Supporting information

Extremely robust gas quenching deposition of halide perovskites on top of hydrophobic hole transport materials for inverted (p-i-n) solar cells by targeting the precursor wetting issue.

Kai Oliver Brinkmann^{*‡ 1}, Junjie He^{*‡ 1,2}, Felix Schubert¹, Jessica Malerczyk¹, Cedric Kreusel¹, Frederic van gen Hassend³, Sebastian Weber³, Jun Song^{*2}, Junle Qu^{*2}, Thomas Riedl^{*1}

¹ Chair of Electronic Devices, University of Wuppertal, Rainer-Gruenter-Str. 21, 42119

Wuppertal, Germany

² Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education

Guangdong Province, College of Optoelectronic Engineering Shenzhen University

3688 Nanhai Ave Shenzhen 518060, P. R. China

³ Chair of Novel Manufacturing Techniques and Materials, University of Wuppertal

Bahnhofstr. 15, 42651 Solingen, Germany

Corresponding Authors

*E-Mail: brinkmann@uni-wuppertal.de (K.O.B.)

*E-Mail: junjiehe@foxmail.com (J.H.)

*E-Mail: <u>t.riedl@uni-wuppertal.de</u> (T.R.)

*E-Mail: songjun@szu.edu.cn (J.S.)

*E-Mail: jlqu@szu.edu.cn (J.Q.)

AUTHOR CONTRIBUTIONS

‡ K.O.B. and J.H. contributed equally to this work.

Figure S1: SEM and AFM images of perovskite surface without (a) and with 0.1 M Thiourea per ml precursor solution (b) as well as respective XRD diffractograms (c). The bars for SEM images represent 5 μ m (top) and 1 μ m (bottom). Bars in AFM images are 20 μ m (top) and 5 μ m (bottom). Average lateral crystal sizes are (determined by edge detection on AFM images) ~ 200 nm without and ~ 900 nm with the use of Thiourea as additive.

Figure S2: cross sectional SEM image and derived thicknesses of the respective

layers of a FA_{0.94}Cs_{0.06}PbI3 solar cell stack. The white bar resembles 200 nm.

Figure S3: Contact angle measurements of DMF:DMSO and DMF:NMP mixtures

on PTAA (top: tabular, bottom: graphical) including calculated permittivity and HLB values of the mixtures. Dashed lines are a guide to the eye to visualize the

proposed linear behavior.

Figure S4: XRD diffractograms of MAPbl₃ layers fabricated with diffrent co-solvent : solvent

ratio and processing timing utilizing DMSO (a) and NMP (b) as co-solvent. Insets are magnified views of the 110 and 220 tetragonal peak.

Figure S5: microscope, SEM and AFM images of perovskite layers prepared on PTAA layers with

diffrent co-solvent:solvent ratios and varied quenching delay times for DMSO (a) and NMP (b)

 Table S1: Mean grain sizes derived from watershade algorithm (AFM images Figure S4)

and	curfaca	covorado /	of porovekite	lovore	(microscopo	imagaa	Eiguro S	24)	nronarad	on
anu	Sunace	coverage	or perovskile	layers	(microscope	inayes	i iguie c)+)	piepaieu	UII

	quenching delay / s	mean grain size / µm surface coverage					
Solvent:co-solve nt ratio		1:9		3:7		5:5	
	10	0.9	>99 %	1.01	95 %	0.99	77 %
DMSO	20	0.74	>99 %	0.97	85 %	1.08	32 %
	30	0.56	97 %	0.84	81 %	1.13	25 %
	10	0.95	>99 %	0.95	>99 %	0.91	>99 %
NMP	20	1.04	>99 %	1.19	>99 %	1.04	>99 %
	30	0.99	>99 %	1.08	>99 %	0.92	>99 %

PTAA layers with different co-solvent:solvent ratios and varied quenching delay times for

DMSO and NMP co-solvent.

DMF

Iteration	Contact angle	
1	29	
2	28	
3	29	

Figure S6: contact angle development of pure DMF during drying process.

Figure S7: J-V scan and solar cell characteristics of the champion cell with

DMSO co-solvent in 1:9 DMSO : DMF ratio and 10 s quenching delay time.

Figure S8: XRD diffractogram of $FA_{0.94}Cs_{0.06}PbI_3$ on top of PTAA with 3:7 NMP : DMF

Figure S9: Box chart diagram for $FA_{0.94}Cs_{0.06}PbI_3$ solar cells with 3:7 NMP : DMF

co-solvent : solvent ratio at a quenching delay of 30 s. 18 cells were measured.