Supporting Information

Modifying epoxy resin to resist both fire and water

Xiaoyang Wang^{1#}, Qiaoran Zhang^{1#}, Xia Zhang^{*}, Zhiwei Li¹, Ivan P. Parkin², Zhijun Zhang¹

¹Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China

² Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ,

UK.

Equal contribution.

* Corresponding author. Email: zx@henu.edu.cn

The cross-sections of EP and EP-matrix nanocomposites were studied with a SEM observation. From Figure S1a, it is clear that the pure EP has a relatively smooth surface. However, different from pure EP, the obtained CoFe₂O₄/EP nanocomposite cross-section surface contains evenly distributed CoFe₂O₄@SiO₂ nanopartilces, which demonstrates that the CoFe₂O₄@SiO₂ nanopartilces have a good dispersion in EP matrix.

Figure S1 SEM image of fracture surface for (a) EP, (b) 3% CoFe₂O₄/EP, (c) 10% CoFe₂O₄/EP of the fractured surfaces cryogenically broken after immersion in liquid nitrogen.

Samples Tonest (°C) Tmax (°C) Residue at 800 °C (wt %) EP 322.5 374.7 7.9 3 wt% CoFe₂O₄/EP 320.8 368.8 16.3

306.4

Table S1 Thermal analysis data of EP and CoFe₂O₄/EP nanocomposites under nitrogen atmosphere

Table 52 Durning parameters of E1 and Core204/E1 nanocomposites	Table	S2]	Burning p	arameters	of EP	and	CoFe ₂ C)4/EP	nanocom	posites
---	-------	-------------	-----------	-----------	-------	-----	---------------------	-------	---------	---------

353.4

31.5

Sample	TTI (s)	PHRR	<i>t</i> PHR	COP	PSPR	TSR	FGI	FPI	Weight
		(kW·m ⁻²)	R (S)	(g·s ⁻¹)	(m ² ·s ⁻¹)	(m ² ·m ⁻²)	(kW·m ⁻² ·s ⁻¹)	$(m^2 \cdot s \cdot kW^{-1})$	(wt %)
EP	87	1128.7	140	0.031	0.320	3744.7	8.06	0.077	7.3
3 wt% CoFe2O4/EP	62	862.4	160	0.018	0.220	3441.4	5.39	0.072	9.7
10 wt % CoFe2O4/EP	73	681.9	190	0.012	0.187	3650.1	3.59	0.107	16.2

Video S1

10 wt% CoFe2O4/EP

Knife-scratch testing on the surface of superhydrophobic CoFe₂O₄/EP.

Video S2

Pressure testing on the surface of superhydrophobic CoFe₂O₄/EP.

Video S3

The monolith surface shows superhydrophobicity in air or under oil.

Video S4

Self-cleaning properties of the monolith surface in air or under oil.