Ni-catalyzed β -alkylation of cyclopropanol-derived homoenolates

L. Reginald Mills, Cuihan Zhou, Emily Fung, and Sophie A. L. Rousseaux*

*sophie.rousseaux@utoronto.ca

Davenport Research Laboratories, Department of Chemistry, University of Toronto 80 St. George St., Toronto, ON, M5S 3H6

Supporting Information 1: Experimental Data

Table of contents

A. General information	S3
B. Optimization details	S4
Table S1. Evaluation of bases and additives	S4
Table S2. Evaluation of Ni sources and ligands	S5
Table S3. Evaluation of solvent, temperature, and cyclopropanol stoichiometry	S6
Table S4. Optimization of the reaction for 1-benzylcyclopropanol	S7
C. Preparation of catalysts	S 8
Figure S1	S 8
D. β-Functionalization reactions	S9
D.1. General procedure for the synthesis of β-alkylketones	S9
General Procedure A	S9
D.2. Graphical guide for General Procedure A	S10
Figure S2	S10
Figure S3	S10
Figure S4	S11
Figure S5	S11

Figure S6	S12
Figure S7	S12
D.3. Preparation and characterization of β -alkylketone products	S13
D.4. Preparation and characterization of supplemental β -alkylketone products .	S21
Table S5. Supplemental scope of low-yielding products	S21
Table S6. Table of unsuccessful starting materials	S21
E. Preparation of N-hydroxyphthalimide (NHPI) ester starting materials	S24
E.1. Preparation of N-hydroxyphthalimide (NHPI) esters	S24
General Procedure B: Synthesis of NHPI esters using DCC	S24
E.2. Preparation of noncommercial carboxylic acids	S32
F. Preparation of cyclopropanol starting materials	S36
F.1. Preparation of cyclopropanols via Kulinkovich Reaction	S36
General Procedure C: Kulinkovich Reaction	S36
F.2. Preparation of cyclopropanols via Simmons–Smith	S38
General Procedure D: Simmons–Smith Sequence	S38
F.3. Preparation of TMS-protected 1-benzylcycopropanol	S43
G. Preparation of starting materials for malabaricone B intermediate	S44
G.1. NHPI ester synthesis	S44
G.2. Cyclopropanol synthesis	S47
H. Mechanistic experiments	S48
H.1. Loss of stereoinformation	S48
H.2. 5-exo-trig cyclization	S49
H.3. Polar (2e) β-carbon elimination	S49
H.4. Isomerization of cyclopropanol 1a	S50
Table S7. Isomerization of cyclopropanol 1a	\$50
I. References	S51

A. General information

Unless otherwise noted, all reactions were set up on the benchtop and run under an atmosphere of Ar or N₂ using flame-dried glassware and anhydrous solvents. CH₂Cl₂, Et₂O, MeCN, PhMe, and THF were purchased as HPLC-grade (inhibitor-free) from Caledon or Sigma-Aldrich, and were dried using a PureSolv MD 5 solvent purification system and used without further manipulation. DMA and DMF were purchased from Acros as Extra Dry over molecular sieves and were used as received. DMSO was purchased as reagent-grade and was dried over 3 Å molecular sieves for 3 days. NiCl₂(phen) was prepared from NiCl₂•6H₂O and 1,10phenanthroline and was stored in a desiccator open to air (see section C for details). NiCl₂(dtbbpy) was prepared from NiCl₂(dme) and dtbbbpy and was stored in a glovebox (see section C). NiCl₂(Bphen)•2DMF was prepared from NiCl₂•6H₂O and bathophenanthroline.¹ NiCl₂(dme) was purchased from Sigma-Aldrich and was stored in a desiccator open to air and weighed on the benchtop. 2,6-Di(1H-pyrazol-1-yl)pyridine (bpp) was prepared from pyrazole and 2,6-dibromopyridine.² Zn(II) and Mg(II) salts were purchased as anhydrous-grade and were stored and weighed in a glovebox. Zn(OMe)₂ was prepared from Et₂Zn and MeOH.³ All other commercial reagents were used as received. trans-2-Benzylcyclopropanol was prepared as previously described.⁴ Compounds were purified by flash column chromatography using SiliCycle SilicaFlash P60 silica gel.

 β -Alkylketone products were generally bench-stable and were stored on benchtop. NHPI ester starting materials were stored on benchtop and were repurified once a month to remove decomposition products resulting from hydrolysis. Cyclopropanols with 1-alkyl substituents were stored on benchtop; cyclopropanols with 1-aryl substitutents were stored at -20 °C.

GC-MS data was obtained on a Shimadzu GCMS-QP2010 SE; yields represent peak areas calibrated against each compound's response factor relative to *n*-dodecane internal standard. ¹H and ¹³C NMR spectra were recorded on Varian MercuryPlus 400 MHz, Agilent DD2 500 MHz, or Bruker AvanceIII 400 MHz spectrometers. TLC samples were run on EMD Millipore TLC Silica gel 60 F₂₅₄ plates and were visualized by UV or by staining with standard KMnO₄, phosphomolybdic acid (PMA), or *p*-anisaldehyde stains. IR spectra were obtained on a Perkin-Elmer Spectrum 100 instrument equipped with a single-bounce diamond/ZnSe ATR accessory as solids or thin films. Melting points were obtained on a Fisher-Johns Melting Point Apparatus. High-resolution mass spectra (HRMS) were recorded on a JEOL AccuTOF JMS-T1000LV mass spectrometer equipped with a Direct Analysis in Real Time (DART) ion source, or by electrospray ionization (ESI) on an Agilent 6538 UHD mass spectrometer. Chiral HPLC analysis was performed on a Shimadzu 20A series system using a Daicel Chiralpak column (IG). The 8-and 16-mL culture tubes used for reactions were purchased from Fisher (catalogue nos. 14-957-76A and 14-959-35A).

The following non-standard abbreviations are used in this SI: "DCM" = CH_2Cl_2 , dichloromethane.

B. Optimization details

Procedure for Tables S1–S5: Performed according to General Procedure A (see Section D) on 0.10 mmol scale.

Note: All reactions at 120 °C gave full conversion of **1a** and **2a** after 1 h. The remaining mass balance of **1a** predominantly went to ring-opened isomer propiophenone, and the remaining mass balance of **2a** generally went to volatile side-products which were undetectable by GC-MS.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HO	NiCl ₂ (pl O bas	hen) (10 mol %) se, additive O C	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ph		MF (0.2 M) Ph Cy + Ph	Me
Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal system Image: Normal	1	a 2a ¹²	20 °C, 1 h 3a	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(3 e	quiv) (1 equiv)		
1 NEts (2) ZnCl ₂ (2) 85 ^b 2 DIPEA (2) ZnCl ₂ (2) 31 3 DBU (2) ZnCl ₂ (2) 17 4 pyridine (2) ZnCl ₂ (2) 8 5 DABCO (2) ZnCl ₂ (2) 32 6 TMP (2) ZnCl ₂ (2) 42 7 imidazole (2) ZnCl ₂ (2) 0 8 K ₂ CO ₃ (2) ZnCl ₂ (2) 9 9 Cs ₂ CO ₃ (2) ZnCl ₂ (2) 13 10 K ₃ PO ₄ ZnCl ₂ (2) 10	Entry	base (equiv)	additive (equiv)	Yield 3a (%) ^a
2 DIPEA (2) $ZnCl_2 (2)$ 31 3 DBU (2) $ZnCl_2 (2)$ 17 4 pyridine (2) $ZnCl_2 (2)$ 8 5 DABCO (2) $ZnCl_2 (2)$ 32 6 TMP (2) $ZnCl_2 (2)$ 42 7 imidazole (2) $ZnCl_2 (2)$ 0 8 $K_2CO_3 (2)$ $ZnCl_2 (2)$ 9 9 $Cs_2CO_3 (2)$ $ZnCl_2 (2)$ 13 10 K_3PO_4 $ZnCl_2 (2)$ 10	1	NFt3 (2)	ZnCl ₂ (2)	85 ^b
3 DBU (2) ZnCl ₂ (2) 17 4 pyridine (2) ZnCl ₂ (2) 8 5 DABCO (2) ZnCl ₂ (2) 32 6 TMP (2) ZnCl ₂ (2) 42 7 imidazole (2) ZnCl ₂ (2) 9 9 Cs ₂ CO ₃ (2) ZnCl ₂ (2) 13 10 K ₃ PO ₄ ZnCl ₂ (2) 10 11 NaHCO ₂ (2) ZnCl ₂ (2) 11	2	DIPEA (2)	$ZnCl_2(2)$	31
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	DBU (2)	$ZnCl_2(2)$	17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	pyridine (2)	$ZnCl_2$ (2)	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	DABCO (2)	$ZnCl_2(2)$	32
7imidazole (2) $ZnCl_2 (2)$ 08 $K_2CO_3 (2)$ $ZnCl_2 (2)$ 99 $Cs_2CO_3 (2)$ $ZnCl_2 (2)$ 1310 K_3PO_4 $ZnCl_2 (2)$ 1011NaHCO_2 (2) $ZnCl_2 (2)$ 11	6	TMP (2)	$ZnCl_2(2)$	42
8 K_2CO_3 (2) ZnCl ₂ (2) 9 9 Cs ₂ CO ₃ (2) ZnCl ₂ (2) 13 10 K ₃ PO ₄ ZnCl ₂ (2) 10 11 NaHCO ₂ (2) TnCl ₂ (2) 11	7	imidazole (2)	$ZnCl_2(2)$	0
9 Cs_2CO_3 (2) $ZnCl_2$ (2) 13 10 K_3PO_4 $ZnCl_2$ (2) 10 11 NaHCO ₂ (2) $ZnCl_2$ (2) 11	8	K ₂ CO ₃ (2)	ZnCl ₂ (2)	9
10 K_3PO_4 ZnCl ₂ (2) 10	9	$Cs_2CO_3(2)$	$ZnCl_2(2)$	13
11 NoHCO ₂ (2) $7nCl_2$ (2) 11	10	K₃PO₄	ZnCl ₂ (2)	10
$11 \qquad \text{Nations}(2) \qquad 210(2(2)) \qquad 11$	11	NaHCO₃ (2)	ZnCl ₂ (2)	11
12 KO <i>t</i> -Bu (2) ZnCl ₂ (2) 0	12	KO <i>t</i> -Bu (2)	ZnCl ₂ (2)	0
13 NaOH (2) ZnCl ₂ (2) 9	13	NaOH (2)	ZnCl ₂ (2)	9
14 NaH ^c (3) (pre-stir) ZnCl ₂ (2) 0	14	NaH ^c (3) (pre-stir)	ZnCl ₂ (2)	0
15 Et_2Zn^d (1.5) (pre-stir) $ZnCl_2$ (2) 20	15	Et ₂ Zn ^d (1.5) (pre-stir)	ZnCl ₂ (2)	20
16 none ZnCl ₂ (2) 3	16	none	ZnCl ₂ (2)	3
17 NEt ₃ (2) ZnBr ₂ (2) 51	17	NEt ₃ (2)	ZnBr ₂ (2)	51
18 NEt ₃ (2) Znl ₂ (2) 37	18	NEt ₃ (2)	Znl ₂ (2)	37
19 NEt ₃ (2) ZnF ₂ (2) 38	19	NEt ₃ (2)	ZnF ₂ (2)	38
20 NEt ₃ (2) Zn(OAc) ₂ (2) 3	20	NEt ₃ (2)	Zn(OAc) ₂ (2)	3
21 NEt ₃ (2) Zn(OMe) ₂ (2) 14	21	NEt ₃ (2)	Zn(OMe) ₂ (2)	14
22 NEt ₃ (2) MgCl ₂ (2) 12	22	NEt ₃ (2)	MgCl ₂ (2)	12
23 NEt ₃ (2) MgBr ₂ (2) 11	23	NEt ₃ (2)	MgBr ₂ (2)	11
24 NEt ₃ (2) MnCl ₂ (2) 2	24	NEt ₃ (2)	MnCl ₂ (2)	2
25 NEt ₃ (2) KCl (2) 47	25	$NEt_3(2)$	KCI (2)	47
26 NEt ₃ (2) LiCl (2) 12	26	NEt ₃ (2)	LiCI (2)	12
27 NEt ₃ (2) none 40	27	NEt ₃ (2)	none	40
$28 NEt_3 (3) ZnCl_2 (2) 77$	28	NEt3 (3)	ZnCl ₂ (2)	//
$29 NEt_3 (1) ZnCl_2 (2) 57 5$	29		ZnCl ₂ (2)	5/
$\frac{30}{100} \qquad \text{NEt}_3 (0.5) \qquad \qquad 2\text{nCl}_2 (2) \qquad \qquad 35$	30		$ZnCl_2(2)$	35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31			23
32 INEts (0.1) 2IIO12 (2) 1733 NEts (2) 7nCls (1) 55	ఎ∠ 33	NE13 (U.1) NEta (2)	ZIIUI2 (Z) ZnCla (1)	55

Table S1. Evaluation of bases and additives

^aGC-MS yield based on *n*-dodecane as internal standard; ^bAverage of three runs; ^c60% w/w dispersion in mineral oil; ^d1.0 M solution in hexanes. phen = 1,10-phenanthroline.

Table S2. Evaluation of Ni sources and ligands

	$\begin{array}{c} HO\\ Ph \end{array} + \begin{array}{c} O\\ NHPI \end{array} \\ \begin{array}{c} O\\ Cy \end{array} \\ \begin{array}{c} Vi \\ Cy \end{array} \\ \begin{array}{c} Vi \\ NHZ \\ Cy \end{array} \\ \begin{array}{c} Vi \\ NHZ \\ O \\ 120 \end{array} \\ \begin{array}{c} Vi \\ NHZ \\ I \\ 120 \end{array} \\ \begin{array}{c} Vi \\ NHZ \\ I \\ 120 \end{array} \\ \begin{array}{c} Vi \\ NHZ \\ I \\ $	rce, ligand (2 equiv) (2 equiv) (0.2 M) °C, 1 h → Ph → Cy P 3a	h Me
Entry	Ni source (mol %)	ligand (mol %)	Yield 3a (%) ^a
1	NiCl ₂ (phen) (10)	none	85
2	NiCl ₂ (phen) (5)	none	46
3	NiCl ₂ (dme) (10)	bpy (12)	71
4	NiCl ₂ (dme) (10)	phen (12)	45
5	NiCl ₂ (dme) (10)	Bphen (12)	82
6	NiCl ₂ (dme) (10)	dtbbbpy (12)	65
7	$NiCl_2(dme)$ (10)	dOMebpy (12)	31
8	NiCl ₂ (dme) (10)	neoc (12)	48
9	NiCl ₂ (dme) (10)	terpy (12)	57
10	NiCl ₂ (dme) (10)	bpp (12)	85
11	NiCl ₂ (Bphen)•2DMF (10)	none	49
12	NiCl ₂ (dtbbpy) (10)	none	54
13	NiCl ₂ (bpy) (10)	none	81
14	NiCl ₂ (bpy) (20)	none	78
15	NiCl ₂ (dppe) (10)	none	66
16	NiCl ₂ (PPh ₃) ₂ (10)	none	60
17	NiBr ₂ (bpy) (10)	none	86
18	NiBr ₂ (bpy) ₃ (10)	none	70
19	NiBr ₂ (dme) (10)	bpy (12)	51
20	NiBr ₂ (dme) (10)	Bphen (12)	56
21	NiCl ₂ •6H ₂ O (10)	Bphen (12)	56
22	Ni(acac)2 (10)	Bphen (12)	32
23	Ni(OAc) ₂ •4H ₂ O (10)	Bphen (12)	53
24	Ni(cod) ₂ (10)	Bphen (12)	43
25	Nil ₂ (10)	Bphen (12)	45
26	NiCl ₂ (dme) (10)	none	55
27	NiBr ₂ (dme) (10)	none	56

Reactions performed on 0.10 mmol scale.

^aGC-MS yield based on *n*-dodecane as internal standard.

bpy = $2,2^{2}$ -bipyridine; Bphen = bathophenanthroline; dtbbpy = $4,4^{2}$ -di-tert-butyl- $2,2^{2}$ -dipyridyl; dOMebpy = $4,4^{2}$ -dimethoxy- $2,2^{2}$ -bipyridine; neoc = neocuproine; phen = 1,10-phenanthroline; terpy = $2,2^{2};6^{2},2^{2}$ -terpyridine; bpp = 2,6-di(1H-pyrazol-1-yl)pyridine.

Procedure for Table S2 when precatalyst and ligand are added separately (entries 3–10, 19–25): The reaction was prepared in a two-vessel setup consisting of a 1-dram vial and a 8-mL culture tube. To a flame-dried 1-dram vial with a stir bar were added the Ni source and ligand and the vial was sealed and evacuated and backfilled with N₂ (×2). To a flame-dried 8-mL culture tube

with a stir bar was added NHPI ester **2a** (27 mg, 0.10 mmol, 1.0 equiv) and the tube was sealed, evacuated and backfilled with N_2 (×3), and brought into a glovebox. ZnCl₂ (27 mg, 0.20 mmol, 2.0 equiv) was added. The tube was sealed and removed from the glovebox. Cyclopropanol **1a** was prepared as a 1.0 M stock solution in DMF. To the 1-dram vial containing Ni source and ligand was added DMF (0.20 mL) and the solution was stirred at r.t. for 5 min, and the solution was transferred by syringe to the 8-mL culture tube. Then, the solution of **1a** in DMF (0.30 mL of a 1.0 M solution in DMF, 0.30 mmol, 3.0 equiv) was added to the culture tube, followed by NEt₃ (28 μ L, 0.20 mmol, 2.0 equiv). The reaction was stirred for 30 s at r.t., then was stirred in a pre-heated oil bath at 120 °C for 1 h. The reaction was cooled to r.t., opened to air, and quenched with sat. aq. 1 M HCl. *N*-Dodecane (23 μ L, 0.10 mmol, 1.0 equiv) was added as an internal standard for GC-MS analysis. The solution was extracted with EtOAc (×1) and the organic fraction was filtered over a plug of MgSO₄ and Celite. The filtrate was analyzed by GC-MS.

	HO Ph + NHPI Cy - 1a 2a (1-4 equiv) (1 equiv)	NiBr ₂ (bpy) (10 mol %) ZnCl ₂ (2 equiv) NEt ₃ (2 equiv) solvent (0.2 M) temperature, 1 h	$Ph \xrightarrow{O}_{Cy} + Ph \xrightarrow{O}_{Sa}$	∽ Me
Entry	equiv 1a	Solvent	Temp. (°C)	Yield 3a (%) ^a
1	3	DMF	120	86
2	1	DMF	120	35
3	1.5	DMF	120	44
4	2	DMF	120	58
5	2.5	DMF	120	81
6	4	DMF	120	80
7	2	DMF	130	69
8	2	DMF	100	43
9	2	DMF	80	30
10	2	DMF	60	13
11	2	DMF	r.t.	trace
12	2	DMA	120	52
13	2	1,4-dioxane	120	3
14	2	PhMe	120	3
15	2	MeCN	120	6
16	2	DMSO	120	35

Table S3. Evaluation of solvent, temperature, and cyclopropanol stoichiometry

Reactions performed on 0.10 mmol scale.

^aGC-MS yield based on *n*-dodecane as internal standard.

Table S4. Optimization of the reaction for 1-benzylcyclopropanol

	HO Bn + NHPI Cy - (3 equiv) (1 equiv)	Ni source (10 mol %) NEt ₃ (2 equiv) ZnCl ₂ (2 equiv) solvent (0.2 M) 120 °C, 2 h 3	
Entry	Ni source	Solvent	Yield (%) ^a
1	NiCl ₂ (phen)	DMA	92
2	NiCl ₂ (phen)	DMF	70
3	NiCl ₂ (phen)	NMP	15
4	NiCl ₂ (phen)	DMSO	20
5	NiCl ₂ (phen)	<i>n</i> -BuOH	0
6	NiCl ₂ (bpy)	DMA	74
7	NiBr ₂ (bpy)	DMA	89
8	NiBr ₂ (DPEphos)	DMA	21
9 ^b	NiCl ₂ (phen)	DMA	6
10 ^{<i>b,c</i>}	NiCl ₂ (phen)	DMA	5
11 ^{<i>b,d</i>}	NiCl ₂ (phen)	DMA	0

^aGC-MS yield based on *n*-dodecane as internal standard. ^bUsing TMS-protected cyclopropanol. ^cUsing CsF (3.6 equiv) instead of NEt₃. ^dUsing TBAF (1.2 equiv) instead of NEt₃.

C. Preparation of catalysts and reagents

NiCl₂(phen): To a 100-mL flask with a stir bar were added NiCl₂•6H₂O (4.75 g, 20.0 mmol, 1.00 equiv) and EtOH (40 mL, 0.50 M), and the solution was stirred at r.t. until all NiCl₂•6H₂O was dissolved (ca. 15 min). 1,10-Phenanthroline (3.60 g, 20.0 mmol, 1.00 equiv) was added at once, and the reaction was stirred at 60 °C for 1 h. The solution was cooled to r.t. and the precipitate was collected in a fritted funnel, washed with EtOH (3×20 mL), and dried under high vacuum for 8 h to yield NiCl₂(phen) as a blue-green solid (4.1 g, 13 mmol, 65%). NiCl₂(phen) was stored in a desiccator open to air and was weighed on benchtop.

NiCl₂(dtbbpy):⁵ To a flame-dried 25-mL flask were added NiCl₂(dme) (0.44 g, 2.0 mmol, 1.0 equiv) and 4,4'-di-*tert*-butyl-2,2'-bipyridine (0.54 g, 2.0 mmol, 1.0 equiv), and the flask was sealed and evacuated and backfilled with N₂ (×3). DME (10 mL, 0.20 M) was added and the solution was sonicated at r.t. for 30 min. The reaction was opened to air and diluted with pentane (10 mL), filtered, and the precipitate was washed with pentane (×1) and dried under high vacuum for 8 h to yield NiCl₂(dtbbpy) as a pale blue solid (0.70 g, 1.8 mmol, 90%). NiCl₂(dtbbpy) was stored and weighed in a glovebox.

Figure S1. (Left) Appearance of NiCl₂(phen) precatalyst; (Right) Appearance of NiCl₂(dtbbpy) precatalyst.

D. β-Functionalization reactions:

D.1. General procedure for the synthesis of β -alkylketones

<u>General Procedure A</u>: Synthesis of β -alkylketones from cyclopropanols (1) and NHPI esters (2)

An 8-mL culture tube with a stir bar was fitted with a size 19 rubber septum and was flame dried under high vacuum (30 s), backfilled with N₂, and cooled to r.t. To the tube were added NHPI ester (if solid) (0.30 mmol, 1.0 equiv) and NiCl₂(phen) (9.3 mg, 0.030 mmol, 0.10 equiv). The tube was refitted with the size 19 septum, sealed with electrical tape, and was evacuated and backfilled with N₂ (×3) and brought into a drybox. Zinc(II) chloride (82 mg, 0.60 mmol, 2.0 equiv) was added. The tube was resealed and brought out of the box. Cyclopropanol was prepared as a 0.60 M stock solution in DMF. Cyclopropanol (1.5 mL of a 0.60 M stock solution in DMF, 0.90 mmol, 3.0 equiv; concentration of DMF = 0.20 M with respect to limiting NHPI ester reagent) was added. If the NHPI ester was an oil, the ester was then added. Stirring was begun at r.t., and triethylamine (84 μ L, 0.60 mmol, 2.0 equiv) was added immediately, being careful so that triethylamine was dropped into the reaction solution without hitting the sides of the tube. The solution was stirred at r.t. for 30 s, or until all organic starting materials were dissolved. The reaction was then placed in a preheated 120 °C oil bath and was stirred for 1 h, during which time the oil bath temperature was not allowed to drop below 120 °C (if the oil bath is found to drop by some °C upon immersion of the room-temperature reaction tube, the oil bath can be preheated higher than 120 °C). After 1 h at 120 °C, the reaction was cooled to r.t., opened to air, and quenched with 1 M HCl (sat. aq. NH₄Cl or H₂O was used for acid-sensitive or Lewis basic substrates). The reaction was extracted with EtOAc (\times 3) and the organic fractions were combined, filtered over a plug of MgSO₄ and Celite, and concentrated. The crude residue was purified by flash column chromatography to yield the desired β -alkylketone.

Figure S2. (Left) Appearance of the reaction vessels after adding all solids; (Right) 0.6 M stock solution of cyclopropanol in DMF.

Figure S3. (Left) Appearance of the reaction after adding stock solution of cyclopropanol in DMF; (Centre) Stirring the solution before adding NEt₃; (Right) Appearance after adding NEt₃ while stirring.

N.B.: Decomposition of NHPI esters via hydrolysis over time affected β -functionalization reaction yields. The hydrolysis of NHPI esters was apparent after adding NEt₃ due to a characteristic red-orange colour, which was more pronounced with more decomposition (Figure S4).

Figure S4. Appearance of the reaction after adding NEt₃ if NHPI ester starting material contains some hydrolyzed material.

Figure S5. (Left) Appearance of solution after stirring for 30 s at r.t.; (Right) Submersion of reactions into a preheated 121 °C oil bath.

Figure S6. (Left) Appearance of reactions after stirring at 120 °C for 1 h; (Right) After quenching with 1 M HCl.

Figure S7. (Left) Plug of Celite (bottom layer) and MgSO₄ (top layer) used for filtration of organic fractions; (Centre) Plug during EtOAc extraction and filtration; (Right) After EtOAc (×3) extraction and filtration.

3-Cyclohexyl-1-phenylpropan-1-one (3a) (CAS: 28861-24-7): Prepared according to General Procedure A on 0.30 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–5% EtOAc/hexanes) to yield **3a** as a white solid (46 mg, 0.21 mmol, 71%). Analytical data:⁶ ¹H NMR (400 MHz, CDCl₃, 298 K): δ_H 7.99–7.92 (m, 2H), 7.58–7.51 (m, 1H), 7.49–7.42 (m, 2H), 3.01–2.94 (m, 2H), 1.80–1.59 (m, 7H), 1.37–1.09 (m, 4H), 1.02–0.79 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃, 298 K): δ_C 200.9, 137.1, 132.8, 128.5, 128.1, 37.4, 36.2, 33.2, 31.8, 26.6, 26.3 ppm; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.66.

3a (1.0 mmol scale): Prepared according to General Procedure A on 1.0 mmol scale. The reaction was performed in a 16-mL culture tube and was quenched with 1 M HCl, extracted with EtOAc (\times 3), washed with brine (\times 1), and dried over MgSO₄. The crude residue was purified by flash column chromatograph (gradient of 0–5% EtOAc/hexanes) (0.11 g, 0.51 mmol, 51%). The analytical data matched the data for **3a** prepared on 0.30 mmol scale.

3-Cyclohexyl-1-(4-methoxyphenyl)propan-1-one (3b) (CAS: 31480-67): Prepared according to General Procedure A on 0.20 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–5% Et₂O/hexanes) to yield **3b** as a white solid (trial 1: 25 mg, 0.101 mmol, 51%; trial 2: 23 mg, 0.090 mmol, 45%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.98–7.90 (m, 2H), 7.69–7.89 (m, 2H), 3.86 (s, 3H), 2.91 (t, *J* = 7.6 Hz, 2H), 1.77–1.57 (m, 7H), 1.35–1.09 (m, 4H), 1.00–0.88 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 199.7, 163.4, 130.5, 130.3, 113.8, 55.6, 37.6, 36.0, 33.4, 32.2, 26.7, 26.4 ppm; HRMS *m/z* (DART): calcd for C₁₆H₂₃O₂ (M+H): 247.1693; found: 247.1697; **IR** (neat): 2998, 2918, 2846, 1666, 1600, 1576, 1506, 1446, 1418, 1312, 1252, 1213, 1175, 1029, 958, 832, 770 cm⁻¹; **m.p.:** 57–58 °C; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.54.

1-(4-(1*H***-Pyrrol-1-yl)phenyl)-3-cyclohexylpropan-1-one (3c):** Prepared according to General Procedure A on 0.20 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–5% Et₂O/hexanes) to yield **3c** as a white solid (31 mg, 0.11 mmol, 55%). ¹**H NMR** (500 MHz, CDCl₃, 298 K): δ_H 8.07–8.01 (m, 2H), 7.49–7.43 (m, 2H), 7.19–7.14 (m, 2H), 6.42–6.37 (m, 2H), 3.00–2.94 (m, 2H), 1.82–1.56 (m, 7H), 1.38–1.11 (m, 4H), 1.02–0.90 (m, 2H) ppm; ¹³**C NMR** (125 MHz, CDCl₃, 298 K): δ_C 200.0, 144.0, 134.1, 130.1, 119.5, 119.2, 111.7, 37.6, 36.2, 33.4, 32.0, 26.7, 26.4 ppm; **HRMS** *m/z* (DART): calcd for C₁₉H₂₄NO (M+H): 282.1852; found: 282.1851; **IR** (neat): 3146, 2920, 2849, 1677, 1603, 1523,

1475, 1330, 1193, 1183, 1127, 1066, 918, 822, 730, 723, 715 cm⁻¹; **m.p.:** 87–89 °C; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.62.

tert-Butyl 2-(3-([1,1'-biphenyl]-4-yl)-3-oxopropyl)pyrrolidine-1-carboxylate (3d): Prepared according to General Procedure A on 0.20 mmol scale. The reaction was quenched with sat. aq. NH₄Cl. The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as a colourless oil, which was a 1:1 mixture of conformational isomers (52 mg, 0.14 mmol, 69%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.07–7.99 (m, 2H), 7.71–7.57 (m, 4H), 7.50–7.34 (m, 3H), 4.06–3.81 (br m, 1H), 3.57–3.24 (br m, 2H), 3.20–2.91 (m, 2H), 2.20–1.77 (m, 5H), 1.77–1.61 (m, 1H), 1.44 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 199.8, 199.5, 155.0, 145.8, 140.0, 135.7, 134.4, 129.1, 128.8, 128.3, 127.4, 127.3, 123.7, 79.4, 79.1, 56.9, 46.5, 46.3, 36.0, 35.6, 31.1, 30.6, 29.5, 28.6, 23.9, 23.2 ppm; HRMS *m/z* (DART): calcd for C₂₄H₃₀NO₃ (M+H): 380.2220; found: 380.2224; IR (neat): 2974, 1963, 1678, 1390, 1364, 1280, 1173, 1110, 1095, 985, 836, 757, 694 cm⁻¹; m.p.: 93–94 °C; **R**_f (8:2 hexanes/EtOAc; UV/KMnO₄): 0.36.

tert-Butyl 2-(3-(naphthalen-1-yl)-3-oxopropyl)pyrrolidine-1-carboxylate (3e): Prepared according to General Procedure A on 0.20 mmol scale. The reaction was quenched with sat. aq. NH4Cl. The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield **3e** as a colourless oil (33 mg, 0.093 mmol, 47%). ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.60–8.53 (m, 1H), 7.97 (d, *J* = 8.2 Hz, 1H), 7.92–7.83 (m, 2H), 7.62–7.45 (m, 3H), 4.07–3.79 (br m, 1H), 3.56–3.26 (m, 2H), 3.24–2.97 (m, 2H), 2.22–2.06 (m, 1H), 2.05–1.55 (m, 5H), 1.42 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 178.3, 175.7, 137.1, 136.2, 129.1, 128.7, 128.6, 128.1, 128.1, 127.9, 127.5, 126.8, 50.3, 47.9, 43.5, 39.7, 27.8, 26.3, 24.0, 23.1 ppm; HRMS *m/z* (DART): calcd for C₂₂H₂₈NO₃ (M+H): 354.2064; found: 354.2060; IR (neat): 2970, 2931, 2874, 1681, 1453, 1390, 1364, 1247, 1165, 1102, 946, 862, 801, 774 cm⁻¹; **R**_f (8:2 hexanes/EtOAc; UV/KMnO₄): 0.35.

3-Cyclohexyl-1-(thiophen-2-yl)propan-1-one (3f) (CAS: 19740-01-3): Prepared according to General Procedure A on 0.20 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–5% EtOAc/hexanes) to yield **3f** as a colourless oil (30 mg, 0.14 mmol, 68%). ¹**H NMR** (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.73–7.68 (m, 1H), 7.64–7.58 (m, 1H), 7.16–7.08 (m, 1H), 2.94–2.86 (m, 1H), 1.80–1.55 (m, 8H), 1.37–1.08 (m, 4H), 1.01–0.86 (m, 2H) ppm; ¹³**C NMR** (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 194.0, 144.6, 133.4, 131.7, 128.2, 37.5, 37.2, 33.3, 32.3, 26.7, 26.4 ppm; **HRMS** *m/z* (DART): calcd for C₁₃H₁₉OS (M+H): 223.1151; found 223.1144; **IR** (neat): 3093, 2920, 2849, 1659, 1518, 1448, 1414, 1355, 1276, 1232, 1210, 1057, 852, 719 cm⁻¹; **R**_f (9:1 hexanes/EtOAc; UV/*p*-anisaldehyde): 0.67.

Bn

4-Cyclohexyl-1-phenylbutan-2-one (3g) (CAS: 175787-42-5): Prepared according to General Procedure A on 0.30 mmol scale using DMA instead of DMF. The crude residue was purified by flash column chromatography (gradient of 0–10% EtOAc/hexanes) to yield the product as a colourless oil (trial 1: 35 mg, 0.15 mmol, 51%; trial 2: 38 mg, 0.16 mmol, 55%). ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.36–7.30 (m, 2H), 7.29–7.23 (m, 1H), 7.23–7.18 (m, 2H), 3.68 (s, 2H), 2.45 (t, *J* = 7.5 Hz, 2H), 1.72–1.57 (m, 4H), 1.49–1.40 (m, 2H), 1.35–1.03 (m, 5H), 0.91–0.76 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 209.0, 134.6, 129.5, 128.8, 127.1, 50.3, 39.7, 37.3, 33.2, 31.3, 26.7, 26.4 ppm; HRMS *m/z* (DART): calcd for C₁₅H₂₁O (M+H): 217.1587; found 217.1596; IR (neat): 2925, 2853, 1684, 1598, 1449, 1364, 1276, 1212, 1180, 1076, 1027, 762, 739, 696 cm⁻¹; **R**_f (5% EtOAc/hexanes; UV/KMnO₄): 0.36.

tert-Butyl 2-(3-cyclohexyl-3-oxopropyl)pyrrolidine-1-carboxylate (3h): Prepared according to General Procedure A on 0.20 mmol scale using DMA instead of DMF. The reaction was quenched with sat. aq. NH₄Cl. The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as a colourless oil, which was a 1:1 mixture of conformational isomers (using NiCl₂(phen): 23 mg, 0.074 mmol, 37%; using NiCl₂(dtbbpy): trial 1: 23 mg, 0.074 mmol, 37%; trial 2: 23 mg, 0.074 mmol, 37%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 3.91–3.63 (m, 1H), 3.52–3.17 (m, 2H), 2.63–2.21 (m, 3H), 2.02–1.54 (m, 12H), 1.45 (s, 9H), 1.37–1.12 (m, 4H); ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 213.8, 155.0, 79.1, 77.4, 56.9, 50.9, 46.5, 46.3, 37.9, 37.5, 30.9, 30.4, 28.7, 26.0, 25.8, 23.8, 23.2 ppm; HRMS *m/z* (DART): calcd for C₁₈H₃₂NO₃ (M+H): 310.2377; found: 310.2370; IR (neat): 2969, 2928, 2855, 1689, 1450, 1390, 1365, 1252, 1166, 1104, 997, 865, 771 cm⁻¹; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.26.

tert-Butyl 2-(3-oxooctyl)pyrrolidine-1-carboxylate (3i): Prepared according to General Procedure A on 0.30 mmol scale using DMA instead of DMF. The reaction was quenched with sat. aq. NH4Cl. The crude residue was purified by flash column chromatography (gradient of 0– 20% EtOAc/hexanes) to yield the product as a colourless oil, which was a 1:1 mixture of conformational isomers (using NiCl₂(phen): 18 mg, 0.061 mmol, 20%; using NiCl₂(dtbbpy): trial 1: 54 mg, 0.18 mmol, 61%; trial 2 (0.20 mmol scale): 21 mg, 0.071 mmol, 36%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 3.90–3.66 (m, 1H), 3.50–3.20 (m, 2H), 2.56–2.25 (m, 4H), 1.99–1.74 (m, 4H), 1.72–1.51 (m, 4H), 1.45 (s, 9H), 1.35–1.20 (m, 4H), 0.87 (t, *J* = 6.9 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 211.3, 210.9, 154.9 (br), 79.4, 791, 56.8, 46.5, 46.3, 42.9 (br), 40.0, 39.6, 31.5, 30.9, 30.4, 28.8 (br), 28.7, 23.8, 23.7, 23.1, 22.6, 14.0 ppm; HRMS *m/z* (DART): calcd for C₁₇H₃₂NO₃ (M+H): 298.2377; found 298.2373; **IR** (neat): 2959, 2932, 2874, 1689, 1454, 1390, 1365, 1252, 1166, 1104, 911, 863, 772 cm⁻¹; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.31.

1-(2,6-Dimethoxyphenyl)-9-(4-methoxyphenyl)nonan-1-one (3j) (CAS: 114226-21-0): Prepared on 0.10 mmol scale according to General Procedure A. The product was purified by flash column chromatography (gradient of 0–30% Et₂O/hexanes) to yield **3j** as a colourless oil (8.8 mg, 0.023 mmol, 23%). Analytical data:⁷ ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.24 (t, *J* = 8.4 Hz, 1H), 7.11–7.05 (m, 2H), 6.84–6.79 (m, 2H), 6.54 (d, *J* = 8.4 Hz, 2H), 3.78 (s, 3H), 3.77 (s, 6H), 2.72 (t, *J* = 7.4 Hz, 2H), 2.56–2.50 (m, 2H), 1.60–1.53 (m, 4H), 1.34–1.28 (m, 8H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 205.7, 157.7, 156.8, 135.2, 130.5, 129.4, 120.9, 113.8, 104.1, 56.0, 55.4, 44.9, 35.2, 31.7, 29.5, 29.5, 29.4, 29.3, 23.6 ppm; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.26.

3-Cyclopentyl-1-(4-methoxyphenyl)propan-1-one (3k): Prepared according to General Procedure A on 0.20 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–5% Et₂O/hexanes) to yield the product as a colourless oil (31 mg, 0.13 mmol, 67%). Analytical data:⁸ ¹H NMR (500 MHz, CDCl₃, 298 K): δ_H 8.00–7.91 (m, 2H), 6.97–6.90 (m, 2H), 3.86 (s, 3H), 2.94–2.89 (m, 2H), 1.87–1.70 (m, 5H), 1.68–1.47 (m, 4H), 1.19–1.08 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): δ_C 199.6, 163.4, 130.5, 130.3, 113.8, 55.6, 40.0, 37.8, 32.7, 31.1, 25.3 ppm; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.44.

3-Cyclobutyl-1-(4-methoxyphenyl)propan-1-one (3l): Prepared according to General Procedure A on 0.20 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–5% Et₂O/hexanes) to yield the product as a colourless oil (trial 1: 15 mg, 0.069 mmol, 35%; trial 2: 16 mg, 0.073 mmol, 37%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.95–7.90 (m, 2H), 6.96–6.90 (m, 2H), 3.86 (s, 3H), 2.84–2.77 (m, 2H), 2.38–2.26 (m, 1H), 2.11–2.01 (m, 2H), 1.89–1.71 (m, 4H), 1.69–1.57 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 199.4, 163.4, 130.5, 130.3, 113.8, 55.6, 36.1, 35.8, 31.9, 28.2, 18.4 ppm; HRMS *m*/*z* (DART): calcd for C₁₄H₁₉O₂ (M+H): 219.1380; found: 219.1377; **IR** (neat): 2954, 2933, 2860, 1734, 1674, 1599, 1575, 1511, 1418, 1308, 1251, 1225, 1168, 1026, 973, 834, 810 cm⁻¹; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.42.

tert-Butyl 2-(3-oxo-3-phenylpropyl)pyrrolidine-1-carboxylate (3m): Prepared according to General Procedure A on 0.30 mmol scale. The reaction was quenched with sat. aq. NH₄Cl. The

crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as a colourless oil, which was a 1:1 mixture of conformational isomers (61 mg, 0.20 mmol, 67%). Analytical data:⁹ ¹**H NMR** (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.99–7.91 (m, 2H), 7.59–7.38 (br m, 3H), 3.91 (br m, 1H), 3.54–3.24 (br m, 2H), 3.18–2.86 (br m, 2H), 2.12–1.76 (m, 5H), 1.73–1.60 (br m, 1H), 1.42 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 200.2, 199.8, 155.0 (br), 137.1, 137.0, 133.2, 133.0, 128.7 (br), 128.1 (br), 79.4, 79.1, 56.9, 46.5, 46.2, 36.0, 35.5, 31.1, 30.5, 29.4, 28.6, 23.8, 23.1 ppm; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.23.

4,4-Dimethyl-1-phenylpentan-1-one (3n) (CAS: 37608-93-8): Prepared according to General Procedure A on 0.30 mmol scale. The product was purified by flash column chromatography (gradient of 0–5% Et₂O/hexanes) to yield **3n** as a colourless oil (41 mg, 0.22 mmol, 72%). Analytical data:¹⁰ ¹**H** NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.99–7.93 (m, 2H), 7.58–7.52 (m, 1H), 7.49–7.42 (m, 2H), 2.97–2.90 (m, 2H), 1.69–1.60 (m, 2H), 0.96 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K); $\delta_{\rm C}$ 201.2, 137.2, 133.0, 128.7, 128.2, 38.3, 34.4, 30.3, 29.4 ppm; **R**_f (10% Et₂O/hexanes; UV/KMnO₄): 0.66.

N,*N*-Dimethyl-4-(3-oxo-3-phenylpropyl)piperidine-1-carboxamide (30): Prepared according to General Procedure A on 0.30 mmol scale. The reaction was quenched with sat. aq. NH₄Cl. The crude residue was purified by flash column chromatography (gradient of 30–70% EtOAc/hexanes) to yield the product as a colourless oil (36 mg, 0.13 mmol, 42%). ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.99–7.86 (m, 2H), 7.57–7.48 (m, 1H), 7.47–7.38 (m, 2H), 3.69–3.56 (m, 2H), 3.02–2.89 (m, 2H), 2.85–2.59 (m, 8H), 1.77–1.58 (m, 4H), 1.55–1.38 (m, 1H), 1.29–1.10 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 200.2, 165.2, 137.0, 133.1, 128.7, 128.1, 47.1, 38.6, 36.0, 35.7, 32.1, 30.8 ppm; HRMS *m/z* (DART): calcd for C₁₇H₂₅N₂O₂ (M+H): 289.1911; found: 289.1917; IR (neat): 3486 (br), 2922, 2849, 1681, 1633, 1492, 1446, 1393, 1271, 1254, 1211, 1151, 945, 741, 691 cm⁻¹; **R**_f (6:4 hexanes/EtOAc; UV/KMnO₄): 0.21.

tert-Butyl 4-(3-oxo-3-phenylpropyl)piperidine-1-carboxylate (3p): Prepared according to General Procedure A on 0.30 mmol scale. The reaction was quenched with sat. aq. NH₄Cl. The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield **3p** as a colourless oil (trial 1: 35 mg, 0.11 mmol, 37%; trial 2: 40 mg, 0.13 mmol, 43%). Analytical data:¹¹ ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.99–7.90 (m, 2H), 7.58–7.50 (m, 1H), 7.49–7.41 (m, 2H), 4.22–3.92 (br m, 2H), 3.06–2.92 (m, 2H), 2.77–2.56 (m, 2H), 1.91–1.62 (m, 4H), 1.54–1.34 (m, 10H), 1.20–1.05 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): 200.3, 155.0, 137.0, 133.1, 128.7, 128.1, 79.4, 44.0, 35.7, 35.7, 32.1, 30.8, 28.6 ppm; **HRMS** *m/z*

(DART): calcd for C₁₉H₂₈NO₃ (M+H): 318.2064; found: 318.2060; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.22.

3-(1-Benzoylpiperidin-4-yl)-1-phenylpropan-1-one (3q): Prepared according to General Procedure A on 0.30 mmol scale. The crude residue was purified by flash column chromatography (gradient of 20–60% EtOAc/hexanes) to yield **3q** as a colourless oil, which was a 1:1 mixture of conformational isomers (using NiCl₂(phen): 34 mg, 0.11 mmol, 35%; using NiCl₂(dtbbpy): trial 1: 57 mg, 0.18 mmol, 59%; trial 2: 38 mg, 0.12 mmol, 40%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.99–7.91 (m, 2H), 7.60–7.52 (m, 1H), 7.50–7.42 (m, 2H), 7.41–7.31 (m, 5H), 4.90–4.55 (m, 1H), 3.89–3.61 (m, 1H), 3.13–2.63 (m, 4H), 1.97–1.54 (m, 5H), 1.38–1.06 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 200.0, 170.4, 136.9, 136.4, 133.1, 129.5, 128.7, 128.5, 128.0, 126.9, 48.0 (br), 42.4 (br), 35.8, 35.5, 32.9 (br), 31.8 (br), 30.5 ppm; HRMS *m/z* (DART): calcd for C₂₁H₂₄NO₂ (M+H): 322.1802; found: 322.1805; IR (neat): 3059, 2924, 2854, 1727, 1681, 1623, 1599, 1438, 1370, 1279, 1212, 1136, 965, 787, 734, 707, 691 cm⁻¹; **R**_f (6:4 hexanes/EtOAc; UV/KMnO₄): 0.35.

1,5-Diphenylpentan-1-one (3r): Prepared according to General Procedure A on 0.30 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–5% EtOAc/hexanes) to yield the product as a colourless oil (using NiCl₂(phen): 19 mg, 0.081 mmol, 27%; using NiCl₂(dtbbpy): trial 1: 30 mg, 0.13 mmol, 42%; trial 2: 32 mg, 0.13 mmol, 42%). Analytical data:¹² ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.04–7.95 (m, 2H), 7.63–7.95 (m, 1H), 7.54–7.45 (m, 2H), 7.37–7.17 (m, 5H), 3.03 (t, *J* = 6.9 Hz, 2H), 2.71 (t, *J* = 7.5 Hz, 2H), 1.90–1.72 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 200.4, 142.4, 137.2, 133.1, 128.7, 128.5, 128.5, 128.2, 125.9, 38.6, 35.9, 31.2, 24.1 ppm; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.57.

5-(Adamantan-1-yl)-1-phenylpentan-2-one (3s): Prepared according to General Procedure A on 0.10 mmol scale using DMA instead of DMF. The crude residue was purified by flash column chromatography (gradient of 0–5% EtOAc/hexanes) to yield the product as a colourless oil (11 mg, 0.037 mmol, 37%). ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.39–7.16 (m, 5H), 3.67 (s, 2H), 2.39 (t, *J* = 7.4 Hz, 2H), 1.97–1.88 (m, 3H), 1.72–1.55 (m, 6H), 1.55–1.41 (m, 8H), 1.00–0.92 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 208.9, 134.6, 129.6, 128.8, 127.1, 50.3, 41.2, 43.1, 42.5, 37.4, 32.4, 28.9, 17.1 ppm; HRMS *m/z* (DART): calcd for C₂₁H₂₉O (M+H): 297.2213; found: 297.2213; IR (neat): 2898, 2845, 1713, 1496, 1452, 1353, 1316, 1187, 1093, 1031, 810, 727, 697 cm⁻¹; **R**_f (5% EtOAc/hexanes; UV/KMnO4): 0.39.

(*R*)-1-Phenyl-6-((3*R*,5*S*,7*R*,8*R*,9*S*,10*S*,12*S*,13*R*,14*S*,17*R*)-3,7,12-trimethoxy-10,13dimethylhexadecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl)heptan-1-one (3t): Prepared according to General Procedure A on 0.30 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield the product as a colourless wax (53 mg, 0.098 mmol, 33%). ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.00–7.91 (m, 2H), 7.58–7.51 (m, 1H), 7.49–7.41 (m, 2H), 3.39–3.35 (m, 1H), 3.32 (s, 3H), 3.25 (s, 3H), 3.20 (s, 3H), 3.16–3.11 (m, 1H), 3.02–2.91 (m, 3H), 2.26–1.99 (m, 4H), 1.97–0.79 (m, 28H), 0.64 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 200.8, 137.3, 133.0, 128.7, 128.2, 82.2, 80.9, 77.2, 56.0, 55.8, 55.5, 46.7, 46.2, 42.8, 42.1, 39.8, 38.9, 35.8, 35.5, 35.4, 35.1, 34.6, 28.2, 27.9, 27.7, 26.9, 26.0, 25.0, 23.3, 23.0, 22.1, 17.9, 12.6 ppm; HRMS *m/z* (DART): calcd for C₃₅H₅₈NO₄ (M+NH₄): 556.4360; found: 556.4369; IR (neat): 2930, 2866, 2819, 1685, 1581, 1452, 1369, 1185, 1099, 1091, 961, 750, 730, 691 cm⁻¹; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.38.

(3*S*,8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-10,13-dimethyl-17-((*R*)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl 6oxo-6-phenylhexanoate (3u): Prepared according to General Procedure A on 0.30 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as a white wax (33 mg, 0.057 mmol, 19%). ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.00–7.88 (m, 2H), 7.59–7.51 (m, 1H), 7.50–7.39 (m, 2H), 5.43–5.30 (m, 1H), 4.68–4.53 (m, 1H), 2.99 (t, *J* = 6.7 Hz, 2H), 2.66–2.53 (m, 1H), 2.43–2.20 (m, 4H), 2.06–0.79 (m, 41H), 0.68 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 200.0, 173.0, 139.0, 137.1, 133.1, 128.7, 128.2, 122.7, 74.0, 56.8, 56.3, 50.2, 42.5, 39.9, 39.7, 38.3, 37.1, 36.7, 36.3, 35.9, 34.6, 32.0, 32.0, 28.4, 28.1, 27.9, 24.8, 24.4, 24.0, 23.8, 23.0, 22.7, 21.2, 19.5, 18.9, 12.0 ppm; HRMS *m*/*z* (ESI): calcd for C₃₉H₅₉O₃ (M+H): 575.4459; found: 575.4455; IR (neat): 2940, 2867, 1736, 1687, 1599, 1461, 1371, 1259, 1174, 995, 801, 753, 724, 688 cm⁻¹; **R**_f (9:1 hexanes/Et₂O): 0.35.

4-(1-(4-Chlorobenzoyl)-5-methoxy-2-methyl-1*H***-indol-3-yl)-1-phenylbutan-1-one (3v):** Prepared according to General Procedure A on 0.20 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield the product as a yellow oil (35 mg, 0.078 mmol, 39%). ¹**H NMR** (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.94–7.90 (m, 2H), 7.65–7.61 (m, 2H), 7.58–7.53 (m, 1H), 7.47–7.42 (m, 4H), 6.98 (d, *J* = 2.6 Hz, 1H), 6.89 (d, *J* = 9.1 Hz, 1H), 6.65 (dd, *J* = 9.0, 2.6 Hz, 1H), 3.81 (s, 3H), 3.04 (t, *J* = 6.8 Hz, 2H), 2.77 (t, *J* = 7.5 Hz, 2H), 2.31 (s, 3H), 2.10 (app pent, *J* = 7.1 Hz, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 200.0, 168.4, 156.1, 139.1, 137.1, 134.4, 134.4, 133.2, 131.3, 131.2, 129.2, 128.7, 128.1, 126.3, 119.4, 115.1, 111.4, 101.5, 55.8, 37.7, 24.0, 23.3, 13.5 ppm; **HRMS** *m/z* (DART): calcd for C₂₇H₂₅NO₃Cl (M+H): 446.1518; found: 446.1517; **IR** (neat): 2956, 2931, 2871, 1737, 1681, 1596, 1477, 1452, 1371, 1358, 1318, 1237, 1220, 1143, 1088, 1043, 840, 753, 692 cm⁻¹; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.36.

D.4. Preparation and characterization of supplemental β -alkylketone products

Table S5. Supplemental scope of lower-yielding products^a

^{*a*}Isolated yields (0.10–0.30 mmol scale); ^{*b*}Numbers in brackets represent *uncalibrated* GC-MS yields—data is shown purely for qualitative purposes; ^{*c*}Using NiCl₂(dtbbpy) (10 mol %).

Table S6. Table of unsuccessful starting materials (<10% yield) NHPI Esters

1-Phenylpentadecan-2-one (S1): Prepared on 0.10 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–5% EtOAc/hexanes) to yield **S1** as a colourless oil (10 mg, 0.033 mmol, 33%). Analytical data:¹³ ¹**H NMR** (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.37–7.29 (m, 2H), 7.29–7.23 (m, 1H), 7.23–7.17 (m, 2H), 3.68 (s, 2H), 2.43 (t, *J* = 7.4 Hz, 2H), 1.61–1.45 (m, 2H), 1.35–1.14 (m, 20H), 0.88 (t, *J* = 6.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 208.8, 134.6, 129.6, 128.8, 127.1, 50.3, 42.2, 32.1, 29.8, 29.8, 29.8, 29.7, 29.6, 29.5, 29.5, 29.3, 23.9, 22.8, 14.3 ppm; **R**_f (5% EtOAc/hexanes; UV/KMnO₄): 0.43.

4-(1-(*tert***-Butyldimethylsilyl)-1***H***-indol-3-yl)-1-phenylbutan-1-one (S2):** Prepared on 0.30 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–10% EtOAc/hexanes) to yield **S2** as a colourless oil (17 mg, 0.045 mmol, mmol, 15%). ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.97–7.84 (m, 2H), 7.64–7.38 (m, 3H), 7.38–7.21 (m, 2H), 7.19–7.06 (m, 2H), 6.96 (s, 1H), 3.07–2.98 (m, 2H), 2.91–2.82 (m, 2H), 2.26–2.21 (m, 2H), 0.92 (s, 9H), 0.56 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 200.6, 137.2, 133.0, 131.1, 128.6, 128.3, 128.2, 121.5, 119.4, 119.0, 117.8, 114.0, 108.6, 38.2, 26.5, 24.7, 24.6, 20.0, –3.9 ppm; HRMS *m/z* (DART): calcd for C₂₄H₃₂NOSi (M+H): 378.2248; found: 378.2253; IR (neat): 2952, 2930, 2858, 1684, 1598, 1451, 1361, 1304, 1257, 1218, 1136, 1002, 969, 952, 837, 821, 809, 788, 740, 687 cm⁻¹; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.64.

4-(6-Methoxynaphthalen-2-yl)-1-phenylpentan-1-one (S3): Prepared on 0.30 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–10% EtOAc/hexanes) to yield the product as a white solid (13 mg, 0.041 mmol, 14%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.87–7.79 (m, 2H), 7.75–7.64 (m, 2H), 7.60–7.46 (m, 2H), 7.43–7.30 (m, 3H), 7.18–7.08 (m, 2H), 3.92 (s, 3H), 3.01–2.75 (m, 3H), 2.23–2.01 (m, 2H), 1.38 (d, *J* = 6.9 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 200.6, 157.4, 141.8, 137.1, 133.4, 133.0, 129.2, 129.2, 128.6, 128.1, 127.2, 126.2, 125.4, 118.9, 105.8, 55.5, 39.6, 36.9, 32.5, 22.9 ppm; HRMS *m/z* (DART): calcd C₂₂H₂₃O₂ (M+H): 319.1693; found: 319.1700; IR (neat): 3355, 3053, 3023, 2954, 2924, 2866, 1737, 682, 1603, 1484, 1449, 1370, 1315, 1267, 1231, 1192, 1158, 1021, 902, 854, 828, 738, 688 cm⁻¹; m.p.: 84–86 °C; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.51.

4-Methyl-1-phenylpentan-1-one (S4): Prepared on 0.30 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–4% Et₂O/hexanes) to yield the product as a colourless oil (24 mg, 0.14 mmol, 45%). Analytical data:¹¹ ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.98–7.95 (m, 2H), 7.57–7.53 (m, 1H), 7.48–7.44 (m, 2H), 2.98–2.95 (m, 2H), 1.67–1.60

(m, 3H), 0.95 (d, J = 6.4 Hz, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 200.9, 137.2, 133.0, 128.7, 128.2, 36.8, 33.4, 28.0, 22.6 ppm; **R**_f (19:1 hexanes/Et₂O; UV/KMnO₄): 0.47.

3-Cyclohexyl-1-(4-fluorophenyl)propan-1-one (S5): Prepared on 0.20 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–5% EtOAc/hexanes) to yield the product as a colourless oil (7.0 mg, 0.030 mmol, 15%). ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.03–7.90 (m, 2H), 7.18–7.05 (m, 2H), 3.00–2.88 (m, 2H), 1.82–1.54 (m, 6H), 1.38–1.08 (m, 5H), 1.02–0.77 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 199.3, 165.7 (d, J = 52.5 Hz), 133.6 (d, J = 2.9 Hz), 130.8 (d, J = 9.2 Hz), 115.7 (d, J = 21.8 Hz), 37.6, 36.2, 33.3, 31.9, 26.7, 26.4 ppm; ¹⁹F NMR (376 MHz, CDCl₃, 298 K): $\delta_{\rm F}$ –105.8 ppm; HRMS *m/z* (DART): calcd for C₁₅H₂₀OF (M+H): 235.1493; found: 235.1493; IR (neat): 2921, 2851, 1685, 1597, 1506, 1449, 1410, 1366, 1275, 1229, 1209, 1155, 939, 962, 837 cm⁻¹; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.79.

(*E*)-5-Cyclohexyl-1-phenylpent-1-en-3-one (S6): Prepared on 0.20 mmol scale. The product was purified by flash column chromatography (gradient of 0–5% EtOAc/hexanes) to yield S6 as a colourless oil (6.4 mg, 0.026 mmol, 13%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.58–7.48 (m, 3H), 7.42–7.33 (m, 3H), 6.74 (d, *J* = 16.3 ppm, 1H), 2.71–2.61 (m, 2H), 1.83–1.49 (m, 7H), 1.33–1.03 (m, 4H), 0.99–0.83 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 201.1, 142.4, 134.7, 130.5, 129.1, 128.4, 126.4, 38.7, 37.5, 33.3, 31.9, 26.7, 26.4 ppm; HRMS *m/z* (DART): calcd for C₁₇H₂₃O (M+H): 243.1743; found: 243.1745; IR (neat): 3030, 2920, 2850, 1690, 1661, 1610, 1577, 1448, 1329, 1178, 1071, 977, 748, 690 cm⁻¹; R_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.62.

E. Preparation of N-hydroxyphthalimide (NHPI) ester starting materials

E.1. Preparation of N-hydroxyphthalimide (NHPI) esters

General Procedure B: Synthesis of NHPI esters using DCC

To a round-bottom flask with a stir bar were added carboxylic acid (if solid) (1 equiv), *N*-hydroxyphthalimide (1 equiv), *N*,*N*'-dicyclohexylcarbodiimide (1 equiv), and DCM (0.20 M). If the carboxylic acid was an oil the carboxylic acid was then added (1 equiv). The reaction was stirred at r.t. for 16 h. The solution was filtered using filter paper and the filtrate was concentrated and purified by flash column chromatography to yield the desired *N*-hydroxyphthalimide ester. If solid, NHPI esters were sufficiently ground up before use to ensure rapid dissolution in the reaction solvent. NHPI esters were stored on benchtop at r.t., and were repurified once a month to remove decomposition products resulting from hydrolysis.

1,3-Dioxoisoindolin-2-yl cyclohexanecarboxylate (2a): The ester was prepared following General Procedure B on 20 mmol scale. The crude residue was purified by flash column chromatography (gradient of 5–30% EtOAc/hexanes) to yield **2a** as a white solid (4.7 g, 17 mmol, 85%). Analytical data:¹⁴ ¹**H NMR** (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.92–7.85 (m, 2H), 7.83–7.76 (m, 2H), 2.80–2.69 (m, 1H), 2.18–2.06 (m, 2H), 1.91–1.78 (m, 2H), 1.75–1.60 (m, 3H), 1.48–1.23 (m, 3H) ppm; ¹³**C NMR** (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 171.8, 162.1, 134.7, 129.1, 123.9, 40.5, 28.8, 25.5, 25.0 ppm; **R**_f (9:1 hexanes/EtOAc; UV): 0.32.

1-(*tert*-**Butyl**) **2-**(**1**,**3**-dioxoisoindolin-2-yl) (*S*)-pyrrolidine-1,2-dicarboxylate (S12): The ester was prepared following General Procedure B on 4.0 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–40% EtOAc/hexanes) to yield the product as a white solid (0.95 g, 2.6 mmol, 65%). Analytical data:¹⁴ ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.97–7.68 (m, 4H), 4.76–4.55 (m, 1H), 3.71–3.34 (m, 2H), 2.52–2.28 (m, 2H), 2.17–1.88 (m, 2H), 1.51 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 169.8, 161.8, 153.6, 134.9, 129.0, 124.1, 81.2, 57.3, 46.4, 31.5, 28.2, 23.6 ppm; **R**_f (7:3 hexanes/EtOAc; UV/KMnO₄): 0.08.

1,3-Dioxoisoindolin-2-yl cyclopentanecarboxylate (S13): The ester was prepared following General Procedure B on 5.0 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as a white solid (1.2 g, 4.6 mmol, 92%). Analytical data:¹⁴ ¹**H NMR** (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.93–7.82 (m, 2H), 7.81–7.70 (m, 2H), 3.18–3.02 (m, 1H), 2.22–1.94 (m, 4H), 1.89–1.54 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 173.0, 162.2, 134.8, 129.1, 124.0, 40.8, 30.3, 26.0 ppm; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.22.

1,3-Dioxoisoindolin-2-yl cyclobutanecarboxylate (S14): The ester was prepared following General Procedure B on 5.0 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as a white solid (1.2 g, 4.9 mmol, 98%). Analytical data:¹⁴ ¹**H NMR** (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.92–7.85 (m, 2H), 7.82–7.76 (m, 2H), 3.58–3.44 (m, 1H), 2.60–2.32 (m, 4H), 2.18–1.99 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 171.6, 162.2, 134.8, 129.2, 124.1, 35.2, 25.5, 18.9 ppm; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.20.

1,3-Dioxoisoindolin-2-yl pivalate (S15) (CAS: 84379-72-6): To a 50-mL flask with a stir bar were added *N*-hydroxyphthalimide (2.0 g, 12 mmol, 1.0 equiv) and DCM (24 mL, 0.50 M), and the solution was cooled to 0 °C. DMAP (0.15 g, 1.2 mmol, 0.10 equiv) was added, followed by pivaloyl chloride (1.7 mL, 14 mmol, 1.2 equiv) and triethylamine (2.5 mL, 18 mmol, 1.5 equiv). The reaction was stirred at r.t. for 16 h. The reaction was concentrated and the concentrate was purified by flash column chromatography (gradient of 0–50% EtOAc/hexanes) to yield the product as a white solid (2.6 g, 10.5 mmol, 88%). Analytical data:^{15 1}H NMR (400 MHz, CDCl₃, 298 K): 7.95–7.85 (m, 2H), 7.84–7.73 (m, 2H), 1.45 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 174.5, 162.2, 134.8, 129.2, 124.0, 38.5, 27.1 ppm.

1,3-Dioxoisoindolin-2-yl 1-(dimethylcarbamoyl)piperidine-4-carboxylate (S16): The ester was prepared following General Procedure B on 2.0 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0/0/100-10/1/89 MeOH/NEt₃/DCM) to yield the product as an off-white solid. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.91–7.85 (m, 2H), 7.82–7.76 (m, 2H), 3.72–3.58 (m, 2H), 2.98–2.75 (m, 8H), 2.17–2.05 (m, 2H), 1.99–1.64 (m, 3H)

ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 170.8, 165.0, 162.0, 134.9, 129.1, 124.1, 46.1, 39.0, 38.6, 27.9 ppm; **HRMS** *m/z* (DART): calcd for C₁₇H₂₀N₃O₅ (M+H): 346.1398; found: 346.1406; **IR** (neat): 3325, 2928, 2855, 1783, 1736, 1628, 1495, 1364, 1184, 1117, 1025, 978, 877, 790, 696 cm⁻¹; **m.p.:** 79–81 °C; **R**_f (10% MeOH/DCM; UV/KMnO₄): 0.61.

1-(*tert***-Butyl) 4-(1,3-dioxoisoindolin-2-yl) piperidine-1,4-dicarboxylate (S17):** The ester was prepared following General Procedure B on 6.0 mmol scale. The crude residue was purified by flash column chromatography (gradient of 20–50% EtOAc/hexanes) to yield the product as a white solid (1.7 g, 4.5 mmol, 75%). Analytical data:¹⁴ ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.92–7.85 (m, 2H), 7.83–7.76 (m, 2H), 4.15–4.14 (m, 2H), 3.09–2.85 (m, 3H), 2.13–1.99 (m, 2H), 1.93–1.77 (m, 2H), 1.46 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 170.8, 162.1, 154.7, 134.9, 129.1, 123.1, 80.0, 42.6, 38.7, 28.6, 27.9 ppm; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.06.

1,3-Dioxoisoindolin-2-yl 1-benzoylpiperidine-4-carboxylate (S18): The ester was prepared following General Procedure B on 7.0 mmol scale. The crude residue was purified by flash column chromatography (gradient of 20–60% EtOAc/hexanes) to yield the product as a white solid (4.2 g, 4.2 mmol, 60%). Analytical data:¹⁶ ¹**H NMR** (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.92–7.85 (m, 2H), 7.83–7.77 (m, 2H), 7.47–7.37 (m, 5H), 4.48 (br s, 1H), 3.80 (br s, 1H), 3.31–3.18 (m, 2H), 3.19–2.99 (m, 1H), 2.30–1.54 (m, 4H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 170.5, 170.3, 161.9, 135.7, 134.9, 129.8, 128.9, 128.6, 126.9, 124.0, 46.4 (br), 40.9 (br), 38.5, 28.4 (br), 27.6 (br) ppm; **R**_f (8:2 hexanes/EtOAc; UV/KMnO₄): 0.10.

1,3-Dioxoisoindolin-2-yl 3-phenylpropanoate (S19) (CAS: 84379-71-5): To a flame-dried 100-mL flask with a stir bar were added hydrocinnamic acid (3.0 g, 20 mmol, 1.0 equiv) and DCM (50 mL, 0.40 M) and the solution was cooled to 0 °C. Oxalyl chloride (2.0 mL, 24 mmol, 1.2 equiv) was added, followed by (DMF (2–3 drops), and the reaction was stirred at 0 °C for 2 h. The solution was concentrated under reduced pressure, and was then dissolved in THF (50 mL, 0.40 M) and cooled to 0 °C. *N*-Hydroxyphthalimide (3.9 g, 24 mmol, 1.2 equiv) was added, followed by dropwise addition of triethylamine (3.3 mL, 24 mmol, 1.2 equiv). The reaction was stirred at r.t. for 16 h. The reaction was quenched with 1M HCl and extracted with EtOAc (×2), and the organic fractions were combined, washed brine (×1), and concentrated. The crude material was suspended in CHCl₃, passed through a plug of Celite and further purified by recrystallization (EtOAc/hexanes) to yield the product as a white solid (5.7 g, 19 mmol, 95%).

Analytical data:¹⁷ ¹**H** NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.93–7.87 (m, 2H), 7.82–7.76 (m, 2H), 7.37–7.30 (m, 2H), 7.29–7.22 (m, 3H), 3.15–3.07 (m, 2H), 3.03–2.95 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 169.0, 162.0, 139.3, 134.9, 129.1, 128.9, 128.4, 126.9, 124.1, 32.9, 30.7 ppm.

1,3-Dioxoisoindolin-2-yl 2-(adamantan-1-yl)acetate (S20): The ester was prepared according to General Procedure B on 10 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as a white solid (2.3 g, 6.8 mmol, 68%). Analytical data:¹⁸ ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.92–7.85 (m, 2H), 7.82–7.75 (m, 2H), 2.40 (s, 2H), 2.07–2.00 (m, 3H), 1.80–1.64 (m, 12H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 167.4, 162.2, 134.8, 129.2, 124.1, 45.6, 42.2, 36.7, 33.4, 28.8 ppm; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.31.

1,3-Dioxoisoindolin-2-yl (*R***)-4-((***3R***,5***S***,7***R***,8***R***,9***S***,10***S***,12***S***,13***R***,14***S***,17***R***)-3,7,12-trimethoxy-10,13-dimethylhexadecahydro-1***H***-cyclopenta[a]phenanthren-17-yl)pentanoate (S21): The product was prepared according to General Procedure B on 8.2 mmol scale. The crude residue was purified by flash column chromatography (gradient of 15–40% EtOAc/hexanes) to yield the product as a white solid (2.9 g, 4.9 mmol, 60%). ¹H NMR (500 MHz, CDCl₃, 298 K): \delta_{\rm H} 7.91– 7.85 (m, 2H), 7.80–7.75 (m, 2H), 3.38 (t,** *J* **= 2.9 Hz, 1H), 3.33 (s, 3H), 3.27 (s, 3H), 3.21 (s, 3H), 3.14 (q,** *J* **= 3.1 Hz, 1H), 3.04–2.95 (m, 1H), 2.76–2.67 (m, 1H), 2.64–2.55 (m, 1H), 2.24–2.04 (m, 2H), 2.01–1.43 (m, 15H), 1.37–1.15 (m, 4H), 1.09–0.87 (m, 7H), 0.68 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): \delta_{\rm C} 170.3, 162.2, 134.8, 129.1, 124.1, 82.1, 80.9, 77.1, 56.0, 55.8, 55.5, 46.4, 46.3, 42.8, 42.1, 39.8, 35.4, 35.1, 35.0, 34.6, 30.8, 28.1, 28.1, 27.9, 27.5, 26.9, 23.3, 23.0, 22.1, 17.5, 12.6 ppm; HRMS** *m/z* **(ESI): calcd for C₃₅H₅₃N₂O₇ (M+NH4): 613.3847; found 613.3840; IR** (neat): 2928, 2873, 2819, 1786, 1744, 1457, 1368, 1188, 1097, 1082, 965, 877, 860, 695 cm⁻¹; m.p.: 161–162 °C; R_f (9:1 hexanes/EtOAc; UV/KMnO4): 0.10.

(3*S*,8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-10,13-Dimethyl-17-((*R*)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl (1,3dioxoisoindolin-2-yl) succinate (822): Prepared on 4.0 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield the product as a white solid (1.9 g, 3.0 mmol, 75%). ¹**H NMR** (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.91– 7.84 (m, 2H), 7.81–7.75 (m, 2H), 5.42–5.31 (m, 1H), 4.73–4.57 (m, 1H), 3.00 (t, *J* = 7.2 Hz, 2H), 2.75 (t, *J* = 7.0 Hz, 2H), 2.70–2.53 (m, 1H), 2.39–2.26 (m, 2H), 2.06–1.75 (m, 4H), 1.68– 0.80 (m, 33H), 0.67 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 170.5, 168.8, 161.8, 139.7, 134.9, 129.0, 124.1, 122.9, 75.0, 56.8, 56.3, 50.1, 42.4, 39.9, 39.6, 38.1, 37.1, 36.7, 36.3, 35.9, 32.0, 32.0, 29.3, 28.4, 28.1, 28.8, 26.5, 24.4, 24.0, 22.9, 22.7, 21.2, 19.4, 18.8, 12.0 ppm; **HRMS** *m*/*z* (ESI): calcd for C₃₉H₅₇N₂O₆ (M+NH₄): 649.4221; found 649.4212; **IR** (neat): 2938, 2864, 1821, 1791, 1746, 1730, 1468, 1371, 1314, 1190, 1138, 1088, 1059, 1000, 969, 877, 780, 695 cm⁻¹; **m.p.:** 111–115 °C; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.13.

1,3-Dioxoisoindolin-2-yl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (**S23**): The product was prepared according to General Procedure B on 2.0-mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–50% EtOAc/hexanes) to yield the product as an off-white solid (0.15 g, 0.13 mmol, 7%). Analytical data:¹⁹ ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.92–7.84 (m, 2H), 7.82–7.76 (m, 2H), 7.71–7.66 (m, 2H), 7.50–7.44 (m, 2H), 7.03 (d, J = 2.5 Hz, 1H), 6.93 (dd, J = 9.0, 0.5 Hz, 1H), 6.71 (dd, J = 9.0, 2.5 Hz, 1H), 4.04 (s, 2H), 3.89 (s, 3H), 2.42 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 168.4, 167.2, 161.9, 156.4, 139.6, 136.6, 135.0, 133.8, 131.4, 130.9, 130.1, 129.3, 129.0, 124.2, 115.2, 112.6, 110.3, 110.8, 55.9, 27.3, 13.6 ppm; **R**_f (7:3 hexanes/EtOAc; UV/KMnO₄): 0.47.

1,3-Dioxoisoindolin-2-yl hept-6-enoate (4): Prepared according to General Procedure B on 2.5 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield **4** as a colourless oil (0.33 g, 1.2 mmol, 48%). Analytical data:²⁰ ¹**H NMR** (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.95–7.84 (m, 2H), 7.83–7.73 (m, 2H), 5.88–5.74 (m, 1H), 5.10–4.93 (m, 2H), 2.67 (td, *J* = 4.6, 1.2 Hz, 2H), 2.17–2.07 (m, 2H), 1.86–1.75 (m, 2H), 1.62–1.50 (m, 2H) ppm; ¹³**C NMR** (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 169.7, 162.1, 138.2, 134.9, 129.1, 124.1, 115.2, 33.3, 31.0, 28.1, 24.1 ppm; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.15.

1,3-Dioxoisoindolin-2-yl dodecanoate (S24): Prepared according to General Procedure B on 15 mmol scale. The crude residue was purified by flash column chromatography (gradient of 5–10% EtOAc/hexanes) to yield the product as a white solid (3.7 g, 11 mmol, 73%). Analytical data:²¹ ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.92–7.86 (m, 2H), 7.82–7.76 (m, 2H), 2.66 (t, *J* = 7.5 Hz, 2H), 1.84–1.73 (m, 2H), 1.49–1.39 (m, 2H), 1.39–1.19 (m, 14H), 0.92–0.84 (m, 3H) ppm;

¹³C NMR (100 MHz, CDCl₃, 298 K): δ_C 169.8, 162.1, 134.8, 129.1, 124.0, 32.0, 31.1, 29.7, 29.7, 29.5, 29.4, 29.2, 28.9, 24.8, 22.8, 14.2 ppm; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.39.

1,3-Dioxoisoindolin-2-yl 2-(1-(*tert***-butyldimethylsilyl)**-1*H***-indol-3-yl)acetate (S25):** Prepared according to General Procedure B on 4.0 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield the product as an orange solid (0.48 g, 1.1 mmol, 28%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.92–7.84 (m, 2H), 7.80–7.72 (m, 2H), 7.68–7.60 (m, 1H), 7.56–7.48 (m, 1H), 7.35–7.30 (m, 1H), 7.23–7.14 (m, 2H), 4.15 (s, 2H), 0.95 (s, 9H), 0.63 (s, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 163.0, 162.0, 141.4, 134.8, 130.4, 130.3, 129.1, 124.1, 122.0, 120.1, 118.6, 114.2, 108.0, 28.3, 26.4, 19.6, –3.8 ppm; HRMS *m/z* (DART): calcd for C₂₄H₂₇N₂O₄Si (M+H): 435.1735; found 435.1734; **IR** (neat): 3072, 2956, 2927, 2856, 1812, 1784, 1740, 1611, 1456, 1421, 1371, 1258, 1217, 1185, 1137, 1101, 1081, 970, 809, 740, 692 cm⁻¹; m.p.: 77–78 °C; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.23.

1,3-Dioxoisoindolin-2-yl (S)-2-(6-methoxynaphthalen-2-yl)propanoate (S26) (CAS: 646510-95-4): Prepared on 3.0 mmol scale according to General Procedure B. The crude residue was purified by flash column chromatography (20% EtOAc/hexanes) to yield the product as an offwhite solid (0.58 g, 1.6 mmol, 53%). Analytical data:²² ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.89–7.72 (m, 7H), 7.48 (dd, J = 8.6 Hz, 1H), 7.20–7.11 (m, 2H), 4.26 (q, J = 7.2 Hz, 1H), 3.92 (s, 3H), 1.75 (d, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 171.1, 162.0, 158.0, 134.8, 134.1, 133.6, 129.6, 129.1, 129.1, 127.7, 126.5, 126.0, 124.0, 119.3, 105.8, 55.5, 43.1, 19.1 ppm; **R**_f (8:2 hexanes/EtOAc; UV/KMnO4): 0.21.

1,3-Dioxoisoindolin-2-yl methyl succinate (S28): Prepared on 5.0 mmol scale according to General Procedure B. The crude residue was purified by flash column chromatography (30% EtOAc/hexanes) to yield the product as a white solid (0.20 g, 0.72 mmol, 14%). ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.91–7.86 (m, 2H), 7.81–7.77 (m, 2H), 3.74 (s, 3H), 3.02 (td, *J* = 7.0, 0.6 Hz, 2H), 2.79 (t, *J* = 6.9 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 171.6, 168.8, 161.9, 134.9, 129.0, 124.2, 52.3, 28.8, 26.5 ppm; HRMS *m/z* (DART): calcd for C₁₃H₁₅N₂O₆ (M+NH₄): 295.0925; found 295.0920; IR (neat): 2939, 2853, 1813, 1784, 1730, 1466, 1441, 1399, 1376, 1355, 1236, 1211, 1183, 1129, 1081, 1054, 978, 879, 785, 967 cm⁻¹; m.p.: 104–108 °C; **R**_f (7:3 hexanes/EtOAc; UV/KMnO₄): 0.43.

1,3-Dioxoisoindolin-2-yl 2-(thiophen-2-yl)acetate (S29): Prepared on 3.0 mmol scale. The crude residue was purified by flash column chromatography (gradient of 10–30% EtOAc/hexanes) to yield the product as an off-white solid (0.69 g, 2.4 mmol, 80%). Analytical data:²³ ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.88–7.82 (m, 2H), 7.79–7.72 (m, 2H), 7.27–7.18 (m, 1H), 7.10–7.04 (m, 1H), 7.00–6.13 (m, 1H), 4.21–4.15 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 166.8, 161.9, 135.0, 132.1, 129.0, 128.0, 127.3, 125.9, 124.2, 32.2 ppm; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.19.

1,3-Dioxoisoindolin-2-yl butyrate (S30): Prepared on 5.0 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as a colourless oil (0.77 g, 3.3 mmol, 66%). Analytical data:²⁴ ¹**H NMR** (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.92–7.84 (m, 2H), 7.82–7.73 (m, 2H), 2.70–2.59 (m, 2H), 1.89–1.75 (m, 2H), 1.13–1.02 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 169.6, 162.1, 134.9, 129.1, 124.1, 32.9, 18.5, 13.5 ppm; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.27.

1,3-Dioxoisoindolin-2-yl 2-(3,4-difluorophenyl)acetate (S31): Prepared on 4.0-mmol scale according to General Procedure B. The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield the product as a white solid (0.72 g, 2.3 mmol, 58%). ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.95–7.72 (m, 4H), 7.29–7.04 (m, 3H), 3.95 (s, 2H) ppm; ¹⁹F NMR (376 MHz, CDCl₃, 298 K): $\delta_{\rm F}$ –136.7––136.9 (m), –138.7––138.9 (m) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 167.2 (d, *J* = 1.4 Hz), 161.8, 151.8–141.8 (m, 2C), 135.0, 128.9, 128.4 (dd, *J* = 6.0, 4.0 Hz), 125.6 (dd, *J* = 6.3, 3.7 Hz), 124.2, 118.6 (d, *J* = 17.9 Hz), 117.7 (d, *J* = 17.1 Hz), 36.9 (d, *J* = 1.5 Hz) ppm; HRMS *m/z* (DART): calcd for C₁₆H₁₀NO₄F (M+H): 318.0572; found 318.0577; IR (neat): 3515, 3061, 2936, 1814, 1783, 1731, 1608, 1515, 1469, 1439, 1360, 1339, 1281, 1183, 1139, 1117, 1066, 966, 899, 867, 830, 760, 693 cm⁻¹; m.p.: 105–109 °C; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.16.

1,3-Dioxoisoindolin-2-yl isobutyrate (S32): The ester was prepared according to General Procedure B on 10 mmol scale. The crude residue was purified by flash column chromatography (15% EtOAc/hexanes) to yield the product as an off-white solid (1.7 g, 7.3 mmol, 73%). Analytical data:¹⁴ ¹**H NMR** (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.90–7.85 (m, 2H), 7.80–7.75 (m, 2H), 2.95 (hept, J = 7.0 Hz, 1H), 1.70 (d, J = 7.0 Hz, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃,

298 K): δ_C 173.2, 162.1, 134.8, 129.1, 124.0, 31.9, 19.0 ppm; R_f (9:1 hexanes/EtOAc; UV/KMnO4): 0.24.

E.2. Preparation of noncommercial carboxylic acids

(*tert*-Butoxycarbonyl)-*L*-proline (S33): To a 50-mL flask with a stir bar were added L-proline (0.58 g, 5.0 mmol, 1.0 equiv), sodium bicarbonate (0.50 g, 6.0 mmol, 1.2 equiv), THF (15 mL, 0.30 M), and Boc₂O (1.3 mL, 5.5 mmol, 1.1 equiv). The reaction was stirred at r.t. for 16 h. The reaction was poured into H₂O (100 mL) and the solution was acidified with 1 M HCl to pH 2–3, and extracted with EtOAc (\times 3). The organic fractions were combined, washed with brine (\times 1), dried over MgSO₄, and concentrated. The concentrate was triturated with hexanes to yield the product as a white solid (0.96 g, 4.5 mmol, 90%). The NMR data was consistent with literature reports.²⁵

1-(Dimethylcarbamoyl)piperidine-4-carboxylic acid (S34): To a 100-mL flask with a stir bar were added isonipecotic acid (1.3 g, 10 mmol, 1.0 equiv), sodium hydroxide (1.0 g, 25 mmol, 2.5 equiv), Et₂O (10 mL), and H₂O (10 mL), and the solution was stirred at r.t. until all solids were dissolved (ca. 15 min). The solution was cooled to 5 °C and dimethylcarbamoyl chloride (1.0 mL, 11 mmol, 1.1 equiv) was added. The reaction was warmed to r.t. and stirred for 16 h. The reaction was concentrated, diluted with H₂O (20 mL), and acidified to pH 2–3 with 1 M HCl. The solution was extracted with EtOAc (×3) and the organic fractions were combined, washed with brine (×1), and dried over MgSO₄ to yield the product as a white solid (0.54 g, 2.7 mmol, 27%). Analytical data:²⁶ ¹**H NMR** (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 3.70–3.53 (m, 2H), 2.93–2.73 (m, 8H), 2.54–2.41 (m, 1H), 2.00–1.84 (m, 2H), 1.79–1.64 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 179.3, 165.3, 46.4, 41.2, 38.7, 27.9 ppm.

1-(*tert***-Butoxycarbonyl)piperidine-4-carboxylic acid (S35):** To a 100-mL flask with a stir bar were added isonipecotic acid (2.6 g, 20 mmol, 1.0 equiv), sodium hydroxide (0.96 g, 24 mmol, 1.2 equiv), H₂O (20 mL), and *t*-BuOH (20 mL) (total reaction solvent = 40 mL of a 1:1 H₂O/*t*-BuOH mixture, 0.40 M), and the solution was cooled to 0 °C. Boc₂O (5.1 mL, 22 mmol, 1.1 equiv) was added portionwise over 30 min, and the reaction was warmed to r.t. and stirred for 16 h. The reaction was concentrated under reduced pressure and the concentrate was diluted with H₂O (20 mL), acidified with 1 M HCl to pH 5–6, and extracted with EtOAc (×3). The organic fractions were combined, washed with brine (×1), dried over MgSO₄, and concentrated to yield the product as a white solid (4.5 g, 20 mmol, 98%). The NMR data was consistent with literature reports.²⁷

1-Benzoylpiperidine-4-carboxylic acid (S36): To a 50-mL flask with a stir bar were added isonipecotic acid (1.3 g, 10 mmol, 1.0 equiv), potassium carbonate (4.1 g, 30 mmol, 3.0 equiv), THF (10 mL), and H₂O (10 mL), and the solution was cooled to 0 °C. Benzoyl chloride (1.2 mL, 10 mmol, 1.0 equiv) was added and the solution was warmed to r.t. and stirred for 16 h. The reaction was diluted with H₂O (50 mL) and the aqueous layer was washed with EtOAc (×1), and the organic layer was discarded. The aqueous layer was acidified with 1 M HCl to pH 2–3 and the solution was extracted with EtOAc (×3). The organic fractions were combined, washed with brine (×1), dried over MgSO₄, and concentrated to yield the product as a white solid (2.1 g, 9.0 mmol, 90%). The NMR data was consistent with literature reports.²⁸

(*R*)-4-((3R,5*S*,7*R*,8*R*,9*S*,10*S*,12*S*,13*R*,14*S*,17*R*)-3,7,12-Trimethoxy-10,13dimethylhexadecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl)pentanoic acid (S37): To a flame-dried 250-mL flask with a stir bar were added cholic acid (4.1 g, 10 mmol, 1.0 equiv) and THF (100 mL, 0.10 M), and the solution was cooled to 0 °C. Sodium hydride (2.0 g of a 60% w/w dispersion in mineral oil, 50 mmol, 5.0 equiv) was added portionwise over 30 min. Then, iodomethane (2.5 mL, 40 mmol, 4.0 equiv) was added dropwise over 15 min. The reaction was allowed to warm to r.t. and was stirred for 72 h. The reaction was quenched with 1 M HCl and extracted with EtOAc (×3). The organic fractions were combined, washed with H₂O (×1) and brine (×1), dried over MgSO₄, and concentrated. The crude residue was purified by flash column chromatography (gradient of 20–80% EtOAc/hexanes) to yield the product as a white solid (3.7 g, 8.2 mmol, 82%). Analytical data:^{29 1}H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 3.42–3.30 (m, 4H), 3.25 (s, 3H), 3.21 (s, 3H), 3.17–3.11 (m, 1H), 3.06–2.94 (m, 1H), 2.46–2.35 (m, 1H), 2.31– 0.81 (m, 29H), 0.65 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 179.7, 82.1, 80.9, 77.1, 56.0, 55.8, 55.5, 46.4, 46.3, 42.8, 42.1, 39.8, 35.4, 35.2, 35.1, 34.6, 31.0, 30.9, 28.1, 27.9, 27.5, 26.8, 23.3, 23.0, 22.1, 17.5, 12.6 ppm; **R**_f (7:3 hexanes/EtOAc; KMnO4): 0.21.

2-(1-(*tert***-Butyldimethylsilyl)-1H-indol-3-yl)acetic acid (S38) (CAS: 480437-10-3):** To a 100-mL flask with a stir bar were added 3-indolylacetic acid (2.1 g, 12 mmol, 1.0 equiv), and DMF (40 mL, 0.30 M), and the solution was cooled to 0 °C. Sodium hydride (1.0 g, 25 mmol, 2.1 equiv) was added and the reaction was stirred at r.t. for 1 h. TBSCl (2.0 g, 13 mmol, 1.05 equiv) was added and the reaction was stirred at r.t. for 16 h. The reaction was diluted with H₂O (100 mL) and acidified to pH 2–3 with 1 M HCl. The solution was cooled to 0 °C and allowed to stand for 15 min. The precipitate was then collected in a fritted funnel, washed with pentane (×1), and dried under high vacuum for 4 h to yield the product as a red solid (3.0 g, 10 mmol,

83%). Analytical data:³⁰ ¹**H** NMR (500 MHz, DMSO- δ_6 , 298 K): δ_H 7.52–7.45 (m, 2H), 7.22 (s, 1H), 7.13–7.09 (m, 1H), 7.04 (t, *J* = 7.6 Hz, 1H), 3.65 (s, 2H), 0.86 (s, 9H), 0.57 (s, 6H) ppm; ¹³C NMR (125 MHz, DMSO- δ_6 , 298 K): δ_C 173.2, 141.0, 130.7, 130.2, 121.6, 119.5, 119.1, 113.9, 111.2, 31.1, 26.3, 19.3, -4.0 ppm.

4-Methoxy-4-oxobutanoic acid (S39) (CAS: 3878-55-5): To a flame-dried 100-mL roundbottom flask was added succinic anhydride (10 g, 100 mmol, 1.0 equiv) and MeOH (20 mL, 5.0 M). The reaction was sealed with a septum and was stirred at 65 °C for 16 h. The reaction was cooled to r.t. and concentrated. The concentrate was treated with pentane to induce precipitation. The precipitate was collected using a fritted funnel and was washed with pentane (×2) and dried under high vacuum to yield the product as a white solid (13 g, 98 mmol, 98%). Analytical data: ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 3.70 (s, 3H), 2.73–2.58 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 177.7, 172.6, 52.0, 28.9, 28.7 ppm.

2-(Thiophen-2-yl)acetic acid (S40): To a 100-mL flask with a stir bar were added 2thiophenylacetonitrile (0.95 mL, 8.0 mmol, 1.0 equiv), EtOH (16 mL), H₂O (16 mL), and potassium hydroxide (1.3 g, 24 mmol, 3.0 equiv), and the mixture was stirred at reflux for 3 h. The reaction was cooled to r.t. and acidified with 1 M HCl to pH 2–3. The reaction was extracted with DCM (×3) and the organic fractions were combined, washed with brine (×1), dried over MgSO₄, and concentrated to yield the product as a colourless oil (0.84 g, 5.9 mmol, 74%). ¹H **NMR** (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.69 (br s, 1H), 7.32–7.17 (m, 1H), 7.05–6.86 (m, 2H), 3.98 (s, 2H) ppm; ¹³C **NMR** (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 176.7, 134.2, 137.4, 137.1, 125.5, 35.2 ppm.

((*trans*-Bicyclo[4.1.0]heptan-1-yl)oxy)trimethylsilane: The TMS-protected cyclopropanol was prepared following General Procedure D (see Section F.2).

Step 1: **(Cyclohex-1-en-1-yloxy)trimethylsilane (S41):** Performed using cyclohexanone (2.1 mL, 20 mmol, 1.0 equiv), TMSCl (3.3 mL, 26 mmol, 1.3 equiv), sodium iodide (4.2 g, 28 mmol, 1.4 equiv), triethylamine (4.2 mL, 30 mmol, 1.5 equiv), and MeCN (80 mL, 0.25 M). The crude material was a colourless oil (3.2 g, 19 mmol, 95%). ¹**H NMR** (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 4.91–4.80 (m, 1H), 2.05–1.91 (m, 4H), 1.72–1.59 (m, 2H), 1.56–1.44 (m, 2H), 0.18 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 150.4, 104.4, 30.1, 24.0, 23.3, 24.5, 0.5 ppm; **R**_f (hexanes; KMnO₄/*p*-anisaldehyde): 0.44.

Step 2: ((trans-Bicyclo[4.1.0]heptan-1-yl)oxy)trimethylsilane (S42):³¹ Performed using S41 (0.60 g, 3.5 mmol, 1.0 equiv), DCM (3.5 mL, 1.0 M), diiodomethane (0.43 mL, 5.3 mmol, 1.5

equiv), and diethylzinc (5.3 mL of a 1.0 M solution in hexanes, 5.3 mmol, 1.5 equiv). The reaction was stopped after 30 min. The crude residue was a colourless oil (0.58 g, 3.2 mmol, 91%). S42 was used in the next step without further purification. R_f (5% EtOAc/hexanes; *p*-anisaldehyde): 0.26.

Step 3: Hept-6-enoic acid (S43):³² To a 20-mL scintillation vial with a stir bar was transferred S45 (0.58 g, 3.2 mmol, 1.0 equiv). AcOH (16 mL, 0.20 M) was added, then (diacetoxyiodo)benzene (1.1 g, 3.5 mmol, 1.1 equiv) was added at once. The reaction was stirred at r.t. for 16 h. The reaction was quenched with H₂O and extracted with DCM (×3), and the organic fractions were combined, washed with H₂O (×1) and brine (×1), dried over MgSO₄, and concentrated. The crude residue was purified by flash column chromatography (gradient of 0– 30% EtOAc/hexanes) to yield the product as a colourless oil (0.32 g, 2.5 mmol, 78%). Analytical data:³³ ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 10.79 (br s, 1H), 5.86–5.71 (m, 1H), 5.07–4.91 (m, 2H), 2.36 (td, J = 7.6, 0.7 Hz, 2H), 2.14–2.04 (m, 2H), 1.74–1.60 (m, 2H), 1.52–1.40 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 169.6, 138.4, 114.9, 34.0, 33.5, 28.4, 24.2 ppm; **R**_f (7:3 hexanes/EtOAc; KMnO₄): 0.69.

F. Preparation of cyclopropanol starting materials

F.1. Preparation of cyclopropanols via Kulinkovich Reaction

General Procedure C: Kulinkovich Reaction³⁴

$$\mathbb{R}^{1} \xrightarrow{\text{OR}^{2}} \mathbb{R}^{2} \xrightarrow{\text{EtMgBr } (2-2.2 \text{ equiv})}{\text{Ti}(Oi-\text{Pr})_{4} (0.1-0.2 \text{ equiv})} \xrightarrow{\text{HO}}_{R^{1}} \xrightarrow{\text{HO}}$$

(1 equiv)

To a flame-dried round-bottom flask with a stir bar was added THF, and the solution was cooled to 0 °C. To the flask were added the ester (1.0 equiv) and titanium(IV) isopropoxide (0.10–0.20 equiv) and the solution was stirred at 0 °C for 10 min. Ethylmagnesium bromide (2.0–2.2 equiv of a solution in THF) was added in 6 portions over 1–2 h. The reaction was then quenched with 10% H₂SO₄ and extracted with Et₂O (×3). The organic fractions were combined, washed with H₂O (×1) and brine (×1), dried over MgSO₄, filtered, and concentrated. The crude residue was purified by flash column chromatography to yield the desired cyclopropanol.

Ethylmagnesium bromide (typical procedure): To a flame-dried 1-L teardrop-shaped flask with a stir bar was added magnesium(0) turnings (36 g, 1.5 mol, 1.25 equiv) and the flask was flame-dried and cooled under vacuum. The flask was backfilled with N₂, THF (500 mL) was added and the magnesium turnings were activated with 1,2-dibromoethane (ca. 0.50 mL, 5.8 mmol, 0.0048 equiv). The flask was equipped with a reflux condenser and two syringes of bromoethane (2×45 mL; 90 mL total, 1.2 mol, 1.0 equiv) were inserted. Bromoethane was added dropwise until initiation occurred, then was added portionwise over 4 h. The solution was kept at r.t. using a cooling bath as necessary. After all the bromoethane was added the solution was diluted with THF (400 mL; total solution volume = 900 mL) and the solution was stirred for an additional 2 h at r.t. The solution was allowed to stand at r.t. for 4 h. The solution was titrated with I₂ using Knochel's protocol³⁵ and was found to have a concentration of 1.1 M (0.99 mol, 83%).

HO Ph

1-Phenylcyclopropanol (1a): The product was prepared according to General Procedure C with the following details: methyl benzoate (7.5 mL, 60 mmol, 1.0 equiv), THF (60 mL, 1.0 M), titanium(IV) isopropoxide (3.6 mL, 12 mmol, 0.20 equiv), and ethylmagnesium bromide (220 mL of a 0.60 M solution in THF, 132 mmol, 2.2 equiv) added portionwise over 1 h. The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield **1a** as a colourless oil (4.2 g, 31 mmol, 52%). **1a** was stored at –20 °C. ¹H **NMR** (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.44–7.21 (m, 5H), 2.53 (br s, 1H), 1.34–1.26 (m, 2H), 1.13–1.04 (m, 2H) ppm; ¹³C **NMR** (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 144.4, 128.5, 126.5, 124.6, 56.8, 18.0 ppm.

MeO

1-(4-Methoxyphenyl)cyclopropan-1-ol (S44): Prepared according to general procedure C with the following details: ethyl 4-methoxybenzoate (3.3 mL, 20 mmol, 1.0 equiv), THF (20 mL, 1.0 M), titanium(IV) isopropoxide (8.9 mL, 30 mmol, 3.0 equiv), and ethylmagnesium bromide (130 mL of a 0.46 M solution in THF, 60 mmol, 3.0 equiv) added portionwise over 1 h. The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield the product as a colourless oil, which was inseparable from 1-(4-methoxyphenyl)propan-1-ol (ratio of S44:side-product = 2.1:1; yield of S44 = 1.4 g, 8.5 mmol, 43%). Analytical data:^{36 1}H NMR (500 MHz, CDCl₃, 298 K): δ_H 7.33–7.22 (m, 2H), 6.91–6.84 (m, 2H), 3.80 (s, 3H), 2.30 (br s, 1H), 1.23–1.15 (m, 2H), 1.01–0.94 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): δ_C 158.6, 136.3, 126.5, 113.9, 56.8, 55.5, 16.9 ppm.

1-(4-Fluorophenyl)cyclopropan-1-ol (S45): Prepared according to General Procedure C with the following details: ethyl 4-fluorobenzoate (1.5 mL, 10 mmol, 1.0 equiv), THF (10 mL, 1.0 M), titanium(IV) isopropoxide (4.4 mL, 15 mmol, 1.5 equiv), and ethylmagnesium bromide (65 mL of a 0.46 M solution in THF, 30 mmol, 3.0 equiv) added portionwise over 1 h. The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield the product as a colourless oil, which was inseparable from side-product 1-(4-fluorophenyl)propan-1-ol (ratio of S45:side product = 1.6:1; yield of S45 = 0.63 g, 4.1 mmol, 41%). Analytical data: ¹H NMR (400 MHz, CDCl₃, 298 K): δ_H 7.36–7.22 (m, 2H), 7.08–6.95 (m, 2H), 2.33 (br s, 1H), 1.28–1.19 (m, 2H), 1.02–0.96 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): δ_C 160.8 (d, *J* = 51 Hz), 140.0, 126.6 (d, *J* = 8.0 Hz), 115.2 (d, *J* = 7.6 Hz), 56.5, 17.5 ppm; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.16.

HO Bn

1-Benzylcyclopropanol (S46): The product was prepared according to General Procedure C with the following details: methyl 2-phenylacetate (2.1 mL, 15 mmol, 1.0 equiv), THF (50 mL, 0.30 M), titanium(IV) isopropoxide (0.44 mL, 1.5 mmol, 0.10 equiv), and ethylmagnesium bromide (28 mL of a 1.2 mL solution in THF, 33 mmol, 2.2 equiv) added portionwise over 1 h. The crude residue was purified by flash column chromatography (9:1 hexanes/EtOAc) to yield the product as a colourless oil (1.8 g, 12 mmol, 80%). Analytical data:³⁷ ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.43–7.23 (m, 5H), 2.92 (s, 2H), 1.99 (br s, 1H), 0.88–0.83 (m, 2H), 0.71–0.65 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 138.6, 129.4, 128.5, 126.7, 56.2, 44.1, 13.3 ppm.

HO n-Pent

1-Pentylcyclopropan-1-ol (S47): The product was prepared according to General Procedure C with the following details: ethyl hexanoate (5.0 mL, 30 mmol, 1.0 equiv), THF (30 mL, 1.0 M), titanium(IV) isopropoxide (0.89 mL, 3.0 mmol, 0.10 equiv), and ethylmagnesium bromide (60 mL of a 1.0 M solution in THF, 60 mmol, 2.0 equiv) added portionwise over 2 h. The crude residue was purified by flash column chromatography (gradient of 0–10% EtOAc/hexanes) to

yield the product as a colourless oil (2.2 g, 17 mmol, 57%). Analytical data:³⁸ ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 2.16–1.68 (br m, 1H), 1.63–1.23 (m, 8H), 1.03–0.83 (m, 3H), 0.81–0.67 (m, 2H), 0.55–0.38 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 56.0, 38.4, 32.0, 25.7, 22.8, 14.2, 13.6 ppm; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.55.

1-Cyclohexylcyclopropan-1-ol (S48): The product was prepared according to General Procedure C with the following details: methyl cyclohexanoate (2.1 mL, 15 mmol, 1.0 equiv), THF (30 mL, 0.50 M), titanium(IV) isopropoxide (0.44 mL, 1.5 mmol, 0.10 equiv), and ethylmagnesium bromide (48 mL of a 0.62 M solution in THF, 30 mmol, 2.0 equiv) added portionwise over 2 h. The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as a colourless oil (0.94 g, 6.7 mmol, 45%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 1.87–1.58 (m, 7H), 1.31–1.08 (m, 4H), 1.00–0.97 (m, 1H), 1.73–0.64 (m, 2H), 0.47–0.39 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 59.7, 45.1, 29.0, 26.6, 26.6, 12.8 ppm.

F.2. Preparation of cyclopropanols via Simmons-Smith

General Procedure D: Simmons-Smith Sequence

Step 1: To an appropriate-sized round-bottom flask with a stir bar was added sodium iodide (1.4 equiv) and the flask was flame-dried and cooled under vacuum. The flask was backfilled with N_2 and MeCN (0.25 M) was added, followed by the desired ketone (1.0 equiv). The solution was cooled to 0 °C and TMSCl (1.3 equiv) was added, followed by triethylamine (1.5 equiv). The reaction was stirred at 0 °C for 1 h under N_2 . The reaction was concentrated and the concentrate was extracted with hexanes (×3) (Et₂O was used for more polar products). The organic extracts were combined and concentrated to yield the crude silyl enol ether.

Step 2: To an appropriate-sized flame-dried round-bottom flask with a stir bar was transferred the crude silyl enol ether (1.0 equiv). The flask was evacuated and backfilled with N₂ (×3) and DCM (1.0 M) was added. The solution was cooled to 0 °C. Diiodomethane (1.2–4.0 equiv) was added. Diethylzinc (1.2–4.0 equiv of a 1.0 M stock solution in hexanes) was added dropwise over 10 min. The reaction was stirred at 0 °C for 1 h, then at r.t. until full conversion of the silyl enol ether was achieved as determined by TLC. The reaction was opened to air, quenched with sat. aq. NaHCO₃, and extracted with DCM (×3). The organic fractions were combined, washed with H₂O (×1) and brine (×1), dried over MgSO₄, and concentrated to yield the crude trimethylsilyl cyclopropanol.

Step 3:³⁹ To an appropriate-sized round-bottom flask with a stir bar was transferred the crude trimethylsilyl cyclopropanol, and MeOH (0.50 M) was added. The solution was cooled to 0 °C and TMSCl (1 drop from a 1-mL syringe fitted with a 22-gauge needle) was added. The reaction

was stirred at 0 °C for 5 min. The reaction was concentrated and the concentrate was purified by flash column chromatography to yield the desired cyclopropanol.

1-(4-(1*H***-Pyrrol-1-yl)phenyl)ethan-1-one (S49):** To a 100-mL flask with a stir bar were added 4'-bromoacetophenone (3.0 g, 15 mmol, 1.0 equiv), copper(I) iodide (0.29 g, 1.5 mmol, 0.10 equiv), L-proline (0.35 g, 3.0 mmol, 0.20 equiv), cesium carbonate (7.5 g, 23 mmol, 1.5 equiv), and DMF (30 mL, 0.50 M), and the reaction mixture was stirred at 110 °C for 16 h. The reaction was cooled to r.t., quenched with sat. aq. NH₄Cl, and extracted with EtOAc (×3). The organic extracts were combined, washed with H₂O (×1) and brine (×1), dried over MgSO₄, and concentrated. The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as an off-white solid (0.90 g, 4.9 mmol, 33%). Analytical data:⁴⁰ ¹**H NMR** (400 MHz, CDCl₃, 298 K): δ_H 8.07–7.99 (m, 2H), 7.51–7.43 (m, 2H), 7.17 (t, *J* = 2.2 Hz, 2H), 6.39 (t, *J* = 2.2 Hz, 2H), 2.62 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): δ_C 196.9, 144.2, 134.2, 130.3, 119.5, 119.2, 111.8, 26.7 ppm; **R**_f (9:1 hexanes/EtOAc; UV): 0.25.

1-(4-(1*H***-Pyrrol-1-yl)phenyl)cyclopropan-1-ol:** The product was prepared following General Procedure D.

Step 1: 1-(4-(1-((Trimethylsilyl)oxy)vinyl)phenyl)-1*H*-pyrrole (S50): Performed using 1-(4-(1*H*-pyrrol-1-yl)phenyl)ethan-1-one (0.90 g, 4.9 mmol, 1.0 equiv), MeCN (20 mL, 0.25 M), TMSCl (0.81 mL, 6.4 mmol, 1.3 equiv), sodium iodide (1.0 g, 6.9 mmol, 1.4 equiv), and triethylamine (1.0 mL, 7.4 mmol, 1.5 equiv). The concentrate was extracted with Et₂O. The crude product was a brown oil, which was used in the next step without further purification (1.2 g, 4.7 mmol, 96% crude yield). \mathbf{R}_{f} (5% EtOAc/hexanes; UV/*p*-anisaldehyde): 0.73.

Step 2: **1-(4-(1-((Trimethylsilyl)oxy)cyclopropyl)phenyl)-1***H***-pyrrole (S51):** Performed using DCM (4.7 mL, 1.0 M), diiodomethane (0.90 mL, 11 mmol, 2.4 equiv), and diethylzinc (11 mL of a 1.0 M solution in hexanes, 11 mmol, 2.4 equiv). The reaction was stopped after 16 h. The crude material was used in the next step without further purification.

Step 3: **1-(4-(1***H***-Pyrrol-1-yl)phenyl)cyclopropan-1-ol (S52):** Performed using MeOH (9.4 mL, 0.50 M) and TMSCl (1 drop). The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as an off-white solid (0.23 g, 1.2 mmol, 24% over three steps). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.36 (app s, 4H), 7.08 (t, *J* = 1.8 Hz, 2H), 6.36–6.33 (m, 2H), 2.38 (br s, 1H), 1.32–1.27 (m, 2H), 1.09–1.04 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 141.9, 139.4, 125.8, 120.6, 119.5, 110.5, 56.5, 18.0 ppm; HRMS *m/z* (DART): calcd for C₁₃H₁₄NO (M+H): 200.1070; found: 200.1070; **IR** (neat): 3246 (br), 1614, 1524, 1326, 1256, 1233, 1069, 1016, 922, 870, 821, 725, 716 cm⁻¹; **m.p.:** 135–137 °C; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.17.

1-([1,1'-Biphenyl]-4-yl)cyclopropan-1-ol: The product was prepared following General Procedure D.

Step 1: ((1-([1,1'-Biphenyl]-4-yl)vinyl)oxy)trimethylsilane (S53): Performed using 4acetylbiphenyl (2.4 g, 12 mmol, 1.0 equiv), MeCN (48 mL, 0.25 M), TMSCl (2.0 mL, 16 mmol, 1.3 equiv), sodium iodide (2.5 g, 17 mmol, 1.4 equiv), and triethylamine (2.5 mL, 18 mmol, 1.5 equiv). The crude product was an orange solid, which was used in the next step without further purification (3.3 g, 12 mmol, 99% crude yield). \mathbf{R}_{f} (5% EtOAc/hexanes; UV): 0.56.

Step 2: **(1-([1,1'-Biphenyl]-4-yl)cyclopropoxy)trimethylsilane (S54):** Performed using DCM (12 mL, 1.0 M), diiodomethane (1.1 mL, 14 mmol, 1.2 equiv), and diethylzinc (14 mL of a 1.0 M solution in hexanes, 14 mmol, 1.2 equiv). The reaction was stopped after 4 h. The crude material was used in the next step without further purification.

Step 3: 1-([1,1'-Biphenyl]-4-yl)cyclopropan-1-ol (S55): Performed using MeOH (24 mL, 0.50 M) and TMSCl (1 drop). The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as an off-white solid, which was inseparable from starting material 4-acetylbiphenyl (ratio of S55:starting material = 7.1:1; yield of S55 = 1.4 g, 6.7 mmol, 56% over three steps). Analytical data:⁴¹ ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.65–7.52 (m, 4H), 7.51–7.30 (m, 5H), 1.60 (br s, 1H), 1.35–1.26 (m, 2H), 1.16–1.04 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 140.9, 128.9, 127.3, 127.2, 127.2, 127.2, 127.1, 125.0, 56.6, 18.2 ppm; **R**_f (9:1 hexanes/EtOAc; UV/KMnO4): 0.19.

1-(Naphthalen-1-yl)cyclopropan-1-ol: Prepared following General Procedure D.

Step 1: **Trimethyl((1-(naphthalen-1-yl)vinyl)oxy)silane (S56):** Performed using 1-acetylnaphthalene (1.8 mL, 12 mmol, 1.0 equiv), MeCN (48 mL, 0.25 M), TMSCl (2.0 mL, 16 mmol, 1.3 equiv), sodium iodide (2.5 g, 17 mmol, 1.4 equiv), and triethylamine (2.5 mL, 18 mmol, 1.5 equiv). The crude product was a yellow oil, which was used in the next step without further purification (2.9 g, 12 mmol, 99% crude yield). **R**_f (5% EtOAc/hexanes; UV): 0.71.

Step 2: **Trimethyl(1-(naphthalen-1-yl)cyclopropoxy)silane (S57):** Performed using DCM (12 mL, 1.0 M), diiodomethane (1.1 mL, 14 mmol, 1.2 equiv), and diethylzinc (14 mL of a 1.0 M solution in hexanes, 14 mmol, 1.2 equiv). The reaction was stopped after 4 h. The crude material was used in the next step without further purification.

Step 3: 1-(Naphthalen-1-yl)cyclopropan-1-ol (S58): Performed using MeOH (24 mL, 0.50 M) and TMSCl (1 drop). The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as a white solid (1.8 g, 9.8 mmol, 82%). Analytical data:⁴² ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.59 (d, *J* = 8.8 Hz, 1H), 7.93–7.76

(m, 2H), 7.64–7.48 (m, 3H), 7.45–7.37 (m, 1H), 2.55–2.31 (m, 1H), 1.45–1.30 (m, 2H), 1.17–1.01 (m, 2H) ppm; 13 C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 138.1, 134.2, 132.5, 129.0, 128.7, 126.4, 126.0, 125.8, 125.4, 125.3, 57.0, 13.9 ppm; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.39.

1-(Thiophen-2-yl)cyclopropan-1-ol: Prepared following General Procedure D.

Step 1: Trimethyl((1-(thiophen-2-yl)vinyl)oxy)silane (S59): Performed using 2acetylthiophene (1.3 mL, 12 mmol, 1.0 equiv), MeCN (48 mL, 0.25 M), TMSCl (1.8 mL, 16 mmol, 1.3 equiv), sodium iodide (2.5 g, 17 mmol, 1.4 equiv), and triethylamine (2.5 mL, 18 mmol, 1.5 equiv). The crude product was an orange oil, which was used in the next step without further purification (2.0 g, 10 mmol, 83% crude yield). \mathbf{R}_{f} (5% EtOAc/hexanes; UV/*p*anisaldehyde): 0.73.

Step 2: **Trimethyl(1-(thiophen-2-yl)cyclopropoxy)silane (S60):** Performed using DCM (10 mL, 1.0 M), diiodomethane (1.9 mL, 24 mmol, 2.4 equiv), and diethylzinc (24 mL of a 1.0 M solution in hexanes, 24 mmol, 2.4 equiv). The reaction was stirred for 2 h. The crude material was used in the next step without further purification.

Step 3: **1-(Thiophen-2-yl)cyclopropan-1-ol (S61):** Performed using MeOH (20 mL, 0.50 M) and TMSCl (1 drop). The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as a colourless oil (0.37 g, 2.6 mmol, 26% over three steps). ¹H NMR (500 MHz, CDCl₃, 298 K): 7.18 (dd, J = 5.0, 1.2 Hz, 1H), 6.93 (dd, J = 6.1, 3.4 Hz, 1H), 6.87 (dd, J = 3.6, 1.2 Hz, 1H), 2.61 (br s, 1H), 1.34–1.26 (m, 2H), 1.11–1.03 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): 149.4, 127.0, 124.0, 122.3, 54.5, 18.6 ppm; HRMS *m/z* (DART): calcd for C₇H₉OS (M+H): 141.0369; found 141.0369; **IR** (neat): 3302, 3091, 3006, 1713, 1443, 1413, 1354, 1290, 1245, 1212, 1038, 1010, 964, 856, 845, 923, 690 cm⁻¹; **R**_f (9:1 hexanes/EtOAc; KMnO₄/*p*-anisaldehyde): 0.31.

Ph

(E)-1-Styrylcyclopropan-1-ol: Prepared according to General Procedure D.

Step 1: **(E)-Trimethyl((4-phenylbuta-1,3-dien-2-yl)oxy)silane (S62):** Performed using 4-phenylbut-3-en-2-one (1.8 g, 12 mmol, 1.0 equiv), TMSCl (2.0 mL, 16 mmol, 1.3 equiv), sodium iodide (2.5 g, 17 mmol, 1.4 equiv), triethylamine (2.5 mL, 18 mmol, 1.5 equiv), and MeCN (48 mL, 0.25 M). The crude residue was an orange oil (2.7 g, 12 mmol, >99% crude yield). **R**_f (5% EtOAc/hexanes; UV/*p*-anisaldehyde): 0.70.

Step 2: (*E*)-Trimethyl(1-styrylcyclopropoxy)silane (S63): Performed using diiodomethane (2.1 mL, 26 mmol, 2.2 equiv), diethylzinc (26 mL of a 1.0 M solution in hexanes, 26 mmol, 2.2 equiv), and DCM (12 mL, 1.0 M). The crude residue was used in the next step without further purification.

Step 3: **(E)-1-Styrylcyclopropan-1-ol (S64):** Performed using MeOH (24 mL) and TMSCl (1 drop). The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as an orange oil (0.74 g, 4.6 mmol, 38% over three steps). The NMR data was consistent with literature reports.⁴¹ $\mathbf{R}_{\mathbf{f}}$ (9:1 hexanes/EtOAc; UV/KMnO₄): 0.23.

HO

6,6a-Dihydrocyclopropa[a]inden-1a(1H)-ol (1b): Prepared following General Procedure D.

Step 1: ((1*H*-Inden-3-yl)oxy)trimethylsilane (S65): Performed using indanone (1.3 g, 10 mmol, 1.0 equiv), TMSCl (1.6 mL, 13 mmol, 1.3 equiv), sodium iodide (2.1 g, 14 mmol, 1.4 equiv), triethylamine (2.1 mL, 15 mmol, 1.5 equiv), and MeCN (40 mL, 0.25 M). The crude residue was used in the next step without further purification (1.9 g, 9.3 mmol, 93% crude yield). \mathbf{R}_{f} (5% EtOAc/hexanes; UV/KMnO₄): 0.69.

Step 2: ((trans-6,6a-Dihydrocyclopropa[a]inden-1a(1H)-yl)oxy)trimethylsilane (S66): Performed using diiodomethane (0.89 mL, 11 mmol, 1.2 equiv), diethylzinc (11 mL of a 1.0 M solution in hexanes, 11 mmol, 1.2 equiv), and DCM (9.3 mL, 1.0 M). The crude residue was used in the next step without further purification.

Step 3: **6,6a-Dihydrocyclopropa**[*a*]**inden-1a**(1*H*)**-ol** (1**b**): Prepared using MeOH (19 mL, 0.50 M) and TMSCl (1 drop). The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield 1**b** as a colourless oil (0.67 g, 4.6 mmol, 46% over three steps). ¹**H NMR** (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.49–7.43 (m, 1H), 7.26–7.20 (m, 1H), 7.20–7.10 (m, 2H), 3.21 (dd, J = 17.2, 6.5 Hz, 1H), 2.76 (br s, 1H), 2.68 (d, J = 17.2 Hz, 1H), 2.03–1.96 (m, 1H), 1.54 (dd, J = 9.4, 5.1 Hz, 1H), 0.46 (t, J = 4.8 Hz, 1H) ppm; ¹³**C NMR** (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 146.0, 139.9, 126.7, 126.3, 125.5, 122.0, 67.6, 34.4, 24.9, 23.2 ppm; **HRMS** *m*/*z* (DART): calcd for C₁₀H₁₀O (M+H): 147.0804; found 147.0809; **IR** (neat): 3275 (br), 3068, 2910, 2838, 1674, 1602, 1477, 1436, 1334, 1284, 1233, 1213, 1184, 1074, 1049, 1023, 903, 834, 756, 721, 697 cm⁻¹; **R**f (9:1 hexanes/EtOAc; UV/KMnO4): 0.26.

F.3. Preparation of TMS-protected 1-benzylcycopropanol

(1-Benzylcyclopropoxy)trimethylsilane (S67): To a 50-mL flask with a stir bar were added 1benzylcyclopropanol (0.74 g, 5.0 mmol, 1.0 equiv) and DMF (10 mL, 0.50 M), and the solution was cooled to 0 °C. Imidazole (0.41 g, 6.0 mmol, 1.2 equiv) and TMSCl (0.76 mL, 6.0 mmol, 1.2 equiv) were added. The reaction was warmed to r.t. and stirred for 16 h. The solution was extracted with pentane (×2) and the organic layers were combined, dried over MgSO₄, and concentrated. The crude residue was a colourless oil which was used without further purification (0.63 g, 2.9 mmol, 58% crude yield). $\mathbf{R}_{\mathbf{f}}$ (8:2 hexanes/EtOAc): 0.88.

G. Preparation of starting materials for malabaricone B intermediate

G.1. Preparation of NHPI ester starting material

Diethyl octanedioate (S68): To a 250-mL flask with a stir bar were added suberic acid (5.2 g, 30 mmol, 1.0 equiv), EtOH (75 mL, 0.40 M), and conc. sulfuric acid (80 μ L, 1.5 mmol, 0.050 equiv), and the reaction was stirred at 80 °C for 4 h. The reaction was cooled to r.t. and concentrated. The concentrate was dissolved in EtOAc (150 mL), and the organic fraction was washed with sat. aq. NaHCO₃ (×1), water (×1), and brine (×1), dried over MgSO₄, and concentrated to yield the product as a colourless oil (6.0 g, 26 mmol, 87%). ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 4.17–4.05 (m, 4H), 2.31–2.22 (m, 4H), 1.69–1.54 (m, 4H), 1.38–1.28 (m, 4H), 1.27–1.20 (m, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 173.9, 60.3, 34.4, 28.9, 24.9, 14.4 ppm; **R**_f (8:2 hexanes/EtOAc; KMnO₄): 0.66.

8-Ethoxy-8-oxooctanoic acid (S69): To a 100-mL flask with a stir bar were added EtOH (40 mL, 0.50 M) and potassium hydroxide (1.1 g, 20 mmol, 1.0 equiv), and the reaction was stirred until all solid was dissolved. **S68** (4.7 mL, 20 mmol, 1.0 equiv) was added and the reaction was stirred at 50 °C for 16 h. The reaction was cooled to r.t., quenched with 1 M HCl (50 mL), and extracted with EtOAc (×3), and the organic fractions were combined, washed with H₂O (×3) and brine (×1), dried over MgSO₄, and concentrated. The crude residue was purified by flash column chromatography (gradient of 20–40% EtOAc/hexanes) to yield **S69** as a colourless oil (2.1 g, 10.3 mmol, 52%). ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 10.4 (br s, 1H), 4.31–3.97 (m, 2H), 2.42–2.20 (m, 4H), 1.71–1.53 (m, 4H), 1.43–1.28 (m, 4H), 1.28–1.14 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 180.0, 174.0, 60.4, 34.4, 34.1, 28.8, 28.8, 24.8, 24.6, 14.3 ppm; **R**_f (8:2 hexanes/EtOAc; KMnO₄): 0.17.

1-(1,3-Dioxoisoindolin-2-yl) 8-ethyl octanedioate (S70): Prepared according to General Procedure B on 8.0-mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield the product as a colourless oil (2.6 g, 7.5 mmol, 94%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.92–7.85 (m, 2H), 7.81–7.75 (m, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 2.66 (t, *J* = 7.5 Hz, 2H), 2.31 (t, *J* = 7.5 Hz, 2H), 1.79 (pent, *J* = 7.4 Hz, 2H), 1.66 (pent, *J* = 6.0 Hz, 2H), 1.51–1.34 (m, 4H), 1.25 (td, *J* = 7.0, 0.5 Hz, 3H) ppm; ¹³C NMR (125 MHz CDCl₃, 298 K): $\delta_{\rm C}$ 173.8, 169.7, 162.1, 134.9, 129.1, 124.1, 60.4, 34.4, 31.0, 28.7, 28.6, 24.8, 24.6, 14.4 ppm; HRMS *m/z* (DART): calcd for C₁₈H₂₂NO₆ (M+H): 348.1442; found: 348.1450; **IR** (neat): 2984, 2937, 2864, 1816, 1788, 1734, 1467, 1366, 1185, 1137, 1081, 1062, 966, 877, 696 cm⁻¹; **R**_f (7:3 hexanes/EtOAc; UV/KMnO4): 0.52.

Ethyl 7-(4-methoxyphenyl)heptanoate (S71):⁴³ To a flame-dried 250-mL flask with a stir bar were added NiCl₂(dme) (0.11 g, 0.50 mmol, 0.20 equiv), dtbbpy (0.27 g, 1.0 mmol, 0.40 equiv), DMF (36 mL), and **S70** (0.87 g in 5.0 mL of DMF, 2.5 mmol, 1.0 equiv), and the solution was stirred at r.t. for 2 min under N₂. (4-Methoxyphenyl)zinc(II) chloride⁴³ (27 mL of a 0.28 M solution in THF, 7.5 mmol, 3.0 equiv) (total reaction volume = 68 mL of a 3:2 DMF/THF mixture, 0.037 M) was added down the side of the flask. The reaction was stirred at r.t. for 2 h under N₂. The reaction was quenched with 1 M HCl and extracted with EtOAc (×3). The organic fractions were combined, washed with H₂O (×1) and brine (×1), dried over MgSO₄, and concentrated. The crude residue was purified by flash column chromatography (gradient of 0–100% PhMe/hexanes) and the fractions containing product were collected and concentrated. **S71** was used in the next step without further purification (ca. 0.55 g, 2.1 mmol, 84% crude yield). **R**_f (20% PhMe/hexanes; UV/KMnO₄): 0.21.

7-(4-Methoxyphenyl)heptanoic acid (S72): To a 50-mL flask with a stir bar were added **S71** (ca. 2.1 mmol, 1.0 equiv), lithium hydroxide (0.24 g, 10 mmol, 4.8 equiv), THF (10 mL), and H₂O (10 mL), and the reaction was stirred at 60 °C for 4 h. The reaction was cooled to r.t. and acidified with 1 M HCl to pH 2–3. The solution was extracted with Et₂O (×3) and the organic fractions were washed with H₂O (×1) and brine (×1), dried over MgSO₄, and concentrated. The crude residue was purified by flash column chromatography (gradient of 10–50% EtOAc/hexanes) and the fractions containing product were combined and concentrated (the sample contained some remaining homodimer side-product 4,4'-dimethoxy-1,1'-biphenyl from the synthesis of **S71**). The material was used in the next step without further purification (ca. 0.33 g, 0.89 mmol, 42% crude yield). **R**_f (9:1 hexanes/EtOAc): 0.06.

1,3-Dioxoisoindolin-2-yl 7-(4-methoxyphenyl)heptanoate (S73): The product was prepared according to General Procedure B on 0.89 mmol scale. The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as a white solid (0.23 g, 0.60 mmol, 24% over three steps). ¹H NMR (7.92–7.85 (m, 2H), 7.82–7.75 (m, 2H), 7.13–7.05 (m, 2H), 6.85–6.79 (m, 2H), 3.79 (s, 3H), 2.65 (t, J = 7.5 Hz, 2H), 2.56 (t, J = 7.6 Hz, 2H), 1.82–1.74 (m, 2H), 1.66–1.57 (m, 2H), 1.52–1.43 (m, 2H), 1.42–1.34 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 169.8, 162.2, 157.8, 134.9, 134.8, 129.4, 129.1, 124.1, 113.8, 55.4, 35.0, 31.5, 31.1, 28.8, 28.8, 24.8 ppm; HRMS *m/z* (DART): calcd for C₂₂H₂₄NO₅ (M+H): 382.1649; found: 382.1655; **IR** (neat): 2932, 2842, 1811, 1784, 1734, 1614, 1513, 1466, 1357, 1237, 1181, 1091, 1067, 1049, 1033, 963, 875, 819, 696 cm⁻¹; **m.p.:** 86–87 °C; **R**_f (8:2 hexanes/EtOAc; UV/KMnO₄): 0.26.

1-(2,6-Dimethoxyphenyl)ethan-1-one (S74):⁴⁴ To a flame-dried 250-mL two-neck flask with a stir bar and reflux condenser were added Et₂O (30 mL, 0.50 M) and *n*-butyllithium (9.4 mL of a 1.6 M solution in hexanes, 15 mmol). 1,3-Dimethoxybenzene (2.0 mL, 15 mmol, 1.0 equiv) was added dropwise. The solution was heated at reflux for 2 h, then was cooled to r.t. Under inert atmosphere, the solution was poured into a 500-mL flask containing EtOAc (200 mL, ca. 140 equiv) and a stir bar. The reaction was opened to air and the solution was washed with H₂O (×1) and brine (×1), dried over MgSO₄, and concentrated. The crude residue was purified by flash column chromatography (gradient of 0–10% EtOAc/hexanes) to yield the product as a colourless oil (0.35 g, 1.9 mmol, 13%). Analytical data:⁴⁵ ¹**H NMR** (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.26 (t, *J* = 8.4 Hz, 1H), 6.55 (s, *J* = 8.4 Hz, 2H), 3.80 (s, 6H), 2.48 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 203.0, 156.9, 130.8, 120.7, 104.1, 56.0, 32.5 ppm; **R**_f (9:1 hexanes/EtOAc; UV/KMnO₄): 0.16.

1-(2,6-Dimethoxyphenyl)cyclopropan-1-ol: The product was prepared according to General Procedure D.

Step 1: **((1-(2,6-Dimethoxyphenyl)vinyl)oxy)trimethylsilane (S75):** Prepared using 1-(2,6-dimethoxyphenyl)ethan-1-one (0.35 g, 1.9 mmol, 1.0 equiv), MeCN (10 mL, 0.19 M), sodium iodide (0.40 g, 2.7 mmol, 1.4 equiv), TMSCl (0.32 mL, 2.5 mmol, 1.3 equiv), and triethylamine (0.40 mL, 2.9 mmol, 1.5 equiv). The crude residue was used in the next step without further purification (0.21 g, 0.83 mmol, 44% crude yield).

Step 2: (1-(2,6-Dimethoxyphenyl)cyclopropoxy)trimethylsilane (S76): Prepared using DCM (1.0 mL, 0.83 M), diiodomethane (0.24 mL, 3.0 mmol, 3.6 equiv), and diethylzinc (3.0 mL of a 1.0 M solution in hexanes, 3.0 mmol, 3.6 equiv). The crude residue was used in the next step without further purification. $\mathbf{R}_{\mathbf{f}}$ (9:1 hexanes/EtOAc; UV/KMnO₄): 0.61.

Step 3: **1-(2,6-Dimethoxyphenyl)cyclopropan-1-ol (S77):** Prepared using MeOH (2.0 mL, 0.41 M) and TMSCl (1 drop). The product was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield the product as white-yellow solid (0.10 g, 0.51 mmol, 27% over three steps). The product was unstable on benchtop and was stored at -20 °C under N₂. Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.21 (t, J = 8.4 Hz, 1H), 6.56 (d, J = 8.4 Hz, 2H), 3.86 (s, 6H), 2.93 (s, 1H), 1.17–1.12 (m, 2H), 0.94–0.90 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): 159.5, 129.3, 118.3, 104.3, 56.0, 49.6, 15.4 ppm; HRMS *m/z* (DART): calcd for C₁₁H₁₈NO₃ (M+NH₄): 212.1281; found: 212.1279; **IR** (neat): 3527, 3110, 3006, 2950, 2843, 1588, 1472, 1457, 1435, 1360, 1246, 1218, 1098, 1072, 1017, 959, 926, 870, 776, 727 cm⁻¹; **m.p.:** 61–63 °C; **R**_f (9:1 hexanes/EtOAc): 0.14.

H. Mechanistic experiments

H.1. Loss of stereoinformation

Ph N Boc

An isolated sample of **3m** from a standard reaction (see Section D) was analyzed by chiral HPLC, and was determined to be racemic: **Chiral HPLC** (Chiralpak IG, 25% *i*-PrOH/hexanes, 0.40 mL/min, $\lambda = 245$ nm): t_R (major): 20.50 min; t_R (minor): 19.27 min; 0% ee.

	reak lable						
PDA Ch2 2	245nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	19.268	5171236	259289	0.000		M	
2	20.499	5177984	251784	0.000		M	
Total		10349220	511073				

H.2. 5-exo-trig cyclization

4-Cyclopentyl-1-phenylbutan-1-one (5): Prepared according to General Procedure A on 0.30 mmol scale. The crude sample was analyzed by GC-MS and ¹H NMR using dibromomethane (0.30 mmol, 1.0 equiv) as internal standard. The ring-closed:ring-opened selectivity was determined to be >20:1 by ¹H NMR and 96:1 (uncalibrated) by GC-MS, and the yield was determined to be 35% by ¹H NMR. The crude residue was purified by flash column chromatography (gradient of 0–5% EtOAc/hexanes) to yield **5** as a colourless oil. Analytical data:⁴⁶ ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.98–7.93 (m, 2H), 7.58–7.52 (m, 1H), 7.49–7.43 (m, 2H), 2.99–2.93 (m, 2H), 1.84–1.70 (m, 5H), 1.66–1.46 (m, 4H), 1.43–1.35 (m, 2H), 1.15–1.03 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 200.8, 137.2, 133.0, 128.7, 128.2, 40.1, 39.0, 36.0, 32.8, 25.3, 23.7 ppm; R_f (9:1 hexanes/EtOAc; UV/KMnO4): 0.74.

H.3. Polar (2e) β -carbon elimination

2-(Cyclohexylmethyl)-2,3-dihydro-1*H***-inden-1-one (3w):** Prepared according to General Procedure A on 0.20 mmol scale. The crude sample was analyzed by GC-MS and only one isomer of the β -alkylated product (**3w**) was detected, with the remaining mass going towards ring-opened side-product 2-methyl-2,3-dihydro-1*H*-inden-1-one. The crude residue was purified by flash column chromatography (gradient of 0–5% EtOAc/hexanes) to yield **3w** as a colourless oil (6.0 mg, 0.026 mmol, 13%). Analytical data:⁴⁷ ¹**H** NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.78–7.72 (m, 1H), 7.57 (td, *J* = 7.4 Hz, 1H), 7.48–7.41 (m, 1H), 7.39–7.32 (m, 1H), 3.33 (dd, *J* = 16.9, 7.6 Hz, 1H), 2.85–2.68 (m, 2H), 1.92–1.56 (m, 6H), 1.54–1.40 (m, 1H), 1.35–1.11 (m, 4H), 1.08–0.88 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 209.7, 153.9, 136.9, 134.7, 127.4, 126.7, 124.0, 45.5, 39.4, 36.3, 34.4, 33.6, 32.6, 26.7, 26.5, 26.4 ppm.

H.4. Isomerization of cyclopropanol 1a

Table S7. Isomerization of cyclopropanol 1a

но	NiCl ₂ (phen) (0–1 equiv) ZnCl ₂ (0 or 1 equiv) NEt ₃ (0 or 1 equiv)	0
Ph	DMF (0.2 M)	Ph
1a (1 equiv)	temp., 1 h	

Entry	Temp. (°C)	Equiv ZnCl ₂	Equiv NEt₃	Equiv Ni	Remaining 1a (%) ^a	Yield ketone (%) ^a
1	120	1	1	0.1	0	50
2	90	1	1	0.1	16	34
3	60	1	1	0.1	33	20
4	r.t.	1	1	0.1	61	17
5	120	1	1	0	0	74
6	120	1	0	0	0	67
7	120	0	1	0	45	21
8	120	0	0	0.1	17	43
9	120	0	0	1	42	21
10 ^b	120	0	0	0	46	16

^aGC-MS yield based on *n*-dodecane as internal standard. ^bNEt₃•HCl (1 equiv) was added.

H. References

- ¹ Ni, S.; Padial, N. M.; Kingston, C.; Vantourout, J. C.; Schmitt, D. C.; Edwards, J. T.; Kruszyk,
- M. M.; Merchant, R. R.; Mykhailiuk, P. K.; Sanchez, B. B.; Yang, S.; Perry, M. A.; Gallego, G.
- M.; Mousseau, J. J.; Collins, M. R.; Cherney, R. J.; Lebed, P. S.; Chen, J. S.; Qin, T.; Baran, P. S. J. Am. Chem. Soc. 2019, 141, 6726–6739.
- ² Arendt, K. M.; Doyle, A. G. Angew. Chem. Int. Ed. 2015, 54, 9876–9880.
- ³ Côté, A.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 2771-2773.
- ⁴ Mills, L. R.; Barrera Arbelaez, L. M.; Rousseaux, S. A. L. J. Am. Chem. Soc. **2017**, *139*, 11357–11360.
- ⁵ Zhang, P.; Le, C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 8084-8087.
- ⁶ Chatupheeraphat, A.; Liao, H.-H.; Srimontree, W.; Guo, L.; Minenkov, Y.; Poater, A.; Cavallo,
- L.; Mueping, M. J. Am. Chem. Soc. 2018, 140, 3724-3735.
- ⁷ Kundu, K.; Nayak, S. K. J. Nat. Prod. **2017**, 80, 1776–1782.
- ⁸ Gehrtz, P. H.; Kathe, P.; Fleischer, I. Chem. Eur. J. 2018, 24, 8774-8778.
- ⁹ Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature, **2016**, 539, 268–271.
- ¹⁰ Hooper, J. F.; Young, R. D.; Weller, A. S.; Willis, M. C. Chem. Eur. J. 2013, 19, 3125-3130.
- ¹¹ Wang, C.; Dong, G. J. Am. Chem. Soc. 2018, 140, 6057–6061.
- ¹² Piber, M.; Jensen, A. E.; Rottländer, M.; Knochel, P. Org. Lett. 1999, 1, 1323–1326.
- ¹³ Shankaran, K.; Talekar, D. G.; Rao, A. S. Synth. Comm. 1982, 12, 141–149.
- ¹⁴ Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C.-M.; Gianatassio, R.;
- Schmidt, M.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 2174-2177.
- ¹⁵ Yu, L.; Tang, M.-L.; Si, C.-H.; Meng, Z.; Liang, Y.; Han, J.; Sun, X. Org. Lett. **2018**, 20, 4579–4583.
- ¹⁶ Lu, X.; Xiano, B.; Liu, L.; Fu, Y. Chem. Eur. J. 2016, 22, 11161–11164.
- ¹⁷ Li, H.; Breen, C. P.; Seo, H.; Jamison, T. F.; Fang, Y.-Q.; Bio, M. M. *Org. Lett.* **2018**, *20*, 1338–1341.
- ¹⁸ Tortajada, A.; Duan, Y.; Sahoo, B.; Cong, F.; Toupalas, G.; Sallustrau, A.; Loreau, O.;
- Audisio, D.; Martin, R. ACS Catal. 2019, 9, 5897–5901.
- ¹⁹ Qin, T.; Malins, L. R.; Edwards, J. T.; Merchant, R. R.; Novak, A. J. E.; Zhong, J. Z.; Mills, R.
- B.; Yan, M.; Yuan, C.; Eastgate, M. D.; Baran, P. S. Angew. Chem. Int. Ed. 2016, 56, 260-265.
- ²⁰ Mao, R.; Frey, A.; Balon, J.; Hu, X. Nat. Catal. 2018, 1, 120–126.
- ²¹ Schwarz, J.; König, B. Green Chem. **2016**, 18, 4743–4749.
- ²² Wang, D.; Zhu, N.; Chen, P.; Lin, Z.; Liu, G. J. Am. Chem. Soc. 2017, 139, 15632–15635.

²³ Ham, J.-I.; Cha, J.-H.; Lim, G.-B. Conductive compound, electrode and sensor containing the same, and target molecule detection method using the sensor. EP Patent 1454906B1, Aug. 3, 2004.

- ²⁴ Guo, Z.; Jiang, X.; Jin, C.; Zhou, J.; Sun, B.; Su, Weike. *Synlett* **2017**, *28*, 1321–1326.
- ²⁵ Roane, J.; Wippich, J.; Ramgren, S. D.; Krische, M. J. Org. Lett. 2017, 19, 6634–6637.

²⁶ Richards, G.; Erry, T. M.; Harrity, J. P. A.; Zirimwabagabo, J.-O.; Tozer, M. J.; Gibson, K. R.; Porter, R. A.; Blaney, P. M.; Glossop, P. A. Compounds. WO Patent 2018211275A1, Nov. 22, 2018.

- ²⁷ Ching, K.-C.; Kam, Y.-W.; Merits, A.; Ng, L. F. P.; Chai, C. L. L. J. Med. Chem. **2015**, 58, 9196–9213.
- ²⁸ Gabr, M. T.; Abdel-Raziq, M. S. *Bioorg. Chem.* **2018**, *80*, 245–252.

- ²⁹ Behera, H.; Madhavan, N. J. Am. Chem. Soc. 2017, 139, 12919–12922.
- ³⁰ Manov, N.; Tzouros, M.; Chesnov, S.; Bigler, L.; Bienz, S. Helv. Chim. Acta **2002**, *85*, 2827–2846.
- ³¹ Murai, S.; Aya, T.; Renge, T.; Ryu, I.; Sonoda, N. J. Org. Chem. 1974, 39, 858–859.
- ³² Kirihara, M.; Yokoyama, S.; Kakuda, H.; Momose, T. *Tetrahedron* **1998**, *54*, 13943–13954.
- ³³ Bailey, W. F.; Nurmi, T. T.; Patricia, J. J.; Wang, W. J. Am. Chem. Soc. **1987**, 109, 2442–2448.
- ³⁴ Corey, E. J.; Rao, A.; Noe, M. C. J. Am. Chem. Soc. **1994**, 116, 9345–9346.
- ³⁵ Krasovskiy, A.; Knochel, P. Synthesis 2006, 890–891.
- ³⁶ Wang, J.; Huang, B.; Shi, C.; Yang, C.; Xia, W. J. Org. Chem. 2018, 83, 9696–9706.
- ³⁷ Imamoto, T.; Kamiya, T.; Hatajima, T.; Takahashi, H. *Tetrahedron Lett.* **1989**, *30*, 5149–5152.
- ³⁸ Elek, G. Z.; Borovkov, V.; Lopp, M.; Kananovich, D. G. Org. Lett. 2017, 19, 3544–3547.
- ³⁹ Kulinkovich, O. G. Chem. Rev. **2003**, 103, 2597–2632.
- ⁴⁰ Li, L.; Zhu, L.; Chen, D.; Hu, X.; Wang, R. Eur. J. Org. Chem. 2011, 14, 2692–2696.
- ⁴¹ He, X.-P.; Shu, Y.-J.; Dai, J.-J.; Zhang, W.-M.; Feng, Y.-S.; Xu, H.-J. *Org. Biomol. Chem.* **2015**, *13*, 7159–7163.
- ⁴² Guenaydin, K. Rev. Roumaine Chem. 1991, 36, 925–930.
- ⁴³ Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C.-M.; Gianatassio, R.;
- Schmidt, M.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 2174-2177.
- 44 Levine, R.; Sommers, J. R. J. Org. Chem. 1974, 39, 3559-3564.
- ⁴⁵ Lindh, J.; Sjöberg, P. J. R.; Larhed, M. Angew. Chem. Int. Ed. 2010, 49, 7733-7737.
- ⁴⁶ Zhu, X.; Ye, C.; Li, Y.; Bao, H. Chem. Eur. J. 2017, 23, 10254–10258.
- ⁴⁷ Tian, F.; Yao, D.; Liu, Y.; Xie, F.; Zhang, W. Adv. Synth. Catal. 2010, 352, 1841–1845.