0.0039(12)	0.0109(16)
C24	0.0407(13)	0.0542(15)	0.0344(13)	-0.0074(11)	0.0012(10)	0.0074(11)
C25	0.0522(15)	0.0364(13)	0.0401(14)	-0.0048(11)	0.0052(11)	0.0066(11)
F1	0.0643(12)	0.0401(9)	0.161(2)	-0.0242(11)	0.0153(12)	-0.0113(8)
F2	0.1322(17)	0.0420(9)	0.0588(11)	0.0042(8)	-0.0122(11)	0.0174(10)
F3	0.1384(18)	0.0474(10)	0.0605(11)	-0.0180(8)	0.0337(11)	0.0060(10)
N1	0.0314(9)	0.0270(9)	0.0231(9)	-0.0001(7)	0.0097(7)	-0.0006(7)
N2	0.0334(10)	0.0418(11)	0.0341(10)	0.0036(8)	0.0096(8)	0.0047(8)
01	0.0460(10)	0.0445(10)	0.0437(10)	0.0083(8)	-0.0009(8)	0.0043(8)
02	0.0423(10)	0.0646(12)	0.0516(10)	0.0064(9)	0.0228(8)	-0.0090(8)
03	0.0722(12)	0.0341(9)	0.0351(9)	0.0044(7)	0.0242(8)	-0.0094(8)
S 1	0.0314(3)	0.0363(3)	0.0320(3)	0.0047(2)	0.0079(2)	-0.0036(2)

Table S13. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for 30.

	x/a	y/b	z/c	U(eq)	
H2	0.8015	0.6765	0.1442	0.067	
Н3	0.9064	0.8182	0.1840	0.09	
H4	1.0656	0.7993	0.1853	0.086	
Н5	1.1249	0.6445	0.1422	0.065	
H7	0.8876	0.4680	0.0301	0.034	
Н9	0.9188	0.2968	-0.0227	0.046	
H10	0.8966	0.0920	-0.0426	0.05	
H12	0.8112	0.0280	0.0837	0.04	
H15	0.7817	0.4930	0.0804	0.035	
H18	0.5418	0.5617	0.1111	0.058	
H19	0.4999	0.6294	0.1824	0.07	
H20	0.5991	0.5944	0.2533	0.064	
H22	0.7523	0.5011	0.2964	0.065	
H23	0.8903	0.4008	0.2921	0.072	
H24	0.9270	0.3440	0.2175	0.052	

Table S14. Crystal data and structure refinement for 3j

Identification code	Nivedha_SK2Br	
Chemical formula	$C_{24}H_{15}BrN_2O_3S$	
Formula weight	491.35 g/mol	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal size	0.100 x 0.220 x 0.250 r	nm
Crystal habit	clear light yellow Block	ζ.
Crystal system	triclinic	
Space group	P -1	
Unit cell dimensions	a = 8.4236(2) Å	$\alpha = 91.2210(10)^{\circ}$
	b = 9.3593(2) Å	$\beta = 102.8590(10)^{\circ}$
	c = 14.8260(4) Å	$\gamma = 101.6750(10)^{\circ}$
Volume	1113.28(5) Å ³	
Z	2	
Density (calculated)	1.466 g/cm ³	
Absorption coefficient	1.968 mm ⁻¹	
F(000)	496	
Theta range for data collection	2.23 to 25.00°	
Index ranges	-10<=h<=9, -11<=k<=	11, -14<=1<=17
Reflections collected	14735	
Independent reflections	3912 [R(int) = 0.0273]	
Coverage of independent	100.0%	

reflections		
Absorption correction	multi-scan	
Max. and min. transmission	0.8280 and 0.6390	
Refinement method	Full-matrix least-squa	ares on F2
Refinement program	SHELXL-2014/7 (Sh	eldrick, 2014)
Function minimized	Σ w(Fo2 - Fc2)2	
Data / restraints / parameters	3912 / 0 / 282	
Goodness-of-fit on F2	1.073	
Δ/ σ max	0.001	
Final R indices	3161 data; Ι>2σ(Ι)	R1 = 0.0346, wR2 = 0.0896
	all data	R1 = 0.0452, wR2 = 0.0929
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.049) where P=(F_o^2 +2 F_c^2)/2	3P) ² +0.2557P] 3
Largest diff. peak and hole	0.504 and -0.338 eÅ	3
R.M.S. deviation from mean	0.060 eÅ ⁻³	

Table S15. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2) for 3j.

$U(eq)$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.	
---	--

	x/a	y/b	z/c	U(eq)
Br1	0.47050(4)	0.30318(3)	0.01342(2)	0.05061(14)
C1	0.6089(4)	0.9616(4)	0.2852(3)	0.0587(9)
C2	0.5617(5)	0.9530(4)	0.3703(3)	0.0714(12)
C3	0.6575(5)	0.9043(4)	0.4414(3)	0.0698(12)
C4	0.8051(4)	0.8622(3)	0.4321(2)	0.0457(8)
C5	0.9125(5)	0.8081(4)	0.5032(2)	0.0621(10)
C6	0.0519(5)	0.7707(4)	0.4884(2)	0.0608(9)
C7	0.0929(4)	0.7870(3)	0.4018(2)	0.0454(7)
C8	0.9928(3)	0.8406(3)	0.33205(17)	0.0307(6)
С9	0.8441(3)	0.8780(3)	0.34379(19)	0.0333(6)
C10	0.9049(4)	0.5928(3)	0.20343(18)	0.0362(7)
C11	0.7687(4)	0.5309(3)	0.2375(2)	0.0499(8)
C12	0.7584(5)	0.3893(4)	0.2672(2)	0.0650(11)
C13	0.8776(5)	0.3116(4)	0.2613(2)	0.0643(11)
C14	0.0122(5)	0.3706(3)	0.2260(2)	0.0545(9)
C15	0.0214(4)	0.5107(3)	0.19679(19)	0.0386(7)
C16	0.0390(3)	0.7310(3)	0.09493(17)	0.0307(6)
C17	0.1369(3)	0.8715(3)	0.07277(17)	0.0299(6)
C18	0.1867(4)	0.8846(3)	0.98945(18)	0.0385(7)
C19	0.2839(4)	0.0125(3)	0.97164(19)	0.0402(7)
C20	0.3317(3)	0.1295(3)	0.03760(19)	0.0351(6)
C21	0.2815(3)	0.1203(3)	0.11997(19)	0.0341(6)

	x/a	y/b	z/c	U(eq)
C22	0.1843(3)	0.9898(3)	0.13790(17)	0.0288(6)
C23	0.1372(3)	0.9798(3)	0.22936(18)	0.0316(6)
C24	0.9383(3)	0.7436(3)	0.16751(17)	0.0303(6)
N1	0.7455(3)	0.9272(2)	0.27080(18)	0.0416(6)
N2	0.0351(3)	0.8543(2)	0.24347(14)	0.0286(5)
01	0.3154(3)	0.6819(2)	0.20856(15)	0.0513(5)
O2	0.1956(3)	0.5150(2)	0.06918(16)	0.0552(6)
O3	0.1940(3)	0.0800(2)	0.29018(13)	0.0476(5)
S1	0.17081(9)	0.60560(7)	0.14174(5)	0.03832(19)

Table S16. Bond lengths (Å) for 3j.

Br1-C20	1.892(3)	C1-N1	1.315(4)
C1-C2	1.403(5)	C1-H1	0.93
C2-C3	1.327(5)	С2-Н2	0.93
C3-C4	1.411(5)	С3-Н3	0.93
C4-C5	1.404(5)	C4-C9	1.422(4)
C5-C6	1.351(5)	С5-Н5	0.93
C6-C7	1.407(4)	С6-Н6	0.93
C7-C8	1.355(4)	С7-Н7	0.93
C8-C9	1.412(4)	C8-N2	1.437(3)
C9-N1	1.360(4)	C10-C15	1.381(4)
C10-C11	1.382(4)	C10-C24	1.514(4)
C11-C12	1.398(5)	C11-H11	0.93
C12-C13	1.370(5)	С12-Н12	0.93
C13-C14	1.374(5)	С13-Н13	0.93
C14-C15	1.383(4)	C14-H14	0.93
C15-S1	1.754(3)	C16-C17	1.489(3)
C16-C24	1.527(3)	C16-S1	1.820(3)
C16-H16	0.98	C17-C22	1.386(3)
C17-C18	1.391(4)	C18-C19	1.374(4)
C18-H18	0.93	C19-C20	1.385(4)
С19-Н19	0.93	C20-C21	1.377(4)
C21-C22	1.392(4)	C21-H21	0.93
C22-C23	1.495(3)	C23-O3	1.230(3)
C23-N2	1.359(3)	C24-N2	1.485(3)
C24-H24	0.98	O1-S1	1.434(2)
O2-S1	1.433(2)		

Table S17. Bond angles (°) for 3j.

N1-C1-C2	124.4(4)	N1-C1-H1	117.8
С2-С1-Н1	117.8	C3-C2-C1	119.0(3)
С3-С2-Н2	120.5	С1-С2-Н2	120.5
C2-C3-C4	120.8(3)	С2-С3-Н3	119.6
С4-С3-Н3	119.6	C5-C4-C3	124.5(3)
C5-C4-C9	119.4(3)	C3-C4-C9	116.0(3)
C6-C5-C4	120.7(3)	С6-С5-Н5	119.7

С4-С5-Н5	119.7	C5-C6-C7	120.5(3)
С5-С6-Н6	119.7	С7-С6-Н6	119.7
C8-C7-C6	120.2(3)	С8-С7-Н7	119.9
С6-С7-Н7	119.9	C7-C8-C9	121.1(2)
C7-C8-N2	119.5(2)	C9-C8-N2	119.3(2)
N1-C9-C8	118.8(2)	N1-C9-C4	123.2(3)
C8-C9-C4	118.0(3)	C15-C10-C11	118.9(3)
C15-C10-C24	114.7(2)	C11-C10-C24	126.3(3)
C10-C11-C12	118.2(3)	C10-C11-H11	120.9
С12-С11-Н11	120.9	C13-C12-C11	121.4(3)
С13-С12-Н12	119.3	С11-С12-Н12	119.3
C12-C13-C14	121.0(3)	С12-С13-Н13	119.5
С14-С13-Н13	119.5	C13-C14-C15	117.1(3)
C13-C14-H14	121.4	C15-C14-H14	121.4
C10-C15-C14	123.2(3)	C10-C15-S1	110.5(2)
C14-C15-S1	126.2(3)	C17-C16-C24	115.5(2)
C17-C16-S1	112.32(19)	C24-C16-S1	103.96(17)
С17-С16-Н16	108.2	C24-C16-H16	108.2
S1-C16-H16	108.2	C22-C17-C18	119.4(2)
C22-C17-C16	119.3(2)	C18-C17-C16	121.2(2)
C19-C18-C17	120.7(2)	C19-C18-H18	119.6
С17-С18-Н18	119.6	C18-C19-C20	119.3(2)
С18-С19-Н19	120.4	С20-С19-Н19	120.4
C21-C20-C19	121.2(2)	C21-C20-Br1	120.1(2)
C19-C20-Br1	118.7(2)	C20-C21-C22	119.3(2)
C20-C21-H21	120.4	C22-C21-H21	120.4
C17-C22-C21	120.2(2)	C17-C22-C23	121.3(2)
C21-C22-C23	118.5(2)	O3-C23-N2	121.8(2)
O3-C23-C22	120.7(2)	N2-C23-C22	117.5(2)
N2-C24-C10	110.9(2)	N2-C24-C16	110.4(2)
C10-C24-C16	105.3(2)	N2-C24-H24	110.0
C10-C24-H24	110.0	C16-C24-H24	110.0
C1-N1-C9	116.6(3)	C23-N2-C8	118.3(2)
C23-N2-C24	123.3(2)	C8-N2-C24	117.24(19)
O2-S1-O1	117.81(13)	O2-S1-C15	111.26(13)
O1-S1-C15	110.87(13)	O2-S1-C16	111.12(13)
O1-S1-C16	110.47(12)	C15-S1-C16	92.46(13)

Table S18. Torsion angles (°) for 3j.

N1-C1-C2-C3	-1.6(6)	C1-C2-C3-C4	0.3(6)
C2-C3-C4-C5	-179.3(3)	C2-C3-C4-C9	1.1(5)
C3-C4-C5-C6	-179.8(3)	C9-C4-C5-C6	-0.1(5)
C4-C5-C6-C7	0.8(5)	C5-C6-C7-C8	0.0(5)
C6-C7-C8-C9	-1.4(4)	C6-C7-C8-N2	-178.9(3)
C7-C8-C9-N1	-178.1(2)	N2-C8-C9-N1	-0.6(3)
C7-C8-C9-C4	2.0(4)	N2-C8-C9-C4	179.5(2)
C5-C4-C9-N1	178.9(3)	C3-C4-C9-N1	-1.4(4)
C5-C4-C9-C8	-1.2(4)	C3-C4-C9-C8	178.5(3)
C15-C10-C11-C12	2.5(4)	C24-C10-C11-C12	179.6(3)

C10-C11-C12-C13	-1.3(5)	C11-C12-C13-C14	0.1(5)
C12-C13-C14-C15	-0.1(5)	C11-C10-C15-C14	-2.6(4)
C24-C10-C15-C14	180.0(3)	C11-C10-C15-S1	174.4(2)
C24-C10-C15-S1	-3.1(3)	C13-C14-C15-C10	1.4(5)
C13-C14-C15-S1	-175.1(2)	C24-C16-C17-C22	24.4(4)
S1-C16-C17-C22	-94.6(3)	C24-C16-C17-C18	-158.0(3)
S1-C16-C17-C18	83.0(3)	C22-C17-C18-C19	0.8(4)
C16-C17-C18-C19	-176.8(3)	C17-C18-C19-C20	-0.3(4)
C18-C19-C20-C21	-0.9(4)	C18-C19-C20-Br1	178.3(2)
C19-C20-C21-C22	1.6(4)	Br1-C20-C21-C22	-177.70(19)
C18-C17-C22-C21	-0.2(4)	C16-C17-C22-C21	177.4(2)
C18-C17-C22-C23	-178.5(2)	C16-C17-C22-C23	-0.9(4)
C20-C21-C22-C17	-1.0(4)	C20-C21-C22-C23	177.4(2)
C17-C22-C23-O3	172.5(3)	C21-C22-C23-O3	-5.8(4)
C17-C22-C23-N2	-5.0(4)	C21-C22-C23-N2	176.6(2)
C15-C10-C24-N2	-92.8(3)	C11-C10-C24-N2	89.9(3)
C15-C10-C24-C16	26.6(3)	C11-C10-C24-C16	-150.6(3)
C17-C16-C24-N2	-39.8(3)	S1-C16-C24-N2	83.7(2)
C17-C16-C24-C10	-159.6(2)	S1-C16-C24-C10	-36.1(2)
C2-C1-N1-C9	1.2(5)	C8-C9-N1-C1	-179.6(2)
C4-C9-N1-C1	0.3(4)	O3-C23-N2-C8	0.5(4)
C22-C23-N2-C8	178.0(2)	O3-C23-N2-C24	167.8(2)
C22-C23-N2-C24	-14.7(4)	C7-C8-N2-C23	-88.0(3)
C9-C8-N2-C23	94.4(3)	C7-C8-N2-C24	103.9(3)
C9-C8-N2-C24	-73.6(3)	C10-C24-N2-C23	153.0(2)
C16-C24-N2-C23	36.7(3)	C10-C24-N2-C8	-39.6(3)
C16-C24-N2-C8	-155.9(2)	C10-C15-S1-O2	-130.9(2)
C14-C15-S1-O2	45.9(3)	C10-C15-S1-O1	95.9(2)
C14-C15-S1-O1	-87.3(3)	C10-C15-S1-C16	-17.1(2)
C14-C15-S1-C16	159.7(3)	C17-C16-S1-O2	-89.22(19)
C24-C16-S1-O2	145.16(17)	C17-C16-S1-O1	43.5(2)
C24-C16-S1-O1	-82.15(19)	C17-C16-S1-C15	156.84(18)
C24-C16-S1-C15	31.22(18)		

Table S19. Anisotropic atomic displacement parameters (\AA^2) for 3j.

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

012	_						
	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
Br1	0.0475(2)	0.0449(2)	0.0628(2)	0.01755(15)	0.02275(17)	0.00497(14)	
C1	0.0387(19)	0.057(2)	0.081(3)	-0.0008(18)	0.0154(18)	0.0118(16)	
C2	0.041(2)	0.080(3)	0.099(3)	-0.016(2)	0.034(2)	0.0097(19)	
C3	0.067(3)	0.077(3)	0.071(3)	-0.018(2)	0.047(2)	-0.003(2)	
C4	0.053(2)	0.0411(16)	0.0447(18)	-0.0063(13)	0.0271(16)	-0.0016(14)	
C5	0.088(3)	0.067(2)	0.0337(19)	0.0039(16)	0.0292(19)	0.005(2)	
C6	0.081(3)	0.068(2)	0.0318(18)	0.0131(15)	0.0083(18)	0.017(2)	
C7	0.0505(19)	0.0482(17)	0.0391(17)	0.0056(14)	0.0086(15)	0.0161(15)	

	U ₁₁	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂
C8	0.0395(16)	0.0265(13)	0.0273(14)	0.0005(10)	0.0119(12)	0.0057(12)
C9	0.0391(16)	0.0253(13)	0.0362(16)	-0.0004(11)	0.0152(13)	0.0015(12)
C10	0.0452(17)	0.0294(14)	0.0293(15)	-0.0011(11)	0.0068(13)	-0.0007(13)
C11	0.058(2)	0.0419(17)	0.0479(19)	-0.0009(14)	0.0234(16)	-0.0057(15)
C12	0.086(3)	0.050(2)	0.050(2)	0.0049(16)	0.028(2)	-0.019(2)
C13	0.103(3)	0.0322(17)	0.052(2)	0.0118(14)	0.016(2)	0.002(2)
C14	0.076(2)	0.0314(15)	0.052(2)	0.0049(14)	0.0058(18)	0.0122(16)
C15	0.0514(19)	0.0279(14)	0.0342(15)	0.0018(11)	0.0077(14)	0.0059(13)
C16	0.0361(15)	0.0298(13)	0.0252(14)	0.0003(10)	0.0043(12)	0.0082(11)
C17	0.0307(15)	0.0318(13)	0.0299(14)	0.0042(11)	0.0077(12)	0.0120(11)
C18	0.0504(18)	0.0381(15)	0.0293(15)	0.0004(12)	0.0109(13)	0.0131(14)
C19	0.0475(18)	0.0474(17)	0.0341(16)	0.0128(13)	0.0202(14)	0.0164(14)
C20	0.0293(15)	0.0370(15)	0.0436(16)	0.0145(12)	0.0123(13)	0.0121(12)
C21	0.0329(15)	0.0337(14)	0.0381(16)	0.0021(11)	0.0109(13)	0.0097(12)
C22	0.0298(14)	0.0288(13)	0.0290(14)	0.0049(10)	0.0060(12)	0.0094(11)
C23	0.0342(15)	0.0292(14)	0.0346(15)	0.0030(11)	0.0110(12)	0.0110(12)
C24	0.0319(15)	0.0313(13)	0.0276(14)	0.0029(11)	0.0055(12)	0.0079(11)
N1	0.0361(14)	0.0380(13)	0.0547(16)	0.0045(11)	0.0170(12)	0.0097(11)
N2	0.0328(12)	0.0277(11)	0.0263(11)	0.0004(8)	0.0098(10)	0.0059(9)
01	0.0426(12)	0.0429(11)	0.0629(14)	0.0006(10)	-0.0009(11)	0.0112(10)
02	0.0583(15)	0.0454(12)	0.0681(15)	-0.0107(11)	0.0221(12)	0.0187(11)
03	0.0663(14)	0.0357(11)	0.0382(11)	-0.0079(9)	0.0193(10)	-0.0019(10)
S1	0.0423(4)	0.0287(4)	0.0449(4)	-0.0011(3)	0.0087(3)	0.0114(3)

 Table S20. Hydrogen atomic coordinates and isotropic atomic displacement parameters $(Å^2)$ for 3j.

(\mathbf{A}) 10	i Jj.				
	x/a	y/b	z/c	U(eq)	
H1	0.5389	0.9936	0.2357	0.07	
H2	0.4648	0.9811	0.3767	0.086	
Н3	0.6270	0.8978	0.4979	0.084	
Н5	0.8875	0.7979	0.5610	0.075	
H6	1.1212	0.7338	0.5359	0.073	
H7	1.1891	0.7610	0.3923	0.054	
H11	0.6860	0.5822	0.2406	0.06	
H12	0.6687	0.3469	0.2915	0.078	
H13	0.8672	0.2176	0.2816	0.077	
H14	1.0936	0.3184	0.2219	0.065	
H16	0.9618	0.6842	0.0376	0.037	
H18	1.1539	0.8058	-0.0547	0.046	
H19	1.3173	1.0205	-0.0841	0.048	
H21	1.3121	1.2003	0.1631	0.041	
H24	0.8329	0.7703	0.1386	0.036	

CCDC - 1952948 Figure S3. The X-ray crystal data and structure refinement for 3g

Table S21.	Crystal	data ar	d structure	e refinement	t for 3g.
------------	---------	---------	-------------	--------------	-----------

			8	
Identification code	Niv	edha_4Tbu		
Chemical formula	C_{29}	$H_{26}Cl_2N_2O_3S$		
Formula weight	553	.48 g/mol		
Temperature	296	(2) K		
Wavelength	0.7	1073 Å		
Crystal size	0.10	00 x 0.220 x 0.250 mr	n	
Crystal habit	clear light brown Rectangular			
Crystal system	monoclinic			
Space group	P 1 21/c 1			
Unit cell dimensions	a =	9.1009(3) Å	$\alpha = 90^{\circ}$	
	$b = 23.1368(8) \text{ Å}$ $\beta = 109.4998(16)^{\circ}$		$\beta = 109.4998(16)^{\circ}$	
	$c = 13.2040(4) \text{ Å} \qquad \gamma = 90^{\circ}$		$\gamma = 90^{\circ}$	
Volume	2620.84(15) Å ³			
Z	4			
Density (calculated)	1.40	03 g/cm^3		
Absorption coefficient	0.36	52 mm^{-1}		
F(000)	115	2		
Theta range for data collection		1.86 to 25.00°		
Index ranges		-10<=h<=10, -24<=	k<=27, -15<=l<=14	
Reflections collected		16006		
Independent reflections		4611 [R(int) = 0.036	53]	
Coverage of independent reflect	ions	100.0%		
Absorption correction		multi-scan		
Max. and min. transmission		0.9650 and 0.9150		
Refinement method		Full-matrix least-squ	ares on F ²	
Refinement program		SHELXL-2014/7 (Sheldrick, 2014)		
Function minimized		$\Sigma w(F_o^2 - F_c^2)^2$		
Data / restraints / parameters		4611 / 2 / 338		
Goodness-of-fit on F ²		1.040		
$\Delta/\sigma_{\rm max}$		0.001		

Final R indices	3030 data; I>2σ(I)	R1 = 0.0880, wR2 = 0.2629
	all data	R1 = 0.1251, wR2 = 0.3036
Weighting scheme	w=1/[$\sigma^{2}(F_{o}^{2})+(0.1)$ where P=($F_{o}^{2}+2F_{c}^{2}$	740P) ² +4.9492P] ²)/3
Extinction coefficient	0.0030(20)	
Largest diff. peak and hole	0.924 and -1.207 e	2Å-3
R.M.S. deviation from mean	0.100 eÅ ⁻³	

Table S22. Atomic coordinates and equivalent isotropic atomic displacement parameters (\AA^2) for 3g. U(eq) is defined as one third of the trace of the orthogonalized U_{ii} tensor

U(eq)	$U(eq)$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.							
	x/a	y/b	z/c	U(eq)				
C1	0.0487(6)	0.6718(2)	0.3023(4)	0.0376(11)				
C2	0.9440(6)	0.6458(2)	0.3568(4)	0.0383(11)				
C3	0.8803(6)	0.5907(2)	0.3305(4)	0.0403(11)				
C4	0.7857(5)	0.5662(2)	0.3821(4)	0.0410(12)				
C5	0.7571(6)	0.5983(2)	0.4624(4)	0.0464(12)				
C6	0.8203(6)	0.6528(2)	0.4903(4)	0.0470(13)				
C7	0.9132(6)	0.6770(2)	0.4371(4)	0.0373(11)				
C8	0.9753(6)	0.7365(2)	0.4664(4)	0.0393(11)				
C9	0.0555(5)	0.7373(2)	0.3018(3)	0.0359(11)				
C10	0.2077(6)	0.7521(2)	0.2850(3)	0.0374(11)				
C11	0.2400(7)	0.8025(2)	0.2398(4)	0.0498(13)				
C12	0.3845(7)	0.8096(3)	0.2275(5)	0.0603(16)				
C13	0.4961(7)	0.7664(3)	0.2601(5)	0.0620(16)				
C14	0.4657(6)	0.7156(3)	0.3026(5)	0.0550(14)				
C15	0.3206(6)	0.7095(2)	0.3143(4)	0.0412(12)				
C16	0.7179(6)	0.5053(2)	0.3503(4)	0.0429(12)				
C17	0.8496(7)	0.4621(3)	0.3724(6)	0.0714(19)				
C18	0.6152(8)	0.4869(3)	0.4161(6)	0.0665(17)				
C19	0.6183(10)	0.5055(4)	0.2327(5)	0.094(3)				
C20	0.1006(6)	0.8201(2)	0.4312(4)	0.0421(12)				
C21	0.0055(6)	0.8666(2)	0.3758(4)	0.0422(12)				
C22	0.7828(7)	0.8980(3)	0.2477(5)	0.0641(17)				
C23	0.8254(10)	0.9558(3)	0.2715(7)	0.074(2)				
C24	0.9567(10)	0.9685(3)	0.3484(7)	0.073(2)				
C25	0.0568(7)	0.9231(2)	0.4065(5)	0.0542(15)				
C26	0.1990(9)	0.9324(3)	0.4906(6)	0.075(2)				
C27	0.2859(9)	0.8866(3)	0.5434(6)	0.078(2)				
C28	0.2371(7)	0.8304(3)	0.5137(5)	0.0588(15)				
Cl1	0.3490(4)	0.19536(19)	0.3962(3)	0.1749(17)				
N1	0.0511(5)	0.76182(16)	0.4053(3)	0.0365(9)				
N2	0.8682(5)	0.85366(19)	0.2963(4)	0.0499(11)				
01	0.2781(5)	0.59668(16)	0.3140(4)	0.0621(11)				
02	0.2952(5)	0.65064(17)	0.4769(3)	0.0591(11)				
03	0.9586(5)	0.76167(17)	0.5441(3)	0.0573(11)				
S1	0.24982(15)	0.64880(5)	0.36264(10)	0.0435(4)				
Cl2	0.2835(11)	0.0939(2)	0.4854(5)	0.317(5)				
C30	0.3331(16)	0.1638(2)	0.5065(5)	0.155(5)				

Table S23. Bond lengths (Å) for 3g.

	0 ()	0	
C1-C2	1.499(7)	C1-C9	1.518(7)
C1-S1	1.815(5)	C1-H1	0.98
C2-C7	1.386(7)	C2-C3	1.395(7)
C3-C4	1.385(7)	С3-Н3	0.93
C4-C5	1.389(7)	C4-C16	1.539(7)
C5-C6	1.384(7)	С5-Н5	0.93
C6-C7	1.384(7)	С6-Н6	0.93
C7-C8	1.491(7)	C8-O3	1.232(6)
C8-N1	1.357(6)	C9-N1	1.493(6)
C9-C10	1.513(7)	С9-Н9	0.98
C10-C15	1.382(7)	C10-C11	1.385(7)
C11-C12	1.388(8)	С11-Н11	0.93
C12-C13	1.388(9)	С12-Н12	0.93
C13-C14	1.369(8)	С13-Н13	0.93
C14-C15	1.387(8)	C14-H14	0.93
C15-S1	1.753(5)	C16-C17	1.512(8)
C16-C19	1.515(8)	C16-C18	1.533(8)
C17-H17A	0.96	С17-Н17В	0.96
С17-Н17С	0.96	C18-H18A	0.96
C18-H18B	0.96	C18-H18C	0.96
C19-H19A	0.96	C19-H19B	0.96
C19-H19C	0.96	C20-C28	1.372(8)
C20-C21	1.422(7)	C20-N1	1.426(6)
C21-N2	1.369(7)	C21-C25	1.401(7)
C22-N2	1.317(7)	C22-C23	1.400(10)
С22-Н22	0.93	C23-C24	1.316(10)
С23-Н23	0.93	C24-C25	1.434(9)
C24-H24	0.93	C25-C26	1.412(10)
C26-C27	1.366(10)	С26-Н26	0.93
C27-C28	1.389(9)	С27-Н27	0.93
C28-H28	0.93	Cl1-C30	1.678(2)
O1-S1	1.429(4)	O2-S1	1.425(4)
Cl2-C30	1.677(2)	C30-H30A	0.97
C30-H30B	0.97		

Table S24. Bond angles (°) for 3g.

	<u> </u>			
C2-C1-C9	115.9(4)	C2-C1-S1	112.4(3)	
C9-C1-S1	105.0(3)	С2-С1-Н1	107.7	
С9-С1-Н1	107.7	S1-C1-H1	107.7	
C7-C2-C3	119.6(4)	C7-C2-C1	118.8(4)	
C3-C2-C1	121.7(4)	C4-C3-C2	121.7(5)	
С4-С3-Н3	119.1	С2-С3-Н3	119.1	
C3-C4-C5	117.6(5)	C3-C4-C16	119.9(4)	
C5-C4-C16	122.5(4)	C6-C5-C4	121.5(5)	
С6-С5-Н5	119.2	С4-С5-Н5	119.2	
C5-C6-C7	120.2(5)	С5-С6-Н6	119.9	

С7-С6-Н6	119.9	C6-C7-C2	119.4(5)
C6-C7-C8	119.0(4)	C2-C7-C8	121.6(4)
O3-C8-N1	121.4(5)	O3-C8-C7	120.7(4)
N1-C8-C7	117.9(4)	N1-C9-C10	110.7(4)
N1-C9-C1	111.2(4)	C10-C9-C1	105.5(4)
N1-C9-H9	109.8	С10-С9-Н9	109.8
С1-С9-Н9	109.8	C15-C10-C11	118.3(5)
C15-C10-C9	115.4(4)	C11-C10-C9	126.1(4)
C10-C11-C12	119.8(5)	C10-C11-H11	120.1
C12-C11-H11	120.1	C13-C12-C11	120.1(5)
С13-С12-Н12	119.9	С11-С12-Н12	119.9
C14-C13-C12	121.2(5)	С14-С13-Н13	119.4
С12-С13-Н13	119.4	C13-C14-C15	117.6(5)
С13-С14-Н14	121.2	C15-C14-H14	121.2
C10-C15-C14	122.9(5)	C10-C15-S1	110.1(4)
C14-C15-S1	127.0(4)	C17-C16-C19	111.4(6)
C17-C16-C18	107.5(5)	C19-C16-C18	108.2(5)
C17-C16-C4	109.5(4)	C19-C16-C4	109.0(4)
C18-C16-C4	111.3(4)	C16-C17-H17A	109.5
С16-С17-Н17В	109.5	H17A-C17-H17B	109.5
С16-С17-Н17С	109.5	H17A-C17-H17C	109.5
H17B-C17-H17C	109.5	C16-C18-H18A	109.5
C16-C18-H18B	109.5	H18A-C18-H18B	109.5
C16-C18-H18C	109.5	H18A-C18-H18C	109.5
H18B-C18-H18C	109.5	С16-С19-Н19А	109.5
С16-С19-Н19В	109.5	H19A-C19-H19B	109.5
С16-С19-Н19С	109.5	H19A-C19-H19C	109.5
H19B-C19-H19C	109.5	C28-C20-C21	120.7(5)
C28-C20-N1	119.0(5)	C21-C20-N1	120.2(4)
N2-C21-C25	123.8(5)	N2-C21-C20	118.1(5)
C25-C21-C20	118.0(5)	N2-C22-C23	124.1(7)
N2-C22-H22	117.9	С23-С22-Н22	117.9
C24-C23-C22	119.8(6)	С24-С23-Н23	120.1
С22-С23-Н23	120.1	C23-C24-C25	120.1(6)
С23-С24-Н24	120.0	С25-С24-Н24	120.0
C21-C25-C26	120.0(6)	C21-C25-C24	115.9(6)
C26-C25-C24	124.1(6)	C27-C26-C25	120.3(6)
С27-С26-Н26	119.8	С25-С26-Н26	119.8
C26-C27-C28	120.4(6)	С26-С27-Н27	119.8
С28-С27-Н27	119.8	C20-C28-C27	120.5(6)
С20-С28-Н28	119.8	С27-С28-Н28	119.8
C8-N1-C20	116.6(4)	C8-N1-C9	123.7(4)
C20-N1-C9	118.4(4)	C22-N2-C21	116.2(5)
O2-S1-O1	117.9(2)	O2-S1-C15	110.5(2)
O1-S1-C15	111.7(2)	O2-S1-C1	110.4(2)
01-S1-C1	110.9(2)	C15-S1-C1	92.5(2)
Cl2-C30-Cl1	111.8(4)	Cl2-C30-H30A	109.3
Cl1-C30-H30A	109.3	Cl2-C30-H30B	109.3
Cl1-C30-H30B	109.3	H30A-C30-H30B	107.9

Table S25. Torsion angles (°) for 3g.

C9-C1-C2-C7	-26.1(6)	S1-C1-C2-C7	94.6(5)
C9-C1-C2-C3	155.4(4)	S1-C1-C2-C3	-83.9(5)
C7-C2-C3-C4	0.4(7)	C1-C2-C3-C4	178.9(4)
C2-C3-C4-C5	-0.5(7)	C2-C3-C4-C16	180.0(4)
C3-C4-C5-C6	0.0(7)	C16-C4-C5-C6	179.5(5)
C4-C5-C6-C7	0.7(8)	C5-C6-C7-C2	-0.9(8)
C5-C6-C7-C8	178.0(4)	C3-C2-C7-C6	0.4(7)
C1-C2-C7-C6	-178.2(4)	C3-C2-C7-C8	-178.5(4)
C1-C2-C7-C8	3.0(7)	C6-C7-C8-O3	7.7(7)
C2-C7-C8-O3	-173.5(5)	C6-C7-C8-N1	-172.7(4)
C2-C7-C8-N1	6.1(7)	C2-C1-C9-N1	38.0(6)
S1-C1-C9-N1	-86.6(4)	C2-C1-C9-C10	158.1(4)
S1-C1-C9-C10	33.4(4)	N1-C9-C10-C15	97.3(5)
C1-C9-C10-C15	-23.1(5)	N1-C9-C10-C11	-85.6(5)
C1-C9-C10-C11	154.1(5)	C15-C10-C11-C12	-1.6(7)
C9-C10-C11-C12	-178.6(5)	C10-C11-C12-C13	0.1(9)
C11-C12-C13-C14	1.5(10)	C12-C13-C14-C15	-1.6(9)
C11-C10-C15-C14	1.6(7)	C9-C10-C15-C14	178.9(5)
C11-C10-C15-S1	-176.8(4)	C9-C10-C15-S1	0.5(5)
C13-C14-C15-C10	0.0(8)	C13-C14-C15-S1	178.1(4)
C3-C4-C16-C17	62.0(6)	C5-C4-C16-C17	-117.4(6)
C3-C4-C16-C19	-60.0(7)	C5-C4-C16-C19	120.6(6)
C3-C4-C16-C18	-179.2(5)	C5-C4-C16-C18	1.3(7)
C28-C20-C21-N2	-178.1(5)	N1-C20-C21-N2	-1.3(7)
C28-C20-C21-C25	1.3(7)	N1-C20-C21-C25	178.0(4)
N2-C22-C23-C24	-1.4(10)	C22-C23-C24-C25	0.8(10)
N2-C21-C25-C26	179.0(5)	C20-C21-C25-C26	-0.3(8)
N2-C21-C25-C24	-0.6(8)	C20-C21-C25-C24	-179.9(5)
C23-C24-C25-C21	0.1(8)	C23-C24-C25-C26	-179.4(6)
C21-C25-C26-C27	-0.9(9)	C24-C25-C26-C27	178.6(6)
C25-C26-C27-C28	1.3(11)	C21-C20-C28-C27	-1.0(9)
N1-C20-C28-C27	-177.7(5)	C26-C27-C28-C20	-0.3(10)
O3-C8-N1-C20	-4.2(7)	C7-C8-N1-C20	176.2(4)
O3-C8-N1-C9	-171.0(4)	C7-C8-N1-C9	9.4(6)
C28-C20-N1-C8	82.0(6)	C21-C20-N1-C8	-94.8(5)
C28-C20-N1-C9	-110.4(5)	C21-C20-N1-C9	72.8(6)
C10-C9-N1-C8	-148.1(4)	C1-C9-N1-C8	-31.1(6)
C10-C9-N1-C20	45.4(5)	C1-C9-N1-C20	162.3(4)
C23-C22-N2-C21	0.9(8)	C25-C21-N2-C22	0.1(7)
C20-C21-N2-C22	179.4(5)	C10-C15-S1-O2	-95.2(4)
C14-C15-S1-O2	86.5(5)	C10-C15-S1-O1	131.4(4)
C14-C15-S1-O1	-46.9(5)	C10-C15-S1-C1	17.7(4)
C14-C15-S1-C1	-160.6(5)	C2-C1-S1-O2	-44.0(4)
C9-C1-S1-O2	82.8(3)	C2-C1-S1-O1	88.6(4)
C9-C1-S1-O1	-144.5(3)	C2-C1-S1-C15	-157.0(4)
C9-C1-S1-C15	-30.1(3)		

Table S26. Anisotropic atomic displacement parameters (\AA^2) for 3g.

Table S26. Anisotropic atomic displacement parameters (A) 101 Sg.The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 a^{*2} U_{11} + ... + 2 h k$ 38

 $a^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.052(3)	0.029(3)	0.033(2)	-0.0014(19)	0.016(2)	0.000(2)
C2	0.045(3)	0.035(3)	0.036(2)	0.005(2)	0.015(2)	0.001(2)
C3	0.051(3)	0.032(3)	0.041(3)	0.000(2)	0.020(2)	-0.003(2)
C4	0.041(2)	0.037(3)	0.043(3)	0.008(2)	0.012(2)	0.002(2)
C5	0.054(3)	0.040(3)	0.050(3)	0.006(2)	0.025(2)	-0.001(2)
C6	0.059(3)	0.043(3)	0.047(3)	0.001(2)	0.028(3)	0.004(2)
C7	0.047(3)	0.031(3)	0.034(2)	0.0031(19)	0.013(2)	0.001(2)
C8	0.046(3)	0.036(3)	0.036(2)	0.002(2)	0.014(2)	0.002(2)
C9	0.045(3)	0.030(3)	0.031(2)	0.0067(19)	0.0114(19)	0.003(2)
C10	0.048(3)	0.031(3)	0.031(2)	0.0008(19)	0.010(2)	-0.002(2)
C11	0.064(3)	0.036(3)	0.051(3)	0.009(2)	0.021(3)	0.000(2)
C12	0.067(4)	0.053(4)	0.065(4)	0.009(3)	0.028(3)	-0.015(3)
C13	0.054(3)	0.061(4)	0.073(4)	0.005(3)	0.025(3)	-0.015(3)
C14	0.048(3)	0.056(4)	0.059(3)	0.004(3)	0.015(3)	0.001(3)
C15	0.047(3)	0.036(3)	0.039(2)	0.000(2)	0.012(2)	-0.004(2)
C16	0.047(3)	0.033(3)	0.050(3)	0.003(2)	0.018(2)	-0.004(2)
C17	0.065(4)	0.040(4)	0.114(6)	-0.012(3)	0.038(4)	-0.003(3)
C18	0.076(4)	0.041(3)	0.096(5)	0.006(3)	0.047(4)	-0.008(3)
C19	0.114(6)	0.085(6)	0.060(4)	0.010(4)	-0.002(4)	-0.048(5)
C20	0.050(3)	0.036(3)	0.043(3)	-0.005(2)	0.019(2)	0.000(2)
C21	0.053(3)	0.033(3)	0.048(3)	0.001(2)	0.027(2)	-0.001(2)
C22	0.066(4)	0.063(4)	0.070(4)	0.023(3)	0.032(3)	0.026(3)
C23	0.095(5)	0.046(4)	0.103(5)	0.032(4)	0.062(5)	0.032(4)
C24	0.107(6)	0.032(3)	0.109(6)	0.007(3)	0.075(5)	0.005(3)
C25	0.082(4)	0.026(3)	0.073(4)	-0.004(3)	0.050(3)	-0.002(3)
C26	0.097(5)	0.047(4)	0.091(5)	-0.028(4)	0.045(4)	-0.023(4)
C27	0.072(4)	0.068(5)	0.086(5)	-0.029(4)	0.016(4)	-0.021(4)
C28	0.062(3)	0.050(4)	0.056(3)	-0.010(3)	0.009(3)	-0.004(3)
Cl1	0.127(3)	0.213(4)	0.199(4)	0.076(3)	0.074(2)	0.025(2)
N1	0.049(2)	0.025(2)	0.0349(19)	0.0011(16)	0.0128(17)	0.0011(17)
N2	0.057(3)	0.043(3)	0.053(3)	0.009(2)	0.024(2)	0.010(2)
01	0.075(3)	0.034(2)	0.090(3)	0.000(2)	0.044(2)	0.0089(19)
O2	0.070(3)	0.056(3)	0.047(2)	0.0178(18)	0.0131(19)	0.0094(19)
O3	0.085(3)	0.046(2)	0.051(2)	-0.0122(18)	0.035(2)	-0.008(2)
S1	0.0536(8)	0.0297(7)	0.0493(8)	0.0080(5)	0.0200(6)	0.0054(5)
Cl2	0.623(14)	0.173(4)	0.296(6)	-0.092(4)	0.344(9)	-0.160(6)
C30	0.173(12)	0.159(12)	0.138(10)	0.052(9)	0.061(9)	0.028(10)

Table S27. Hydrogen atomic coordinates and isotropic atomic displacement parameters (\AA^2) for 3g.

	x/a	y/b	z/c	U(eq)
H1	1.0122	0.6587	0.2274	0.045
H3	0.9018	0.5699	0.2768	0.048
Н5	0.6940	0.5828	0.4983	0.056
H6	0.8003	0.6733	0.5449	0.056
H9	0.9680	0.7525	0.2420	0.043
H11	1.1651	0.8314	0.2177	0.06
H12	1.4065	0.8434	0.1972	0.072

	x/a	y/b	z/c	U(eq)	
H13	1.5934	0.7720	0.2530	0.074	
H14	1.5396	0.6863	0.3229	0.066	
H17A	0.8072	0.4239	0.3561	0.107	
H17B	0.9131	0.4641	0.4467	0.107	
H17C	0.9119	0.4709	0.3283	0.107	
H18A	0.5727	0.4493	0.3934	0.1	
H18B	0.5319	0.5142	0.4052	0.1	
H18C	0.6769	0.4858	0.4909	0.1	
H19A	0.6814	0.5157	0.1899	0.142	
H19B	0.5358	0.5332	0.2212	0.142	
H19C	0.5745	0.4678	0.2124	0.142	
H22	0.6884	0.8903	0.1941	0.077	
H23	0.7611	0.9853	0.2332	0.089	
H24	0.9845	1.0069	0.3650	0.087	
H26	1.2335	0.9699	0.5102	0.09	
H27	1.3783	0.8932	0.5997	0.093	
H28	1.2973	0.7995	0.5499	0.071	
H30A	0.4318	0.1669	0.5647	0.186	
H30B	0.2549	0.1840	0.5281	0.186	

14. NMR Spectra of Products

15. Gram scale experiment

The benzamide **1a** (1.79 g, 1.1 equiv), benzothiophene-(b)-1,1-dioxide (1 g, 1 equiv) (**2a**), Co(acac)₂ 460 mg, 20 mol%), Ag₂O (2.79 g, 2 equiv), and KOAc (2.37 g, 4 equiv) were weighed into the 100 mL Duran reagent bottle and the mixture of TFE+tAmylOH (1:1) (30 mL) was added and the bottle was inserted into the preheated oil bath. The reaction was continued for 36 h at 90 °C and the TLC was used to determine the completion of the reaction. Once the reaction was completed the solvent was removed and the product was purified by column chromatography with petroleum ether (40-65°C) and ethyl acetate as eluent. The product **3a** was isolated as brown solid (65%, 1.62 g).

Figure S4: Reaction flask

Figure S5: After column chromatography

16. References:

- S1. Kathiravan, S.; Suriyanarayanan, S.; Nicholls, I. A. Org. Lett. 2019, 21, 1968-1972.
- S2. Madec, D.; Mingoia, F.; Macovei, C.; Maitro, G.; Giambastiani, G.; Poli, G. *Eur. J. Org. Chem.* **2005**, 552-557.
- S3. Kuhl, N.; Hopkinson, M. N.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 8230.
- S4. Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M. Adv. Synth. Catal. 2014, 356, 1491-1495.