Supporting Information

Reentrant Spin-Glass Behavior in Cobalt (II) based Coordination Polymers

Akashdeeep Nath[†], S. S. Islam[¥], Prashanta K. Mukharjee[¥], Ramesh Nath^{¥*}, Sukhendu Mandal^{†*}

[†]School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India-695551. *E-mail: <u>sukhendu@iisertvm.ac.in</u>

[¥]School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India-695551.
 Table S1. Crystallographic parameters for Compound 1-2.

Parameters	Compound 1	Compound 2
Empirical formula	C ₂₆ H ₁₆ Co N ₆ O _{4.50}	C ₂₈ H ₁₇ Co N ₇ O ₄
Formula weight	543.38	574.41
Crystal System	Monoclinic	Monoclinic
Space Group	C 2/c	C 2/c
a (Å)	15.43(7)	24.21(5)
b (Å)	12.84(6)	13.18(2)
c (Å)	24.90(11)	15.71(3)
α (°)	90	90
β (°)	99.43(5)	99.33(5)

γ (°)	90	90
Volume (Å ³)	4865(37)	4947(17)
Z	8	8
Calculated density	1.484	1.543
(mg/m ³)		
Absorption coefficient	0.754	0.746
(mm ⁻¹)		
θ range (º)	1.658 to 28.307	2.281 to 28.558
Reflections collected	28573	34680
Unique reflections	6025	6209
Number of parameters	339	352
Goodness-of-fit on F ²	0.996	1.016

Final R indices	R ₁ = 0.0466, wR ₂ =	R ₁ = 0.0609, wR ₂ = 0.1520			
[I>2sigma(I)]	0.1040				
R indices (all data)	R ₁ = 0.1022, wR ₂ =	R ₁ = 0.1271, wR ₂ = 0.1871			
	0.1362				
$[a]\mathbf{R}_{4} = \sum \mathbf{F}_{2} - \mathbf{F}_{1} /\sum \mathbf{F}_{2} \cdot \mathbf{W}\mathbf{R}_{2} = \{ [w(\mathbf{F}_{2}^{2} - \mathbf{F}_{2}^{2})^{2}] / [w(\mathbf{F}_{2}^{2})^{2}] \}^{1/2} \cdot \mathbf{W} = 1/[\sigma^{2}(\mathbf{F}_{2})^{2} + (\mathbf{P}_{2})^{2}] $					
$ \mathbf{x}_1 = \mathbf{\Sigma} \mathbf{F}_0 - \mathbf{F}_c /\mathbf{\Sigma} \mathbf{F}_0 ; \ W\mathbf{K}_2 = \{[W(\mathbf{F}_0^2 - \mathbf{F}_c^2)^2]/[W(\mathbf{F}_0^2)^2]\}^{1/2}; \ W = 1/[\sigma^2(\mathbf{F}_0)^2 + (\mathbf{a}\mathbf{P})^2]$					
+ bP]; P = $[max(F_0^2,0) + 2(F_c)^2]/3$, where a = 0.0620 and b = 0.00 for compound 1and					
a = 0.0917 and b = 0.00 for compound 2 , respectively.					

 Table S2. Selected bond lengths (Å) and angles (⁰) of Compound 1.

Co(01)-O(2)#1	2.031(7)	O(1)-Co(01)-N(5)#3	89.0(3)
Co(01)-O(1)	2.033(6)	O(4)#2-Co(01)-N(5)#3	92.9(2)
Co(01)-O(4)#2	2.120(7)	N(6)-Co(01)-N(5)#3	177.39(8)
Co(01)-N(6)	2.165(7)	O(2)#1-Co(01)-O(3)#2	91.9(2)
Co(01)-N(5)#3	2.176(7)	O(1)-Co(01)-O(3)#2	150.98(10)
Co(01)-O(3)#2	2.229(8)	O(4)#2-Co(01)-O(3)#2	60.2(3)

Co(01)-C(26)#2	2.496(10)	N(6)-Co(01)-O(3)#2	93.1(3)
O(2)#1-Co(01)-O(1)	116.9(2)	N(5)#3-Co(01)-O(3)#2	89.1(3)
O(2)#1-Co(01)-	152.15(10)	O(2)#1-Co(01)-C(26)#2	121.78(14)
O(4)#2			
O(1)-Co(01)-O(4)#2	91.0(3)	O(1)-Co(01)-C(26)#2	121.3(2)
O(2)#1-Co(01)-N(6)	91.3(3)	O(4)#2-Co(01)-C(26)#2	30.38(13)
O(1)-Co(01)-N(6)	89.8(3)	N(6)-Co(01)-C(26)#2	91.3(3)
O(4)#2-Co(01)-N(6)	89.4(2)	N(5)#3-Co(01)-C(26)#2	91.3(3)
O(2)#1-Co(01)-	87.2(3)	O(3)#2-Co(01)-C(26)#2	29.86(17)
N(5)#3			

 Table S3. Selected bond lengths (Å) and angles (⁰) of Compound 2.

Co(1)-O(5)#1	1.997(4)	O(6)#2-Co(1)-N(2)	87.83(18)
Co(1)-O(2)	2.004(4)	O(5)#1-Co(1)-	92.92(16)
		N(6)#3	

Co(1)-O(6)#2	2.088(4)	O(2)-Co(1)-N(6)#3	89.35(18)
Co(1)-N(2)	2.163(4)	O(6)#2-Co(1)-	95.24(18)
		N(6)#3	
Co(1)-N(6)#3	2.171(4)	N(2)-Co(1)-N(6)#3	176.89(12)
Co(1)-O(1)#2	2.343(5)	O(5)#1-Co(1)-	144.75(13)
		O(1)#2	
O(5)#1-Co(1)-O(2)	121.06(16)	O(2)-Co(1)-O(1)#2	93.59(14)
O(5)#1-Co(1)-	87.61(19)	O(6)#2-Co(1)-	57.33(15)
O(6)#2		O(1)#2	
O(2)-Co(1)-O(6)#2	150.75(14)	N(2)-Co(1)-O(1)#2	87.42(15)
O(5)#1-Co(1)-N(2)	87.65(16)	N(6)#3-Co(1)-	93.85(15)
		O(1)#2	
O(2)-Co(1)-N(2)	87.74(18)		

Figure S1. (a) Planar two-dimensional layered structure containing cobalt atom linked by IA ligand in 1 and (b) corrugated two-dimensional layered structure formed

by AIA ligand coordinated with cobalt atom in 2.

Figure S2. Different coordination modes of (a) isophthalate in **1** and (b) 5aminoisopathalate ligand in **2**.

Figure S3. Three-dimensional architecture of **1**, where the two-dimensional layer containing cobalt atom and IA ligand, is pillared by TPT ligand.

Figure S4. Three-dimensional architecture of 2, where the two-dimensional layer

containing cobalt atom and AIA ligand is, pillared by TPT ligand.

Figure S5. The co-parallel orientation of two consecutive TPT ligand connected to adjacent octamer unit (a) in **1** and antiparallel orientation (b) in **2**; and co-parallel orientation of two TPT ligands coordinated to cobalt atoms of same octamer unit in both **1** and **2**.

TOPOS OF COMPOUND 1

Topology for Co1

Atom Co	1 links	by	bridge	ligands	and	has
---------	---------	----	--------	---------	-----	-----

Comr	non vertex	c with			R(A-A)	f
Co 1	0.6203	1.2480	0.5141	(000)	10.037A	1
Co 1	-0.3797	0.2480	0.5141	(-1-1 0)	10.037A	1
Co 1	0.6203	0.7520	1.0141	(010)	13.530A	1
Co 1	-0.3797	0.7520	0.0141	(-1 1-1)	13.530A	1
Comr	non edge	with			R(A-A)	
Co 1	0.3797	0.7520	0.4859	(011)	4.176A	2
Co 1	-0.1203	0.2520	0.4859	(011)	7.346A	2

Structural group analysis

Structural group No 1

Structure consists of 3D framework with CoO4N6C26H16

Coordination sequences

Co1: 1 2 3 4 5 6 7 8 9 10 Num 6 20 53 107 177 263 365 483 617 767 Cum 7 27 80 187 364 627 992 1475 2092 2859 Rad 9.8(3.6) 17.4(4.2) 23.3(6.8) 29.8(8.7) 37.2(9.8) 45.0(11.0) 52.9(12.2) 60.7(13.5) 68.6(14.9) 76.5(16.3)

Cmp Co6 Co20 Co53 Co107 Co177 Co263 Co365 Co483 Co617 Co767

TD10=2859

Vertex symbols for selected sublattice

Co1 Point symbol:{3^3.4^4.5^5.6^3}

Extended point symbol: [3.3.3.4.4.4.5.5.5.5.5.6(2).6(2).6(4)]

Point symbol for net: {3^3.4^4.5^5.6^3}

6-c net; uninodal net

TOPOS OF COMPOUND 2

Topology for Co1

Atom Co1 links by bridge ligands and has

Comn	non verte	x with			R(A-A)	f
Co 1	0.2666	-0.2357	0.8783	(0-11)	7.699A	1
Co 1	0.2666	0.7643	0.8783	(001)	7.699A	1
Co 1	0.2334	0.7357	0.1217	(01-1)	10.016A	1

 Co 1
 0.2334
 0.7357
 1.1217
 (0 1 0)
 10.016A
 1

 Co 1
 0.7334
 0.2357
 1.1217
 (0 0 0)
 13.325A
 1

 Co 1
 -0.2666
 0.2357
 0.1217
 (-1 0-1)
 13.325A
 1

 Common edge with
 R(A-A)

 Co 1
 0.2666
 0.2357
 0.3783
 (0 0 1)
 4.051A
 2

Structural group analysis

Structural group No 1

Structure consists of 3D framework with CoO4N7C26H17

Coordination sequences

Co1: 1 2 3 4 5 6 7 8 9 10 Num 7 27 58 105 163 236 321 421 532 659 Cum 8 35 93 198 361 597 918 1339 1871 2530 Rad 9.4(3.3) 15.7(4.1) 22.8(5.6) 30.0(7.2) 37.4(8.7) 44.8(10.3) 52.2(12.0) 59.7(13.6) 67.2(15.3) 74.6(17.0) Cmp Co7 Co27 Co58 Co105 Co163 Co236 Co321 Co421 Co532 Co659

TD10=2530

Vertex symbols for selected sublattice

Co1 Point symbol:{3^3.4^9.5^8.6}

Extended point symbol: [3.3.3.4.4.4.4.4.4.4.4.5.5.5.5(2).5(2).5(2).5(2).5(3).6(5)]

Point symbol for net: {3^3.4^9.5^8.6}

7-c net; uninodal net

Figure S6. Simulated and experimental PXRD data of (a) 1 and (b) 2.

Gas sorption studies

Gas sorption measurements of **1** and **2** were carried out on a Micromeritics' 3Flex 3500 BET-surface area analyzer. Ultra-high purity N_2 (99.99 %) was used in the sorption experiments. Around 100 mg of the synthesized sample was taken and activated at 423 K for 4 h under vacuum before gas sorption measurement. The PXRD data was confirmed the phase purity of **1** and **2**, before and after activation under above-mentioned condition.

Figure S7. PXRD data of (a) **1** and (b) **2** before and after activation at 423 K for 4 h under vacuum.

Figure S8. N_2 - adsorption isotherm for (a) 1 and (b) 2.

Table S4. Relevant data of the N_2 adsorption isotherm.

Compound 1	
Single point surface area at p/p° =	3.0972 m²/g
0.149064058	
BET surface area	5.7573 m²/g
Adsorption cumulative surface area of	4.9466 m²/g
pores between 1.7 nm and 300 nm	
width	
Single point adsorption total pore	0.008961 cm³/g
volume of pores less than 345.8368 nm	
width at p/p° = 0.994441056	
Compound 2	
Single point surface area at p/p° =	4.2810 m²/g
0.149040868	
BET surface area	11.3707 m²/g

Adsorption cumulative surface area of	7.5032 m²/g
pores between 1.7 nm and 300 nm	
width	
Single point adsorption total pore	0.017843 cm³/g
volume of pores less than 324.2608 nm	
width at p/p° = 0.994067918	

Figure S9. Thermogravimetric analysis of (a) 1 and (b) 2.

Figure S10. IR-spectra of (a) 1 and (b) 2.

Figure S11. The UV-Vis absorption spectrum of (a) 1 and (b) 2.

Figure S12. Tauc plot of (a) 1 and (b) 2.

Temperature dependence of resistivity measurement

The electrical resistance of **1** and **2** with varying temperature was measured using Keithley 6517B electrometer with Linkam temperature controller. Both the compounds were gently grind using mortar-pestle and then pelletized (thickness of 1 mm and radius of 5 mm). For making contacts, both sides of the pellet were coated with the silver paint and then the pellet was placed above the metal plate. The measurements

were performed using 80 V potential and 3 °C/min ramp. The readings were taken after being stabilized the temperature for 4 min at every temperature point during the experiment.

Figure S13. Temperature-dependent resistivity plots (ρ vs. T) of (a) 1 and (b) 2.

Parameters	Compound 1	Compound 1	Compound 2	Compound
	(0 V)	(10 V)	(0 V)	2 (10 V)
Energy Mode	KE	KE	KE	KE
Start Energy	22	30	22	22
(eV)				
End Energy	4.72	12	5.2	5.2
(eV)				
Energy Step	-0.01	-0.01	-0.05	-0.025
(eV)				
Number Of	10	10	1	10
Sweeps				
Dwell Time per	0.1	0.1	0.1	0.1
Sweep (sec)				
Analyser Mode	CAE	CAE	CAE	CAE
Pass Energy	0.2	1	0.65	0.65
(eV) /Retard				
Ratio				
Magnification	High	High	High	High
Divide Voltages	On	On	On	On
By 10				
Excitation	He I a 21.2 eV	He I a 21.2 eV	He I a 21.2 eV	He I a 21.2
Source				eV
Excitation	21.2 eV	21.2 eV	21.2	21.2
Energy (eV)				

 Table S5. Relevant instrumental parameters for UPS measurement.

Analyser	4.5 eV	4.5 eV	4.5 eV	4.5 eV
Workfunction				
(eV)				
Aperture	2	2	2	2
Exit Slit (nm)	5x11	5x11	5x11	5x11

Figure S14. UPS spectrum of **1** and **2** without external potential. Inset: UPS spectrum of **1** and **2** with 10 V external potential.