Supporting Information

Improvement of Pelletability of Woody Biomass by Torrefaction under Pressurized Steam

Shinji Kudo^{†,‡,*}, Jun Okada[†], Shiho Ikeda[§], Takuya Yoshida[§], Shusaku Asano^{†,‡}, and Jun-ichiro Hayashi^{†,‡}

[†] Interdisciplinary Graduate School of Engineering Sciences and [‡] Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga Koen, Kasuga, Fukuoka 816-8580, Japan [§] Kobe Steel, Limited, 2-3-1 Shinhama, Arima-cho, Takasago, Hyogo, 676-8670, Japan

* Email: shinji_kudo@cm.kyushu-u.ac.jp

Table of contents

- Page S2–S4 Experimental results for acacia tree (Table S1, Table S2, and Figures S1–S7)
- Page S4 Grindability of PST180–250 (Figure S8), mass release curves of fuels after DT in the autoclave (Figure S9)
- Page S5 Deconvolution of DTG profile (Figures S10 and S11)
- Page S6 Solid-state ¹³C NMR spectra (Figure S12), appearance of pellets from model components (Figure S13)
- Page S7 Detailed data for fraction of carbon moieties obtained from NMR spectra (Table S3)

	Proximate analysis (wt%-dry)				Ultimate (wt%-	analysis d.a.f.)	Atomic ratio (-)		HHV	
	Ash	VM	FC	С	Н	Ν	0	H/C	O/C	(MJ/kg-d.a.f.)
Raw	1.1	88.7	10.7	50.6	6.21	0.03	43.2	1.46	0.64	18.2
DT250	1.1	76.9	22.0	56.9	6.03	0.09	36.9	1.26	0.49	21.2
DT260	1.3	71.6	27.0	59.5	5.94	0.11	34.4	1.19	0.43	22.4
DT270	1.5	67.5	30.9	61.1	5.62	0.14	33.1	1.09	0.41	22.7
DT280	1.7	57.6	40.8	64.8	5.28	0.16	29.8	0.97	0.35	24.1
WT180	0.5	87.9	11.2	52.4	6.30	0.00	41.3	1.43	0.59	19.3
WT200	0.4	84.9	14.7	53.2	6.01	0.04	40.7	1.34	0.57	19.3
WT220	0.5	81.6	17.9	56.7	6.23	0.05	37.0	1.31	0.49	21.4
WT250	0.4	63.0	36.4	66.3	5.74	0.32	27.7	1.03	0.31	25.7
PST180	0.6	87.1	12.4	50.8	6.17	0.21	42.8	1.45	0.63	18.3
PST200	0.8	84.9	14.2	52.7	6.24	0.25	40.8	1.41	0.58	19.4
PST220	0.7	79.7	19.6	54.2	6.20	0.22	39.4	1.36	0.55	20.1
PST250	0.6	75.1	23.6	56.8	6.05	0.02	37.1	1.27	0.49	21.2

Table S1. Proximate and ultimate analyses of raw and torrefied acacia tree. (Corresponding to Table 1 for rubber tree)

Table S2. Yield of volatiles from each pseudo component in pyrolysis of raw and torrefied acacia tree. TGA conditions:sample 3 mg, heating rate 5 °C/min, and N2 300 mL/min. (Corresponding to Table 2 for rubber tree)

	Yield (wt%-sample) ^a			Composition (wt%)			Yield (wt%-feedstock) ^b			$T_{\rm peak}$ (°C) ^c		
	Hemi	Cel	Lig	Hemi	Cel	Lig	Hemi	Cel	Lig	Hemi	Cel	Lig
Raw	24.0	47.8	11.5	28.8	57.4	13.8	24.0	47.8	11.5	289	339	372
DT250	1.0	49.0	20.9	1.5	69.1	29.5	0.8	39.1	16.7	271	340	382
DT260	4.3	42.0	14.8	7.0	68.8	24.2	3.1	30.5	10.7	282	339	395
DT270	3.2	35.0	17.7	5.8	62.6	31.6	2.1	22.7	11.5	271	339	395
DT280	_	15.2	30.1	_	33.6	66.4	_	8.5	16.7	_	338	385
WT180	16.6	51.2	17.2	19.5	60.2	20.2	12.4	38.4	12.9	322	364	356
WT200	12.0	50.2	19.9	14.7	61.2	24.2	8.4	35.2	13.9	328	363	369
WT220	11.1	42.6	24.6	14.1	54.5	31.4	7.6	29.2	16.8	329	361	370
PST-A180	24.8	46.2	13.4	29.3	54.8	15.9	20.5	38.3	11.1	294	339	372
PST-A200	17.2	40.4	21.6	21.7	51.0	27.3	11.3	26.7	14.3	304	338	341
PST-A220	14.3	44.2	21.4	17.9	55.3	26.8	8.5	26.1	12.7	306	345	349
PST-A250	4.7	38.4	28.3	6.5	53.8	39.6	2.4	19.5	14.4	312	359	376
^a Yield on a torrefied sample mass basis. ^b Yield on a feedstock mass basis. ^c Peak temperature in DTG profile.												

Figure S1. Energy yield and EDF_{mass} plotted against mass yield for torrefied acacia tree. Torrefaction temperature: $250\rightarrow 260\rightarrow 270\rightarrow 280^{\circ}$ C for DT and $180\rightarrow 200\rightarrow 220\rightarrow 250^{\circ}$ C for WT and PST. (Corresponding to **Figure 2** for rubber tree)

Figure S2. Mass release curves for pyrolysis of raw and torrefied acacia tree. TGA conditions: sample 3 mg, heating rate 5 °C/min, and N₂ 300 mL/min. (Corresponding to Figure 3 for rubber tree)

Figure S3. Fraction of carbon moieties analyzed by solidstate ¹³C NMR for selected fuels from acacia tree. (Corresponding to **Figure 4** for rubber tree)

Figure S4. TS of pellets from raw and torrefied acacia tree. Asterisk presents that pellet could not be prepared. (Corresponding to Figure 5 for rubber tree)

Figure S5. *TS* of pellet plotted against its bulk density for raw and torrefied acacia tree. (Corresponding to **Figure 6** for rubber tree)

Figure S6. Content of acetone-soluble portion in PST180–250 (top) and relative *TS* of pellet from PST fuel to that from PST-A fuel (bottom) for acacia tree. (Corresponding to **Figure 8** for rubber tree)

Figure S7. EDF_{vol} of pellets plotted against mass yield in torrefaction for torrefied acacia tree. (Corresponding to Figure 9 for rubber tree)

Figure S8. Particle size distribution of ground raw and PST fuels from acacia tree. 10 g of pellets before or after PST was ground by a crusher for a predetermined duration and then subjected to sieving.

Figure S9. Mass release curves for pyrolysis of raw and torrefied fuels. Torrefaction was carried out in the autoclave loaded with N_2 at atmospheric pressure (DT-C250) or 3.9 MPa (PDT250). TGA conditions: sample 3 mg, heating rate 5 °C/min, and N_2 300 mL/min.

Figure S10. Deconvolution of DTG profile of raw and torrefied rubber tree.

Figure S11. Deconvolution of DTG profile of raw and torrefied acacia tree.

Figure S12. Solid-state ¹³C NMR spectra of selected fuels.

Figure S13. Photographic image of pellet (or fractured pellet) prepared at $T_p = 130^{\circ}$ C from model compounds of cellulose, hemicellulose, and their mixture (hemicellulose 30 wt%-dry) with and without DT at 250°C.

Table S3. (Carbon	fraction	of main	moieties	in raw	and	torrefied	hardwoods.
-------------	--------	----------	---------	----------	--------	-----	-----------	------------

Component (%-C)	Raw	DT250	WT180	WT250	PST180	PST200	PST250	PST-A250
Rubber tree								
Carbohydrate carbons								
C ₁	15.9	11.0	13.9	2.4	17.4	19.1	11.6	20.0
$C_{2,}C_{3,}C_{5}$	23.6	15.7	20.4	2.7	27.3	24.0	16.5	12.9
C_4	9.1	5.9	6.7	1.3	1.1	6.2	3.8	5.0
C_6	15.4	9.9	14.2	1.8	15.3	11.5	7.2	8.7
Lignin carbons (methoxyl, aromatic o	carbons linked	to oxygen)						
Methoxyl	5.8	8.4	8.4	15.2	13.1	11.7	10.0	5.2
G4/G3, S3/S5 nonetherified	1.2	6.9	5.4	9.2	3.3	4.5	7.8	6.6
S ₃ /S ₅ etherified	3.4	1.8	2.6	2.7	2.7	2.8	2.9	2.8
Other carbons								
Aliphatic	8.4	14.4	8.6	21.7	8.9	3.3	14.9	2.9
Aromatic	11.9	22.0	16.3	40.9	5.5	14.1	22.5	34.5
Carbonyl, acetate	5.5	4.1	3.6	2.0	5.4	2.7	2.8	1.5
Acacia tree								
Carbohydrate carbons								
C_1	15.2	10.4	14.7	2.8	16.9	18.0	11.4	17.8
$C_{2,}C_{3,}C_{5}$	23.9	18.3	20.4	3.7	27.0	27.7	18.5	20.8
C_4	8.5	5.1	9.4	0.0	4.8	5.3	5.2	5.9
C_6	16.8	12.9	14.1	3.0	16.2	12.5	9.0	9.4
Lignin carbons (methoxyl, aromatic	carbons linked	to oxygen)						
Methoxyl	8.2	6.7	7.4	16.7	13.3	11.5	10.6	7.1
G ₄ /G ₃ , S ₃ /S ₅ nonetherified	1.1	6.1	4.3	9.8	1.3	5.1	6.6	7.7
S ₃ /S ₅ etherified	2.1	2.6	2.5	1.9	1.8	2.0	2.3	2.1
Other carbons								
Aliphatic	9.2	11.2	7.7	25.1	10.0	6.0	16.6	5.1
Aromatic	11.5	23.5	17.9	36.4	8.6	8.8	17.7	23.6
Carbonyl, acetate	3.5	3.2	1.6	0.6	0.0	3.2	2.0	0.5

Assignment [chemical shift (ppm)]: carbohydrates C_1 (105, 104–96); carbohydrates C_2 , C_3 , C_5 (74); carbohydrates C_4 (88.5, 84); carbohydrates C_6 (64); methoxyl groups (56.2); lignin G_4/G_3 , S_3/S_5 nonetherified (150–144); lignin S_3/S_5 etherified (154–152); aliphatics (10-50); aromatics (141–120, 116–110, 108–106); carbohydrates (>154).

