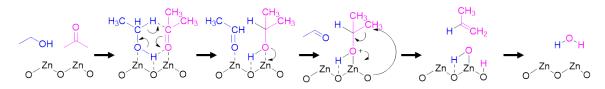
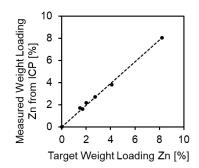
Supporting Information

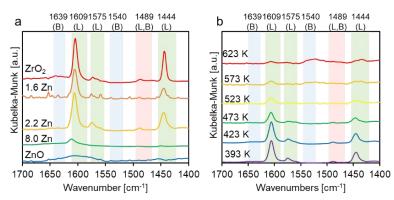
Mechanism and Kinetics of Isobutene Formation from Ethanol and Acetone over Zn_xZr_yO_z


Julie E. Rorrer, [a,c] F. Dean Toste, [b,c] Alexis T. Bell[a,c]*

[a] Department of Chemical and Biomolecular Engineering, University of California Berkeley, CA 94720 (USA)


[b] Department of Chemistry, University of California Berkeley, CA 94720 (USA)

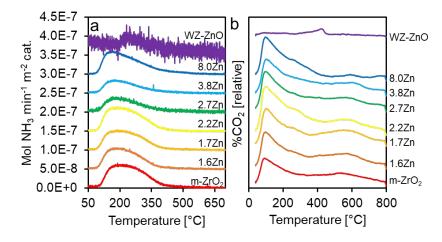
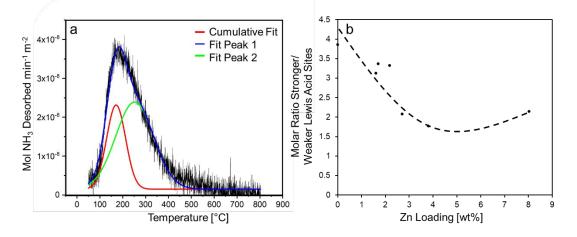
[c] Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 *Corresponding author email: <u>alexbell@berkeley.edu</u>

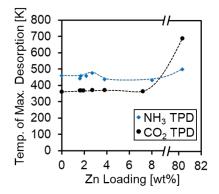

Table of Contents	Page
Scheme S1: Mechanism of propene formation from ethanol and acetone via MPV reduction	1
Figures S1-S5, Table S1: Supplemental catalyst characterization (ICP, DRIFTS-py, NH ₃ -TPD, CO ₂ -TPD)	1-3
Figure S6: Gas phase free energies of formation calculated from DFT	3
Figures S7-S17: Supplemental kinetic measurements	3-6
Figure S18: Arrhenius plots for rate constants given in Table S2	7
Table S2: Kinetic Parameters from Model 2	7
Derivation of Rate Expressions	7-9

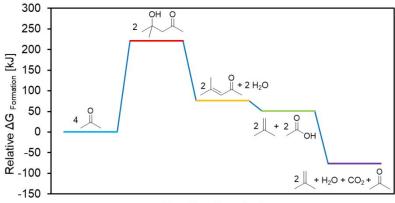
Scheme S1: Production of propene from ethanol and acetone via MPV reduction of acetone to produce isopropanol, followed by dehydration to produce propene.

Figure S1: Target weight loading of Zn for incipient wetness impregnation method versus measured weight loading from ICP conducted by Galbriath Laboratories.

Figure S2: a) DRIFTS-py at 393 K for ZnO, ZrO_2 , and $Zn_xZr_yO_z$ with varying weight loadings of Zn. Catalysts diluted with KBr (250 mg KBr, 50 mg catalyst) except for ZnO which was not diluted by KBr, b) DRIFTS- py as a function of temperature over $Zn_xZr_yO_z$ (2.2 wt% Zn).


Figure S3: a) NH₃-TPD profiles of catalysts, b) CO₂-TPD profiles of catalysts.


Figure S4: a) Representative Peak Deconvolution for NH_3 desorption as a function of temperature for $Zn_xZr_yO_z$ (2.7wt% Zn), performed in Origin, b) Ratio of moles NH_3 desorbed from stronger Lewis acid sites (peak temperature 230 °C, Fit Peak 2) over weaker Lewis acid sites (peak temperature 160 °C, Fit Peak 1). Dashed lines are to guide the eye.

Wt% Zn (Zn _x Zr _y O _z)	Molar Ratio of Stronger/ Weaker Lewis Acid Sites	Total Lewis Acidity (μmol NH ₃ /m ²)	Weak Lewis Acidity (µmol NH ₃ /m ²) ^a	Strong Lewis Acidity (μmol NH ₃ /m ²) ^b
$0 (ZrO_2)$	3.9	2.6	0.5	2.1
1.6	3.1	2.2	0.5	1.7
1.7	3.4	2.2	0.5	1.7
2.18	3.3	2.6	0.6	2.0
2.7	2.1	1.5	0.5	1.0
3.8	1.8	1.8	0.6	1.2
8.02	2.1	2.6	0.8	1.8

Table S1. Ratio of Stronger to Weaker Lewis Acid Sites on ZrO₂ and Zn_xZr_yO_z measured by NH₃ TPD.

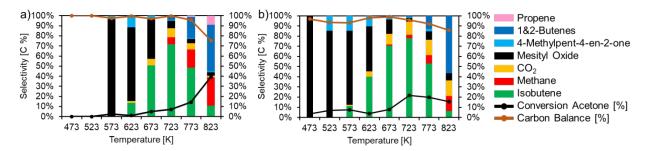
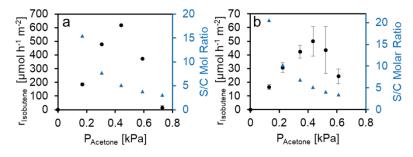
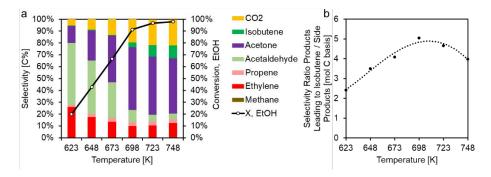
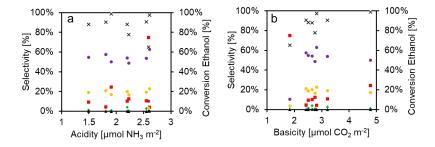


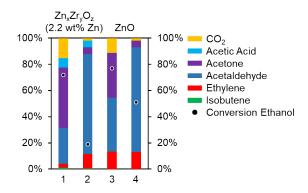
Figure S5: Temperature of maximum desorption of NH_3 (blue diamond) and CO_2 (black circle) during temperatureprogrammed-desorption (TPD) experiments for ZrO_2 , ZnO, and the $Zn_xZr_yO_z$ catalysts.

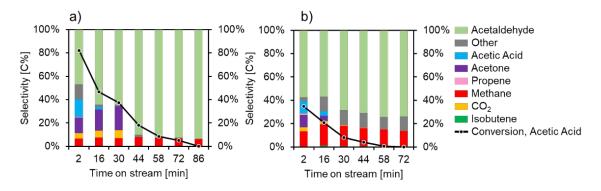


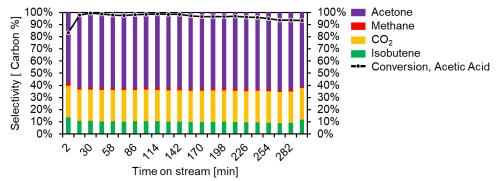
Reaction Coordinate

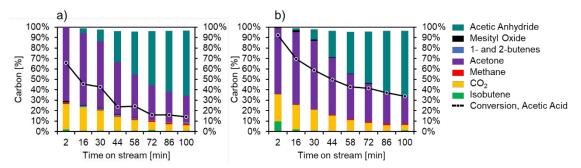

Figure S6: Gas phase free energies of formation calculated from DFT. Values are normalized relative to acetone and are expressed on a basis of kJ per number of moles shown by the stoichiometry for each intermediate step. Details for Qchem Calculations: Geometry minimization: exchange omega B97X-D, basis 6-31G**, Frequency calculation: exchange omega B97X-D, basis 6-31G**, Single point energy: exchange omega B97X-D, basis 6-311++G(3df,3pd).

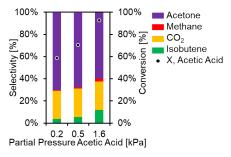

Figure S7: Effect of temperature on the acetone to isobutene reaction. Reaction Conditions: 0.4 kPa acetone, 17.8 kPa H_2O , S/C 8, 50 mL min⁻¹ He, a) 283.5 mg ZnO, b) 20.5 mg $Zn_xZr_yO_z$ (2.2 wt% Zn). Catalyst deactivation for both catalysts began at 773 K, data recorded is from initial rate.

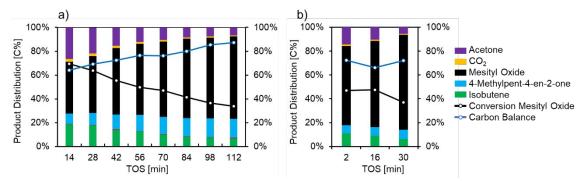

Figure S8: Effect of steam to carbon ratio on reaction rates for the acetone to isobutene reaction over a) $Zn_xZr_yO_z$ (2.2 wt% Zn) and b) ZnO (61.4 mg). Reaction conditions: 723 K, 150 mL min⁻¹ He with a) 15 kPa H₂O and b) 13 kPa H₂O.


Figure S9: a) Effect of temperature on the ethanol to isobutene reaction over $Zn_xZr_yO_z$ (2.2 wt% Zn). Reaction Conditions: 0.1 kPa acetone, 30 kPa H₂O, 50 mL min⁻¹ He, atmospheric pressure, b) Selectivity ratio of productive products leading to isobutene (acetaldehyde, acetone, and isobutene) over undesired side products (methane, ethylene, and propene), demonstrating that 698 K is the ideal temperature for maximizing the productive cascade reaction.


Figure S10: a) Effect of acidity (measured by NH_3 -TPD) on the selectivity for the ethanol to isobutene reaction, b) effect of basicity (measured by CO_2 -TPD) on the ethanol to isobutene reaction. Reaction conditions: 698 K, 1 kPa EtOH, S/C 4, 50 mL min⁻¹ He, WHSV 0.7, spacetime normalized by BET surface area.


Figure S11: Ethanol reactions over $Zn_xZr_yO_z$ (2.2 wt% Zn) and ZnO in the presence and absence of water. Entries 1, 2: $Zn_xZr_yO_z$ (2.2 wt% Zn) 4.8 mg, entries 3, 4: 58 mg ZnO, 0.2 kPa acetone, entries 1, 3: 13 kPa H₂O, entries 2, 4: 0 kPa H₂O, 150 mL min⁻¹ He, 723 K. As observed by entries 1 and 2, in the absence water, the selectivity towards ethylene (red) increases over $Zn_xZr_yO_z$ (2.2 wt% Zn) and the conversion dramatically decreases. Over ZnO (entries 3 and 4), the absence of water also decreases the conversion and significantly decreases the conversion of acetaldehyde to acetone.


Figure S12: Reactions of ethanol and acetaldehyde mixtures in the absence of water over a) ZnO (60.1 mg), and b) Zn_xZr_yO_z 2.2 wt% Zn (4.8 mg). Reaction conditions: 0.11 kPa EtOH, 0.03 kPa acetaldehyde, 723 K, 150 mL min⁻¹ He, atmospheric pressure.


Figure S13: Effect of time on stream for the reaction of acetic acid to isobutene at 723 K. Reaction conditions: 22.3 mg $Zn_xZr_yO_z$ 2.2 wt% Zn, 150 mL min⁻¹ He, 0.21 kPa acetic acid, 11.4 kPa H₂O, S/C 5.4. Reaction was stable for over 5 h.

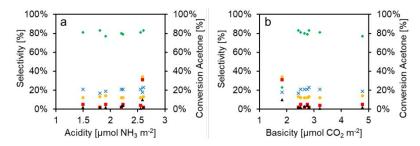

Figure S14: Reactions of acetic acid in the absence of water over a) ZnO and b) $Zn_xZr_yO_z$ 2.2 wt% Zn. Reaction conditions: a) 723 K, 0.22 kPa acetic acid, 60.1 mg catalyst, 150 mL min⁻¹ He; b) 723 K, 0.26 kPa acetic acid, 4.9 mg catalyst, 150 mL min⁻¹ He.

Figure S15: Effect of partial pressure for the reaction of acetic acid to produce isobutene over $Zn_xZr_yO_z$ 2.2 wt% Zn. Reaction conditions: 723 K, 20.8 mg $Zn_xZr_yO_z$ 2.2 wt% Zn, 15-150 mL min⁻¹ He, S/C 5.

Figure S16: Deactivation of catalysts for the reaction of mesityl oxide and water over a) 4.8 mg $Zn_xZr_yO_z$ 2.2 wt% Zn and b) 60.8 mg ZnO. Reaction Conditions: 723 K, 150 mL min⁻¹ He, S/C 6.3, 13 kPa H₂O, 0.012 kPa initial 4-methylpent-4-en-2-one, 0.12 kPa initial Mesityl Oxide.

Figure S17: Conversion and selectivity for the acetone to isobutene reaction as a function of a) acidity [μ mol NH₃ m⁻²] and b) basicity [μ mol CO₂ m⁻²]. Reaction conditions: 698 K,0.5 kPa acetone, 30 kPa H₂O, S/C 8.2, 50 mL min⁻¹ He, 1 m² catalyst.

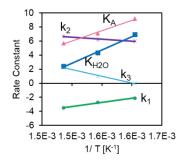


Figure S18: Arrhenius plots for rate constants given in Table S2.

Table S2.	Kinetic	Parameters	from	Model 2
1 abic 52.	Kincuc	1 arameters	nom	WIGUEL 2.

T [K]	k ₁	k ₂	k ₃	K _A	k _{H2O}	k.1
	[µmol h ⁻¹ m ⁻²]	[µmol h ⁻¹ m ⁻²]	[µmol h ⁻¹ m ⁻² kPa ⁻¹]	[kPa ⁻¹]	[kPa ⁻¹]	[µmol h ⁻¹ m ⁻²]
623	0.12	400	1	9000	1000	1000
648	0.065	500	2.6	1200	75	1000
673	0.03	800	10	300	11	1000
Apparent E _A [kJ mol ⁻¹]	-96 ± 8	48 ± 11	160 ± 19			
Apparent ln[A]	-21 ± 2	15 ± 2	31 ± 4			
ΔH_{ads} [kJ mol ⁻¹]				-238 ± 20	-315 ± 20	
$\Delta S [kJ mol^{-1} K^{-1}]$				0.3 ± 0.03	0.45 ± 0.03	

Derivation of Rate expressions for isobutene formation:

The elementary steps for the formation of isobutene from acetone are given by equations [S1]-[S7], where the partial pressures of the reactants and intermediates are given by: acetone [A], water [H₂O], diacetone alcohol [DAA**], acetic acid [AA*], carbon dioxide [CO₂], isobutene [IB], and mesityl oxide [MO]. The active site, [*] represents a Lewis acid/base pair.

Equation [S1]	$[A] + [*] \stackrel{K_A}{\leftrightarrow} [A *]$ Quasi-Equilibrated
Equation [S2]	$[H_20] + [*] \stackrel{K_{H_20}}{\longleftrightarrow} [H_20*]$ Quasi-Equilibrated
Equation [S3]	$2[A*] \stackrel{\kappa_1}{\rightleftharpoons} [DAA**]_{k_{-1}}$
Equation [S4]	$[DAA **] + [H_2O *] \xrightarrow{k_3} [IB] + [H_2O *] + [AA *]$
Equation [S5]	$2[AA*] \xrightarrow{k_4} [A*] + [CO_2] + [H_2O*]$ fast
Equation [S6]	$\begin{bmatrix} DAA ** \end{bmatrix} \underset{k_{-2}}{\overset{\kappa_2}{\leftarrow}} \begin{bmatrix} MO * \end{bmatrix} + \begin{bmatrix} H_2O * \end{bmatrix}$
Equation [S7]	$[MO*] \stackrel{K_{MO}}{\longleftrightarrow} [MO] + [*]$

Assuming steps in equations [S1] and [S2] are quasi-equilibrated:

Equation [S8]	$[A *] = K_A[A][*]$
Equation [S9]	$[H_2O *] = K_{H2O}[H_2O][*]$

Applying pseudo steady state (PSSH) approximation to [DAA**]:

Equati
on
$$\frac{d[DAA **]}{dt} = k_1[A *]^2 - k_{-1}[DAA **] - k_2[DAA **] + k_{-2}[MO *][H_2O *] - k_3[DAA$$
[S10]

Rearrangement of Equation [S10] yields Equation [S11]:

Equation [S11]
$$[DAA **] = \frac{k_1[A *]^2 + k_{-2}[MO *][H_2O *]}{(k_{-1} + k_2 + k_3[H_2O])}$$

Substitution of $[A^*]$ and $[H_2O^*]$ from Equations [S8] and [S9], and assuming surface mesityl oxide concentration is low yields Equation [S12]:

Equation [S12]
$$[DAA **] = \frac{k_1 K_A^2 [A]^2 [*]^2}{(k_{-1} + k_2 + k_3 [H_2 O])}$$

Model 1: Assuming rate limiting step for isobutene formation is C-C coupling of acetone:

Equation [S13]
$$r_{IB} = k_1 [A *]^2 - k_{-1} [DAA **]$$

Substitution of [DAA**] from Equation [S12] into Equation [S13] yields Equation [S14]:

Equation [S14]
$$r_{IB} = k_1 [A *]^2 - k_{-1} \left(\frac{k_1 K_A^2 [A]^2 [*]^2}{(k_{-1} + k_2 + k_3 [H_2 O])} \right)$$

Substitution of [A*] from Equation [S8] and rearrangement gives:

Equation [S15]
$$\frac{r_{IB}}{[*]^2} = k_1 K_A^2 [A]^2 - k_{-1} \left(\frac{k_1 K_A^2 [A]^2}{(k_{-1} + k_2 + k_3 [H_2 O])} \right)$$

The Site Balance is given by Equation [S16], where it is assumed that surface mesityl oxide concentration is low, and all sites are occupied by either acetone or water:

Equation [S16] $L_1 = [A *] + [H_2O *]$

Substitution of [A*] and [H₂O*] from Equations [S8] and [S9] yields Equation [S17]:

Equation [S17]
$$\frac{L_1}{[*]} = (K_A[A] + K_{H20}[H_2O])$$

Substitution of the Site Balance in Equation [S17] for [*] into Equation [S15] yields Equation [S18]:

Equation [S18]

$$r_{IB} = \frac{k_1 K_A^2 [A]^2 - k_{-1} \left(\frac{k_1 K_A^2 [A]^2}{(k_{-1} + k_2 + k_3 [H_2 O])} \right)}{(K_A [A] + K_{H20} [H_2 O])^2}$$

Representing Equation [S18] in partial pressure notation yields Equation [S19], which is equivalent to Equation 1 in the Main Manuscript:

 $r_{IB} = \frac{k_1 K_A^2 P_A^2 - k_{-1} \left(\frac{k_1 K_A^2 P_A^2}{(k_{-1} + k_2 + k_3 P_{H20})} \right)}{(K_A P_A + K_{H20} P_{H20})^2}$

Equation [S19]

Model 2: Assuming rate limiting step is the decomposition of diacetone alcohol:

 $r_{IB} = k_3 [DAA **] [H_2 O *]$ Equation [S20]

Substitution of [DAA**] and [H₂O*] from Equations [S12] and [S9] and rearrangement gives Equation [S21]:

Equation [S21]
$$\frac{r_{IB}}{[*]^3} = k_3 K_{H20} [H_2 O] \frac{k_1 K_A^2 [A]^2}{(k_{-1} + k_2 + k_3 [H_2 O])}$$

Substitute of the Site Balance given by Equation [S17] yields Equation [S22]: ~

~

Equation [S22]
$$r_{IB} = \frac{k_1 K_A^2 [A]^2 k_3 K_{H20} [H_2 O]}{(k_{-1} + k_2 + k_3 [H_2 O])} \frac{(k_{-1} + k_2 + k_3 [H_2 O])}{(K_A [A] + K_{H20} [H_2 O])^3}$$

Representing Equation [S22] in partial pressure notation yields Equation [S23], which is equivalent to Equation 2 in the Main Manuscript:

Equation [S23]
$$r_{IB} = \frac{\frac{k_1 K_A^2 P_A^2 k_3 K_{H20} P_{H20}}{(k_{-1} + k_2 + k_3 P_{H20})}}{(K_A P_A + K_{H20} P_{H20})^3}$$

Supporting Information | Page 9