Supporting Information for:

Water Resistant and Flexible MOF Materials for Highly-Efficient Separation of Methane from Nitrogen

Xiao-Wei Liu,^{†,§} Yi-Ming Gu,^{†,§} Tian-Jun Sun,^{*†} Ya Guo,^{†,§} Xiao-Li Wei,^{†,§} Sheng-Sheng Zhao[†] and Shu-Dong Wang^{*†}

[†]Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian 116023, P. R. China [§]University of Chinese Academy of Sciences (UCAS), 19 A Yuquan Road, Beijing 100049, P. R. China

Email: wangsd@dicp.ac.cn, suntianjun@dlmu.edu.cn

Contents:

S1. Supporting Figures and Tables

S2. References

Supporting Figures and Tables

Figure S1. Schematic of the set-up for breakthrough experiments. 1. pressure reducing regulator; 2. gas purifier; 3. two-way valve; 4. mass flowmeter; 5. three-way valve; 6. vacuum pump; 7. adsorbent fixed-bed; 8. thermostatic chamber; 9. back pressure regulator; 10. mass spectrometer; 11. computer.

Figure S2. TGA patterns of (a) Co-MA-BPY and (b) Ni-MA-BPY MOFs: the as-made (black solid line) and the guest-free (red dash line) samples.

PLD of Co-MA-BPY: 2.5 Å PLD of Ni-MA-BPY: 3.0 Å

Kinetic diameter of Ar (3.4 Å), CH₄ (3.8 Å) and N₂ (3.6 Å)

Figure S3. Schematic showing larger gas molecules inaccessible to the pore channels of M-MA-BPY MOFs of the original state.¹ Key of atoms: Co or Ni (pale blue), C (grey), O (red), N (blue) and H (white).

Figure S4. Pore size distributions (PSDs) of Co-MA-BPY (red solid line) and Ni-MA-BPY (blue dash line) MOFs. PSDs are calculated by using a NLDFT cylindrical pores model.

Figure S5. Pure CH₄ adsorption isotherms of different (**a**) Co-MA-BPY and (**b**) Ni-MA-BPY MOF samples at 298 K: fresh (red squares), after being soaked in water for 24 h (blue circles) and after being exposed to 75% RH air atmosphere for 2 weeks (green triangles).

Figure S6. Pure N_2 adsorption isotherms of different (a) Co-MA-BPY and (b) Ni-MA-BPY MOF samples at 298 K: fresh (red squares), after being soaked in water for 24 h (blue circles) and after being exposed to 75% RH air atmosphere for 2 weeks (green triangles).

Figure S7. Pure CH₄ (squares, circles and diamonds) and N_2 (triangles and hexagons) adsorption isotherms of (a) Co-MA-BPY and (b) Ni-MA-BPY MOF samples at 288 (red), 298 (blue) and 308 K (green) based on a x-logarithmic scale. Black lines indicate the dual sites Langmuir-Freundlich fitting data.

Figure S8. Experimental column breakthrough curves of cycling tests for CH_4/N_2 binary mixtures with different compositions (v/v) (**a**, **b**) 5: 95, (**b**, **d**) 15: 85, (**e**, **f**) 30: 70 and (**g**, **h**) 50: 50 in an absorber bed packed with Co-MA-BPY (**a**, **c**, **e** and **g**) and Ni-MA-BPY (**b**, **d**, **f** and **h**) at 298 K and 1.0 bar.

 V_t^{b} LCD^{a} PLD^a $V_{mic}{}^{c}$ S_{BET} $S_{Langmuir}$ Adsorbents (m² g⁻¹) (Å) $(m^2 g^{-1})$ $(cm^3 g^{-1})$ $(cm^3 g^{-1})$ (Å) Co-MA-BPY 5.223 2.520 451 575 0.230 0.142

Table S1.Textual properties of the porous structures of M-MA-BPY (M=Co and Ni) MOFs characterized using Zeo++ software package based on the reported structures¹ and calculated from their experimental argon adsorption isotherms at 87 K.

^a LCD and PLD were characterized using the open-source Zeo++ software package, ${}^{b}V_{t}$ (total pore volume) was calculated by Gurvich-rule at P/P₀=0.95, ${}^{c}V_{mic}$ (micropore volume) was calculated by t-Plot method. Here micropore suggests the pores with a diameter smaller than 2.0 nm.

464

544

0.191

0.160

Ni-MA-BPY

5.098

3.022

Adsorbates	CH ₄	N_2	CH ₄	N_2	CH ₄	N_2
T/K	288	288	298	298	308	308
$q_1 \pmod{g^{-1}}$	2.2543	1.5286	2.1688	1.5283	2.0377	1.5865
$b_1 (kPa^{-1})$	9.1332E-03	1.3797E-03	6.7964E-03	1.0395E-03	5.1956E-03	7.3382E-04
c ₁	0.9937	0.9919	0.9995	0.9848	1.0095	1.0056
$q_2 \pmod{g^{-1}}$	0.8882	0.8883	0.8715	0.8524	0.8424	0.7656
$b_2(kPa^{-1})$	8.9575E-04	8.8943E-04	8.8119E-04	8.6464E-04	8.5628E-04	7.9892E-04
c ₂	0.8822	0.9889	0.8696	0.9738	0.8635	0.9459

Table S2. Fitting parameters of the DSLF model for CH_4 and N_2 adsorption on Co-MA-BPY MOF at different temperature

Table S3. Fitting parameters of the DSLF model for CH_4 and N_2 adsorption on Ni-MA-BPY MOF at different temperature

Adsorbates	CH_4	N_2	CH_4	N_2	CH_4	N_2
T/K	288	288	298	298	308	308
$q_1 \pmod{g^{-1}}$	2.3736	1.9444	2.2537	1.4343	2.1201	1.2401
$b_1 (kPa^{-1})$	9.6882E-03	1.2335E-03	7.1805E-03	1.1617E-03	5.4622E-03	9.7995E-04
c ₁	0.9979	0.9929	1.0069	0.9997	1.0152	0.9957
$q_2 \pmod{g^{-1}}$	0.9059	0.8936	0.8764	0.8637	0.8592	0.8092
$b_2 (kPa^{-1})$	8.8772E-04	8.9472E-04	8.8462E-04	8.6710E-04	8.7192E-04	8.5242E-04
C ₂	0.8975	0.9858	0.8799	0.9774	0.8593	0.9577

Adsorbents	Selectivity (CH4/N2 50:50, v/v)	CH ₄ Capacity (mmol g ⁻¹)	Ref.
Co-MA-BPY	7.16	0.92	This work
Ni-MA-BPY	7.41	1.01	This work
Zeolite-5A	0.94	0.81	2
MOF-5	1.13	0.13	2
Cu(me-4py-trz-ia)	4.20	1.12	3
ATC-Cu	9.70	2.90	4
HKUST-1	3.70	0.90	4
Ni ₃ (HCOO) ₆	6.20	0.78	5
Co ₃ (HCOO) ₆	5.50	0.79	6
Cu(INA) ₂	6.90	0.83	7
$Co_3(C_4O_4)(OH)_2$	12.50	0.40	8
USTA-30a	5.00	0.63	9
Cu-MOF	6.90	0.47	10
Ni-MOF-74	3.80	1.91	11
Co-MOF-74	3.20	1.63	11
Mg-MOF-74	1.50	1.66	11

Table S4. Selectivities of CH_4/N_2 and the CH_4 sorption capacity of some selected adsorbents at 298 K and 1 bar.

Reference

- 1. Duan, L.-M.; Xie, F.-T.; Chen, X.-Y.; Chen, Y.; Lu, Y.-K.; Cheng, P.; Xu, J.-Q., Syntheses, structures, and magnetic properties of three novel metal-malate-bipyridine coordination polymers with layered and pillared topology. *Cryst. Growth Des.* **2006**, *6* (5), 1101-1106.
- Saha, D.; Bao, Z.; Jia, F.; Deng, S., Adsorption of CO₂, CH₄, N₂O, and N₂ on MOF-5, MOF-177, and Zeolite 5A. *Environ. Sci. Technol.* 2010, 44 (5), 1820-1826.
- Möllmer, J.; Lange, M.; Möller, A.; Patzschke, C.; Stein, K.; Lässig, D.; Lincke, J.; Gläser, R.; Krautscheid, H.; Staudt, R., Pure and mixed gas adsorption of CH₄ and N₂ on the metalorganic framework Basolite®A100 and a novel copper-based 1,2,4-triazolyl isophthalate MOF. *J. Mater. Chem.* 2012, 22 (20), 10274-10286.
- Niu, Z.; Cui, X.; Pham, T.; Lan, P. C.; Xing, H.; Forrest, K. A.; Wojtas, L.; Space, B.; Ma, S., A metal-organic framework based methane nano-trap for the capture of coal-mine methane. *Angew. Chem. Int. Ed.* 2019, *https://doi.org/10.1002/anie.201904507.*
- Liu, X.-W.; Guo, Y.; Tao, A.; Fischer, M.; Sun, T.-J.; Moghadam, P. Z.; Fairen-Jimenez, D.; Wang, S.-D., "Explosive" synthesis of metal-formate frameworks for methane capture: an experimental and computational study. *Chem. Commun.* 2017, *53* (83), 11437-11440.
- Hu, J.; Sun, T.; Liu, X.; Zhao, S.; Wang, S., Rationally tuning the separation performances of [M₃(HCOO)₆] frameworks for CH₄/N₂ mixtures via metal substitution. *Micropor. Mesopor. Mater.* 2016, 225, 456-464.
- Hu, J.; Sun, T.; Liu, X.; Guo, Y.; Wang, S., Separation of CH₄/N₂ mixtures in metal-organic frameworks with 1D micro-channels. *RSC Adv.* 2016, 6 (68), 64039-64046.
- Liangying, L.; Lifeng, Y.; Jiawei, W.; Zhiguo, Z.; Qiwei, Y.; Yiwen, Y.; Qilong, R.; Zongbi, B., Highly efficient separation of methane from nitrogen on a squarate-based metal-organic framework. *AlChE J.* 2018, 64, 3681-3689.
- He, Y.; Xiang, S.; Zhang, Z.; Xiong, S.; Fronczek, F. R.; Krishna, R.; O'Keeffe, M.; Chen, B., A microporous lanthanide-tricarboxylate framework with the potential for purification of natural gas. *Chem. Commun.* 2012, 48 (88), 10856-10858.
- 10. Wu, X.; Yuan, B.; Bao, Z.; Deng, S., Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal-organic framework. *J. Colloid Interf. Sci.* **2014**, *430*, 78-84.
- Li, L.; Yang, J.; Li, J.; Chen, Y.; Li, J., Separation of CO₂/CH₄ and CH₄/N₂ mixtures by M/DOBDC: A detailed dynamic comparison with MIL-100(Cr) and activated carbon. *Micropor. Mesopor. Mater.* 2014, 198, 236-246.