Supporting Information

Cuprous Oxide Based Chemiresistive Electronic Nose for Volatile Organic Compounds Discrimination

Baishu Liu,[†] Xue Wu,[†] Kenneth WL Kam,^{\perp} Wai-Fung Cheung,^{\perp} Bo Zheng^{*†}

[†]Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong,

China

¹Qi Diagnostics Limited, Mongkok, Kowloon, Hong Kong, China

Figure S1. (a) Photograph of the Ni-Cr wire and the ceramic tube. (b) Photograph of the gas sensor.

Figure S2. (a) Photograph of the gas analysis system CGS-8. (b) Sensor panel of the gas analysis system CGS-8.

Figure S3. XRD pattern of Cu₂O nanospheres (top) and the standard XRD pattern of Cu₂O (PDF #05-0667, bottom)

Name	Chemical structure	Corresponding abbreviation of the silanized Cu ₂ O
PAPTMS	NH OCH3 Si-OCH3 OCH3 OCH3	PA-Cu ₂ O
APTMS	H ₂ N H ₂ N OCH ₃ OCH ₃	AP-Cu ₂ O
MAPTMS	N H Si OCH ₃ OCH ₃ OCH ₃	MA-Cu ₂ O
CPTMS	CI CI CI CI CI CI CI SI OCH ₃ OCH ₃ OCH ₃ OCH ₃	CP-Cu ₂ O
PTES	$\begin{array}{c c} & OC_2H_5 \\ & \\ & \\ Si \\ & OC_2H_5 \\ \\ & \\ OC_2H_5 \end{array}$	P-Cu ₂ O

 Table S1. Chemical structures of the organosilanes.

Table S2. Zeta potentials of Cu_2O and the organosilane functionalized Cu_2O nanospheres.

The functionalized Cu ₂ O	Zeta potential (mV)
Cu ₂ O	34.2
PA-Cu ₂ O	26.9

AP-Cu ₂ O	172.7
MA-Cu ₂ O	61.6
CP-Cu ₂ O	-23.6
P-Cu ₂ O	30.5

Figure S4. XPS Cu 2p spectrum of P-Cu₂O.

Figure S5. Resistance response of P-Cu₂O to 25 ppm ethanol at the operating temperature of 130-200 °C.

Figure S6. XRD patterns of Cu₂O nanospheres before and after calcination at 180 °C for 1 hour.

Figure S7. FT-IR spectra of Cu₂O and P-Cu₂O nanospheres after calcination at 180 °C for 1 hour.

Figure S8. Response and recovery curves of the sensor units upon the exposure to 50 ppm ethanol.

(a) Cu₂O; (b) PA-Cu₂O; (c) AP-Cu₂O; (d) MA-Cu₂O; (e) CP-Cu₂O; (f) P-Cu₂O.

Figure S9. Real-time resistance responses of Cu₂O and five functionalized Cu₂O nanospheres upon the exposure to 25-200 ppm model VOCs. (a) Cu₂O; (b) PA-Cu₂O; (c) AP-Cu₂O; (d) MA-Cu₂O; (e) CP-Cu₂O; (f) P-Cu₂O.

Figure S10. Resistance responses of Cu₂O and four functionalized Cu₂O nanospheres upon the exposure to 25-200 ppm model VOCs. (a) Cu₂O; (b) PA-Cu₂O; (c) AP-Cu₂O; (d) MA-Cu₂O; (e) CP-Cu₂O.

Figure S11. Resistance responses from the sensor units upon the exposure to the model VOCs. (a) 50 ppm; (b) 100 ppm; (c) 150 ppm; (d) 200 ppm.

Figure S12. Real-time resistance responses of Cu₂O and four functionalized Cu₂O nanospheres upon the exposure to 75-600 ppm ternary VOC mixtures. (a) Cu₂O; (b) PA-Cu₂O; (c) AP-Cu₂O; (d) MA-Cu₂O; (e) CP-Cu₂O.

Figure S13. Resistance responses of Cu₂O and four functionalized Cu₂O nanospheres upon the exposure to 75-600 ppm ternary VOC mixtures. (a) Cu₂O; (b) PA-Cu₂O; (c) AP-Cu₂O; (d) MA-Cu₂O; (e) CP-Cu₂O.

Figure S14. Resistance responses from the sensor units upon the exposure to ternary VOC mixtures. (a) 150 ppm; (b) 300 ppm; (c) 450 ppm; (d) 600 ppm.

Figure S15. Real time resistance responses of Cu₂O and five functionalized Cu₂O nanospheres upon the exposure to six types of tea leaves. (a) Cu₂O; (b) PA-Cu₂O; (c) AP-Cu₂O; (d) MA-Cu₂O; (e) CP-Cu₂O; (f) P-Cu₂O.