Blue Emission from Charge Transfer Excitons in Hybrid Organic-Inorganic Quantum Wires: (ABT) [PbCl₃]

Supplementary information

O. Medhioub,^{a,b}H. Barkaoui,^{a,*}A. Samet,^a S. Pillet,^c S. Triki,^b and Y. Abid^{a,*}

^aLaboratoire de Physique appliquée, Université de Sfax, B. P. 1171, 3000 Sfax, Tunisia

^bLaboratoire de Chimie, Electrochimie Moleculaires et Chimie Analytique, CNRS, Université de Bretagne Occidentale, BP 809, 29285 Brest, France

°Université de Lorraine, CNRS, CRM2 UMR7036, 54000 Nancy, France

AUTHOR INFORMATION

*Corresponding Authors:

younes.abid@fss.rnu.tn

barkaoui.hamdi@fss.u-sfax.tn

	Temperatu	re (K)	
	100	180	220
Chemical formula	C7H7Cl3N2SPb	C ₇ H ₇ Cl ₃ N ₂ SPb	C7H7Cl3N2SPb
M(g.mol ⁻¹)	464.75	464.75	464.75
Space group	P21/n	P21/n	P21/n
a (Å)	11.4398(9)	11.4693(2)	11.4949(2)
b (Å)	4.3445(3)	4.35001(9)	4.35479(8)
c (Å)	24.0300(18)	24.0723(5)	24.1198(4)
α (°)	90	90	90
β (°)	99.311(2)	99.515(2)	99.5773(17)
γ (°)	90	90	90
V (Å ³)	1178.56(15)	1184.48(4)	1190.56(4)
Ζ	4	4	4
Ref. measured	33973	11121	27019
Θ_{max}	36.493	30.506	32.960
R _{int}	0.0395	0.0298	0.0479
µ/mm ⁻¹	15.134	15.058	14.981
Ref. independent	5744 [5272]	3628 [3354]	4283 [3897]
$[F^2>2s(F^2)]$			
wR2 [F ² >2s(F ²)]	0.0689 [0.0676]	0.0805 [0.0696]	0.0712 [0.0590]
R1[F ² >2s(F ²)]	0.0429 [0.0375]	0.0252 [0.0214]	0.0260 [0.0219]
G.o.F	1.338	1.267	1.206
$\Delta_{\rhomin}/\Delta_{\rhomax}$	2.836/ -4.794	0.973/ -2.174	0.664 / -1.662

Table S1. Crystallographic data for ABTPbCl₃

Temperature (K)				
	100	180	220	
Bond length(Å)				
Pb-Cl1	2.667(9)	2.6625(10)	2.6653(8)	
Pb-Cl2	2.934(1)	2.9369(10)	2.9407(8)	
Pb-Cl2	2.897(1)	2.8979(10)	2.8991(9)	
Pb-Cl3	2.861(1)	2.8657(10)	2.8688(9)	
Pb-Cl3	2.965(1)	2.9669(11)	2.9698(9)	
Pb-Cl3	3.136(1)	3.1358(12)	3.1392(10)	
d PbPb	4.345	4.350	4.355	
d' PbPb	4.615	4.615	4.617	
Bond angles (°)		I		
Pb-Cl2-Pb	84.67(3)	96.41(3)	96.44(3)	
Pb-Cl3-Pb	85.99(3)	96.44(3)	96.45(3)	
Pb-Cl3-Pb	96.43(3)	100.42(3)	100.34(3)	
Pb-Cl3-Pb	81.34(3)	98.21(4)	98.15(3)	
dCentroid-centroid (Å)	3.448	3.460	3.469	

Table S2:Bond distances (Å) and angles (°) in $PbCl_6$ and centroid-centroid distance between two adjacent organic rings in the 100-220 K temperature range.

D-H	A	d (D-H)	d (HA)	< DHA	(DA)
N ₂ -H _{2A}	Cl ₁	0.860	2.425	153.91	3.220
N ₂ -H _{2B}	Cl ₂	0.859	4.422	156.70	3.228
N ₁ -H ₁	Cl ₁	0.861	2.709	139.49	3.410
C ₂ -H ₂	Cl ₃	0.930	2.725	121.94	3.590
C ₅ -H ₅	Cl ₂	0.930	2.881	111.94	3.597

 Table S3: Hydrogen bond geometry for ABTPbCl₃at180 K.

FigureS1: Packing diagram of the title compound ABTPbCl₃viewed down the b-axis. The hydrogen bondsN-H ... Cl and C-H ... Clare shown as dashed lines.

Figure S2: The alternating rows of π - π interaction of organic cation in ABTPbCl₃.

Excitation wavelength=375 nm					
ABTPbCl ₃	Emission wavelength Rise time	483 nm 5.64 ns			
Fitting parameters of exponential curve	A_1	21.16 (±3.3007)			
	\mathbf{t}_1 \mathbf{A}_2	0.072 (±0.1866 e ⁻) 181.70 (±3.4072)			
	τ_2	1.5510 (±4.3078e ⁻²)			
	Chi ²	1.325			
ABT(HCl)	Emission wavelength Rise time	423 nm 3.81 ns			
ABT(HCl) Fitting parameters of exponential	Emission wavelength Rise time A ₁	423 nm 3.81 ns 5027 (±9.1283e ⁺²)			
ABT(HCl) Fitting parameters of exponential curve	Emission wavelength Rise time A_1 τ_1	423 nm 3.81 ns 5027 (±9.1283e ⁺²) 1.3570 (5.0187e ⁻²)			
ABT(HCl) Fitting parameters of exponential curve	Emission wavelength Rise time A_1 τ_1 A_2	423 nm 3.81 ns 5027 (±9.1283e ⁺²) 1.3570 (5.0187e ⁻²) 28.46 (2.2673)			
ABT(HCl) Fitting parameters of exponential curve	Emission wavelength Rise time A_1 τ_1 A_2 τ_2	423 nm 3.81 ns 5027 (±9.1283e ⁺²) 1.3570 (5.0187e ⁻²) 28.46 (2.2673) 9.928 (5.5090e ⁻¹)			
ABT(HCl) Fitting parameters of exponential curve	Emission wavelength Rise time A_1 τ_1 A_2 τ_2 Chi ²	423 nm 3.81 ns 5027 (±9.1283e ⁺²) 1.3570 (5.0187e ⁻²) 28.46 (2.2673) 9.928 (5.5090e ⁻¹) 1.492			

Table S4: Time-resolved PL lifetime data fitted to exponential decay function $I(t) = A_1 \times exp(-t/\tau_1) + A_2 \times exp(-t/\tau_2)$.