## Diketopiperazines synthesis gene in *Shewanella baltica* and roles of diketopiperazines and resveratrol in quorum sensing

Junli Zhu<sup>†§</sup>, Yuwei Zhang<sup>†§</sup>, Jingmin Deng<sup>†</sup>, Hanyun Jiang<sup>†</sup>, Liumin Zhuang<sup>†</sup>, Wei Ye<sup>†</sup>, Jiayu Ma<sup>†</sup>, Jingyang Jiang<sup>†</sup>, Lifang Feng<sup>\*†</sup>

<sup>†</sup>College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou

310018, PR China

<sup>§</sup>The first and second authors contributed equally to this work.

\* Corresponding author: Lifang Feng E-mail: <u>fenglifang@mail.zjgsu.edu.cn</u> Tel: +(86)571-28008964 Table S1 IDs and primer sequences of genes for PCR

| Gene ID           | forward primer sequence (5'-3') | Note                           |  |
|-------------------|---------------------------------|--------------------------------|--|
| gyrB_f            | CGTATCGGCAGCAGAAGTTATCAT        | Amplify <i>gyrB</i> gene       |  |
| gyrB_r            | GAAGAAGAAGGTCAACAGCAAGGT        |                                |  |
| 16s_f             | GCCCCCTGGACAAAGACTGAC           | endogenous control in          |  |
| l6s_r             | GACATCGTTTACGGCGTGGACTA         | qPCR                           |  |
| 3b1325_qpcr_f2456 | GCGAACAGTACCAAGTACAGC           | determine gene                 |  |
| sb1325_qpcr_r2668 | GGATCACAAACCCTTGCTGAG           | expression level by            |  |
| sb1370_qpcr_f1751 | CCCTGCTAACCCAGAAATCCATG         | qPCR                           |  |
| sb1370_qpcr_r1940 | CACAGGAGAATCTGCTGGCTC           |                                |  |
| sb1325_up_f470    | GATGATGCAGGACAACTTGC            | KO for <i>sb1325</i>           |  |
| sb1325_up_r1566   | AAGCAGCTCCAGCCTACACACATCTAGTT   |                                |  |
|                   | CACCTAAAGAGTCG                  |                                |  |
| sb1325_down_f3485 | CTAAGGAGGATATTCATATGCACGTTAAC   |                                |  |
|                   | GCGCAATATAGCG                   |                                |  |
| sb1325_down_r4442 | CGGTGTGGCATCTTGATAATCAAC        |                                |  |
| sb1325_nest_f473  | GATGCAGGACAACTTGCGGTAC          |                                |  |
| sb1325_nest_r4436 | GGCATCTTGATAATCAACCCCTAG        |                                |  |
| sb1370_up_f289    | CACTCTTGTGCTTGGCGAAGG           | KO for <i>sb1370</i>           |  |
| sb1370_up_r1313   | AAGCAGCTCCAGCCTACACAGGATTGCT    |                                |  |
|                   | TGCTCCTATGTTGGC                 |                                |  |
| sb1370_down_f2309 | CTAAGGAGGATATTCATATGCCCAGCCCT   |                                |  |
|                   | TTAAATACCCAGC                   |                                |  |
| sb1370_down_r3279 | CTAGAAACTGGCTCATCCAGTAAG        |                                |  |
| sb1370_nest_f293  | CTTGTGCTTGGCGAAGGTACTG          |                                |  |
| sb1370_nest_r3272 | CTGGCTCATCCAGTAAGTATCC          |                                |  |
| sb1370_Re_r2330   | AAGCAGCTCCAGCCTACACAGCTGGGTA    | Rescue for KO of <i>sb1370</i> |  |
|                   | TTTAAAGGGCTGGG                  |                                |  |
| Cm_f              | TGTGTAGGCTGGAGCTGCTT            | amplify <i>Cm</i> gene         |  |
| Cm_r              | CATATGAATATCCTCCTTAG            | cassette                       |  |
| sb1325_test_f411  | CTGGTTATCACTACCGTTTACCTC        | KO test                        |  |
| sb1325_test_r4499 | GTTAGTGCGGCTGCCATCACTG          |                                |  |
| sb1370_test_f262  | GGATTCATCGTCATCATCGACGC         |                                |  |
| sb1370 test r3308 | GCTCAGGATCTGGCTTGTTG            |                                |  |

| Code | Functional Categories                                         | Gene No. |
|------|---------------------------------------------------------------|----------|
| А    | RNA processing and modification                               | 1        |
| В    | Chromatin structure and dynamics                              | 2        |
| С    | Energy production and conversion                              | 263      |
| D    | Cell cycle control, cell division, chromosome partitioning    | 35       |
| Е    | Amino acid transport and metabolism                           | 321      |
| F    | Nucleotide transport and metabolism                           | 76       |
| G    | Carbohydrate transport and metabolism                         | 162      |
| Н    | Coenzyme transport and metabolism                             | 172      |
| I    | Lipid transport and metabolism                                | 118      |
| J    | Translation, ribosomal structure and biogenesis               | 199      |
| K    | Transcription                                                 | 295      |
| L    | Replication, recombination and repair                         | 184      |
| Μ    | Cell wall/membrane/envelope biogenesis                        | 207      |
| Ν    | Cell motility                                                 | 142      |
| 0    | Posttranslational modification, protein turnover, chaperones  | 177      |
| Р    | Inorganic ion transport and metabolism                        | 226      |
| Q    | Secondary metabolites biosynthesis, transport and catabolism  | 96       |
| R    | General function prediction only                              | 467      |
| S    | Function unknown                                              | 323      |
| Т    | Signal transduction mechanisms                                | 292      |
| U    | Intracellular trafficking, secretion, and vesicular transport | 115      |
| V    | Defense mechanisms                                            | 79       |
|      |                                                               |          |

Table S2 Functional category in COG of S. baltica SB-19

| GenelD | RNA-Seq  | qPCR   |
|--------|----------|--------|
| sb3101 | 10.606   | 7.863  |
| sb3099 | 8.97716  | 7.527  |
| sb1327 | 8.40107  | 8.753  |
| sb1325 | 8.09412  | 7.322  |
| sb3103 | 7.75368  | 6.457  |
| sb1720 | 6.28173  | 5.478  |
| sb2760 | 5.67806  | 4.658  |
| sb2506 | 4.53189  | 4.862  |
| sb3835 | 4.21485  | 5.833  |
| sb0224 | 3.88691  | 3.675  |
| sb2181 | 3.3524   | 3.951  |
| sb1005 | 2.3014   | 2.162  |
| sb2505 | 1.44095  | 0.784  |
| sb0579 | -1.64697 | -1.086 |
| sb2523 | -3.32798 | -2.376 |
| sb0974 | -3.4259  | -1.292 |
| sb3824 | -4.15724 | -3.544 |
| sb0974 | -4.22165 | -3.044 |
| sb2395 | -5.04157 | -4.659 |
| sb0064 | -5.30656 | -4.927 |
| sb2603 | -5.43974 | -6.073 |
| sb0065 | -6.54014 | -4.925 |

Table S3 Log-transformed expression ratios from RNA-Seq and qPCR

Table S4 IDs and annotation of differentially genes with expression levels more than 2-fold

| Gene ID | Gene description                        | Log <sub>2</sub> (fold<br>change) | <i>p</i> -value |
|---------|-----------------------------------------|-----------------------------------|-----------------|
| sb2190  | Cro/Cl family transcriptional regulator | inf                               | 5.00E-05        |
| sb0224  | transcriptional regulator, MerR family  | 3.88691                           | 0.0002          |
| sb2181  | integrase                               | 3.3524                            | 0.00055         |
| sb0974  | purine nucleoside phosphorylase         | -4.22165                          | 0.0005          |
| sb2395  | carbon starvation protein CstA          | -5.04157                          | 0.00015         |
| sb2603  | cold-shock protein                      | -5.43974                          | 0.0001          |

in log phase cells

Table S5 IDs and annotation of differentially genes with expression levels more than 2-fold

| Gene ID | Gene description                                 | Log <sub>2</sub> (fold | <i>p</i> -value |
|---------|--------------------------------------------------|------------------------|-----------------|
|         |                                                  | change)                |                 |
| sb3101  | TonB-denpendent receptor                         | 10.606                 | 5.00E-05        |
| sb3099  | pyridoxamine 5'-phosphate oxidase                | 8.97716                | 5.00E-05        |
| sb1327  | L-lysine 6-monooxygenase (NADPH)                 | 8.40107                | 0.00055         |
| sb1325  | lucA/lucC family protein                         | 8.09412                | 5.00E-05        |
| sb3100  | heme utilization cystosolic carrier protein HutX | 8.02429                | 5.00E-05        |
| sb2448  | phage-shock protein                              | 7.92005                | 5.00E-05        |
| sb1324  | TonB-dependent receptor                          | 7.88322                | 5.00E-05        |
| sb3103  | flagellar motor protein MotA                     | 7.75368                | 0.00015         |
| sb2446  | envelope stress response membrane protein PspC   | 7.75221                | 5.00E-05        |
| sb3357  | hypothetical protein                             | 6.98078                | 5.00E-05        |
| sb2332  | TonB-denpendent receptor                         | 6.9628                 | 0.0002          |
| sb0440  | iron ABC transporter substrate-binding protein   | 6.9576                 | 5.00E-05        |
| sb3105  | ABC transporter substrate-binding protein        | 6.95556                | 5.00E-05        |
| sb3834  | ligand-gated channel protein                     | 6.64529                | 5.00E-05        |
| sb1011  | DUF2884 family protein                           | 6.42248                | 5.00E-05        |
| sb1720  | chemotaxis protein CheY                          | 6.28173                | 5.00E-05        |
| sb3190  | iron-regulated protein A precursor               | 6.17928                | 5.00E-05        |
| sb1503  | RND transporter MFP subunit                      | 6.04505                | 0.0001          |
| sb1406  | 4-hydroxyphenylpyruvate dioxygenase              | 5.99485                | 5.00E-05        |
| sb3107  | hemin ABC transporter ATP-binding protein        | 5.9145                 | 5.00E-05        |
| sb0687  | elongation factor GreAB                          | 5.88868                | 5.00E-05        |
| sb1606  | TonB-denpendent receptor                         | 5.7347                 | 5.00E-05        |
| sb3106  | iron ABC transporter permease                    | 5.72566                | 5.00E-05        |
| sb2760  | isocitrate lyase                                 | 5.67806                | 5.00E-05        |
| sb3191  | hypothetical protein                             | 5.43339                | 0.0001          |
| sb0484  | DUF3103 family protein                           | 5.40777                | 5.00E-05        |
| sb1419  | membrane protein                                 | 5.39578                | 5.00E-05        |
| sb4008  | TonB-denpendent receptor                         | 5.25152                | 0.0002          |
| sb2839  | siderophore transporter component 1              | 5.21576                | 5.00E-05        |
| sb1763  | cation diffusion facilitator family transporter  | 5.08142                | 0.00065         |
| sb3360  | TonB-denpendent receptor                         | 5.01282                | 5.00E-05        |
| sb3515  | TonB-denpendent receptor                         | 4.82074                | 0.0003          |
| sb2468  | YIP1 family protein                              | 4.80005                | 5.00E-05        |
| sb3189  | c-type cytochrome                                | 4.7314                 | 5.00E-05        |
| sb2506  | phosphoglucomutase                               | 4.53189                | 0.00045         |
| sb0803  | nickel transporter                               | 4.44726                | 5.00E-05        |
| sb2761  | malate synthase                                  | 4.41859                | 5.00E-05        |
| sb2679  | TonB-denpendent receptor                         | 4.32537                | 0.0002          |

in stationary phase cells

| sb1407 | homogentisate 1,2-dioxygenase                  | 4.27634  | 0.00065  |
|--------|------------------------------------------------|----------|----------|
| sb3835 | LysR family transcriptional regulator          | 4.21485  | 0.0001   |
| sb1799 | TonB-denpendent receptor                       | 4.1722   | 0.00025  |
| sb3461 | hypothetical protein                           | 4.15593  | 0.00025  |
| sb0802 | hypothetical protein                           | 4.14182  | 0.0001   |
| sb4259 | hypothetical protein                           | 3.96664  | 0.0001   |
| sb2484 | gluconate transporter                          | 3.95684  | 0.00025  |
| sb3755 | TonB-denpendent receptor                       | 3.93265  | 0.00045  |
| sb2302 | biotin synthase                                | 3.84469  | 5.00E-05 |
| sb2642 | hypothetical protein                           | 3.7756   | 0.00045  |
| sb1384 | exonuclease                                    | 3.36075  | 0.0006   |
| sb2485 | glycerate kinase                               | 3.23507  | 0.0005   |
| sb4017 | MerR family transcriptional regulator          | 2.97726  | 0.0005   |
| sb4029 | DNA-binding protein                            | -3.26577 | 0.0004   |
| sb2523 | beta-aspartyl peptidase                        | -3.32798 | 0.00055  |
| sb3258 | RNA helicase                                   | -3.373   | 0.00055  |
| sb0974 | purine nucleoside phosphorylase                | -3.4259  | 0.00025  |
| sb3875 | hypothetical protein                           | -3.58541 | 0.00055  |
| sb3586 | histidine kinase                               | -3.68046 | 0.00025  |
| sb4133 | protoporphyrinogen oxidase                     | -3.73387 | 0.00035  |
| sb0158 | hemerythrin                                    | -3.96804 | 0.00055  |
| sb3500 | thiosulfate reductase                          | -4.03588 | 0.00025  |
| sb0638 | cytochrome C biosynthesis protein              | -4.10152 | 0.0001   |
| sb3824 | formate dehydrogenase                          | -4.15724 | 0.00015  |
| sb2115 | quinone-reactive Ni/Fe-hydrogenase small chain | -4.20461 | 5.00E-05 |
| sb2581 | membrane protein                               | -4.24104 | 0.00045  |
| sb2603 | cold-shock protein                             | -4.28337 | 0.00065  |
| sb0609 | radical SAM protein                            | -4.29668 | 0.00045  |
| sb2478 | cystathionine beta-synthase                    | -4.30298 | 0.0005   |
| sb3825 | formate dehydrogenase subunit gamma            | -4.44914 | 5.00E-05 |
| sb3187 | hypothetical protein                           | -4.48254 | 0.0001   |
| sb4224 | membrane protein                               | -4.53705 | 0.00025  |
| sb0063 | porin                                          | -4.73681 | 5.00E-05 |
| sb4217 | formate dehydrogenase, alpha subunit           | -4.88881 | 5.00E-05 |
| sb0633 | fumarate reductase                             | -4.92351 | 0.00025  |
| sb3423 | hypothetical protein                           | -4.94677 | 0.0002   |
| sb0064 | putrescine transporter                         | -5.30656 | 5.00E-05 |
| sb1225 | short-chain dehydrogenase                      | -5.33312 | 5.00E-05 |
| sb4218 | formate dehydrogenase-N subunit beta           | -5.58097 | 0.00015  |
| sb3005 | transcriptional regulator                      | -5.75377 | 5.00E-05 |
| sb0423 | hypothetical protein                           | -6.26541 | 5.00E-05 |
| sb0065 | ornithine decarboxylase                        | -6.54014 | 5.00E-05 |
|        |                                                |          |          |

| Query of CDPSs | E value | Identity | Subject of Gene ID <sup>a</sup> | Reference |
|----------------|---------|----------|---------------------------------|-----------|
| AlbC           | 0.022   | 22%      | sb1747                          | 10        |
| Rv2275         | 1.6     | 30%      | sb0868                          | 10        |
| YvmC_Blic      | 2.8     | 25%      | sb1843                          | 10        |
| YvmC_Bsub      | 1.5     | 30%      | sb1331                          | 10        |
| YvmC_Bthu      | 1.5     | 30%      | sb3303                          | 10        |
| pSHaeC06       | 0.049   | 26%      | sb1302                          | 10        |
| Plu0297        | 1.7     | 36%      | sb0036                          | 10        |
| JK0923         | 1.8     | 30%      | sb2950                          | 10        |
| Nvec-CDPS2     | 0.58    | 25%      | sb0386                          | 10        |
| DmtB1          | 0.048   | 34%      | sb1370                          | 29        |

Table S6 Local BLAST alignment of CDPSs with genomic database of SB-19 strain

<sup>a</sup> The table lists only one gene with the highest E value.

(10) Belin, P.; Moutiez, M.; Lautru, S.; Seguin, J.; Pernodet, J.; Gondry, M. The nonribosomal synthesis of diketopiperazines in tRNA-dependent cyclodipeptide synthase pathways. *Nat. Prod. Rep.* **2012**, *29*, 961-979.

(29) Yao, T.; Liu, J.; Liu, Z.; Li, T.; Li, H.; Che, Q.; Zhu, T.; Li, D.; Gu, Q.; Li, W. Genome mining of cyclodipeptide synthases unravels unusual tRNA-dependent diketopiperazine-terpene biosynthetic machinery. *Nat. Commun.* **2018**, *9*, 4091.



Figure S1 Sensory changes in overall acceptability of fish fillet under treatment of resveratrol stored at 4 °C for 15 days.

The sensory experiment of fish fillet under treatment of resveratrol was carried as our previous reports.<sup>18</sup> The sensory of raw fillet samples under resveratrol treatment was evaluated by 10 experienced panelists (five males and five females, ranging from 21 to 48 years old), and their voting numbers were set at  $k, k \in (1, 10)$ . Fillet quality was divided into *m* grades, and the score of a particular grade was recorded as  $h_i, j \in (1, m)$ . Fillet attributes were divided into *n* elements, and a particular element was recorded as  $u_i, i \in (1, n)$ . The contributory weight was depended on pairwise comparison of each attributes was recorded as  $x_i$  ( $\sum x_i = 1$ ). the relation set (matrix) of *f* between two objects of  $h_i$  and  $u_i$  was calculated as follows:

$$F = \begin{bmatrix} f11/k & f12/k & \dots & f1m/k \\ f21/k & f22/k & \dots & f2m/k \\ \dots & \dots & \dots & \dots \\ fn1/k & fn2/k & \dots & fnm/k \end{bmatrix}$$

So the overall acceptability of fillet was calculated using the weight grade method as follows:

$$Z = \sum_{i=1}^{n} x_i \cdot \sum_{m=1}^{m} \frac{f_{ij}}{k} \cdot h_j$$

(18) Gao, M. S.; Feng, L. F.; Jiang, T. J.; Zhu, J. L.; Fu, L. L.; Yuan, D. X.; Li, J. R. The use of rosemary extract in combination with nisin to extend the shelf life of pompano (*Trachinotus ovatus*) fillet during chilled storage. *Food Control* **2014**, *37*, 1-8.



Figure S2 Gene expression levels with a correlation between RNA-Seq (x-axis) and qPCR (y-axis). Each Log<sub>2</sub> ratio of fold changes was compared between RNA-Seq and qPCR.



Figure S3 Comparison of *sb1370* gene between strains of SB-19 and SB-20. (a) The levels of DKPs. (b) The levels of AI-2. (c) Biofilm proportion of strains under treatment with cyclo-(L-Pro-L-Phe) (40  $\mu$ g/mL) or resveratrol (10  $\mu$ g/mL). (d) Spoilage capability of strains under treatment with cyclo-(L-Pro-L-Phe) (40  $\mu$ g/mL) or resveratrol (10  $\mu$ g/mL).



Figure S4 SB-19 strains of WT, KO, or RE under cyclo-(L-Pro-L-Phe) (40  $\mu$ g/mL) and resveratrol (10  $\mu$ g/mL) treatment.