Suporting Information for

Water Soluble Lanthanide-Titanium-Oxo-Clusters, the Precursors for Bio-Compatible Nanomaterials

Wen Luo, Dan-Hong Zou, Shen Yang, Li-Na Cui, Pei-Yi Liu, Qin-Yu

Zhu,* and Jie Dai*

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.

^b The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001, People's Republic of China.

E-mail: daijie@suda.edu.cn; zhuqinyu@suda.edu.cn

Contents

Equations for evaluation of limit of detection and cell viability

Fig. S1. Comparing the experimental XRD patterns with the calculated pattern from the crystal data.

Fig. S2. The FTIR spectra of the clusters 1–3.

Fig. S3. The TG results of Tb₂Ti₈ using powder and crystal samples.

Fig. S4. Molecular packing of cluster 1 in the unit cell.

Fig. S5. The spectra of ¹HNMR for compound **1**.

Fig. S6. Emission spectra of (a) Eu_2Ti_8 and (b) Tb_2Ti_8 in water solution. Luminescence Lifetimes of (c) Eu_2Ti_8 and (d) Tb_2Ti_8 in water solution.

Fig. S7. Photocatalytic degradation of RhB (5 mg / L) using EuTiO-a under xenon lamp light illumination.

Fig. S8. (a) Fluorescence quenching of Tb_2Ti_8 in water with the AA volume increasing. (b) Linear correlation between the integral area of luminescence spectra change and the concentration of AA at concentrations from 0 to 20 μ mol.

The limit of detection (LOD) of AA was evaluated by the following equations:

$$\begin{split} I/I_0 &= 0.95867\text{-}0.01081 \ C_{AA} \quad R^2 &= 0.98449 \\ \text{the slope of the linear relationship} : S &= 0.01081 \ \mu \ \text{mol/l} \\ \text{the standard deviation for replicating detections of blank solutions} : \end{split}$$

$$S_{b} = \sqrt{\frac{\sum (F - F_{0})^{2}}{N - 1}} = 0.0563 \text{ (N} = 20)$$
$$LOD = \frac{3Sb}{S} = 15.62 \mu \text{mol/L}.$$

Where F_0 is the emission intensity of Eu_2Ti_8 in water, and F is the average of F_0 .

The cell viability was determined by the following equation:

Cell viability (%) = (absorbance of test cells/absorbance of blank controlled cells) $\times 100\%$.

Figures

Fig. S1. Comparing the experimental XRD patterns with the calculated pattern from the crystal data.

Fig. S2. The FTIR spectra of the clusters 1–3.

Fig. S3. The TG results of Ln_2Ti_8 using crystal samples, showing the percent of the solvent molecules.

Fig. S4. Molecular packing of cluster 1 in the unit cell.

Fig. S5. The spectra of 1 HNMR for compound **1**.

Fig. S6. Emission spectra of (a) Eu_2Ti_8 and (b) Tb_2Ti_8 in water solution. Luminescence Lifetimes of (c) Eu_2Ti_8 and (d) Tb_2Ti_8 in water solution.

Fig. S7. Photocatalytic degradation of RhB (5 mg / L) using EuTiO-a under xenon lamp light illumination.

Fig. S8. (a) Fluorescence quenching of Tb_2Ti_8 in water with the AA volume increasing. (b) Linear correlation between the integral area of luminescence spectra change and the concentration of AA at concentrations from 0 to 20 μ mol.

	1
formula	$H_{2@}[Eu_{2}Ti_{8}(\mu_{3}-O)_{8}(\mu_{2}-O)_{4}(Ac)_{16}]$
fw	1866.62
cryst size	0.15 imes 0.12 imes 0.10
(mm^3)	
cryst syst	cubic
space group	Im-3m
<i>a</i> (Å)	24.5900(12)
<i>b</i> (Å)	24.5900(12)
<i>c</i> (Å)	24.5900(12)
α (deg)	90.000
β (deg)	90.000
γ (deg)	90.000
$V(\text{\AA}^3)$	14868.8(13)
Ζ	2
ρ_{calcd} (g cm ⁻³)	1.476
<i>F</i> (000)	6356
$\mu (\text{mm}^{-1})$	1.940
<i>T</i> (K)	120(2)
reflns	47229
unique reflns	1799
observed	1451
no. params	90
GOF on F^2	1.149
R_1	0.0592
$R_1 [I \ge 2\sigma(I)]$	0.0421
$W R_2$	0.1593
$_{W}R_{2}$ [I>2 $\sigma(I)$]	0.1389

Table 1 Relevant crystal data, collection parameters, and refinement results for 1.