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1. Extraction of polysaccharide from okra

1.1 Materials

The okra pods were purchased from Nanjing Agricultural Cooperatives. The chemicals bought 

from Sinopharm Chemical Reagent Co. Ltd. are as follows: sodium hydroxide, hydrated citric 

acid, phenol, concentrated sulfuric acid, anhydrous ethanol, glucose and methyl violet (6B). 

Papain was obtained from Nanjing O 'donnie Biotechnology Co. Ltd. and ferric sulfate was 

purchased from Shanghai Macklin Biochemical Co. Ltd.. All these chemicals were of analytical 

reagent grade.

1.2 Extraction process

The okra fruit were first dried, then pulverized using a mechanical disintegrator and sifted 

through a 50-mesh sieve. The resulting powder was collected for extraction. After the extraction 

temperature and time were set, 1 g of okra powder was extracted in an ultrasonic cleaning bath 

(KH3200DB, Kushan Ultrasonic Instrument Co. Ltd.), using certain volume of distilled water. 

The extracted solution was centrifuged at 8000r/min for 5 min, and the supernatant obtained was 

the crude aqueous polysaccharide solution, which was precipitated with anhydrous ethanol, then 

centrifuged again (same rpm and time). The sediment was collected and freeze-dried to obtain 

the okra polysaccharide.

1.3 Calculation of extraction yield
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Using D-glucose as a standard, polysaccharide concentrations were measured based on the 

phenol-sulfuric acid method,1 described as follows. A calibration curve was constructed for 

determination of the extraction yield. 0.2 mg/mL glucose solution was prepared as the stock 

solution. Then 0.4, 0.8, 1.2, 1.6, 2.0 mL of the glucose stock were added into five different 10mL 

volumetric flasks. Different amount of distilled water was added into each flask to reach a total 

volume of the solution equal to 2.0mL. A blank solution was made by adding 2mL distilled 

water only in a separate flask. Into each of the 6 flasks described above, 1mL phenol solution 

with a mass fraction of 5% was added, followed by 5mL concentrated sulfuric acid (98%). All 

solutions were shaken for 30 min before absorbance measurements. Absorbance values of the 6 

solutions at 490 nm were obtained using a Shimadzu UV-2450 spectrophotometer. The data were 

used to make a calibration curve of absorbance versus glucose concentration. 

1.4 Single-factor experiments

Three factors were considered, with the following preliminary ranges: A. extraction time 

(10-60min), B. liquid-solid ratio (10:1-70:1) and C. extraction temperature (40-70 oC).

1.5 Optimization of extraction

On the basis of single factor experiment, the preliminary ranges of these factors affecting the 

yield of polysaccharide were determined. Polysaccharide yield under various sets of the three 

factors within the preliminary ranges were determined. Using the above data, Box-Benhken 

design with three independent variables (extraction time-A, liquid-solid ratio-B, extraction 

temperature-C) at three levels were performed by Design-Expert 8.0.6 software. The 
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experimental design was carried out to determine the optimal extraction process parameters.

2. Characterization and physicochemical analysis

2.1 FT-IR spectroscopy

The dried powder of okra polysaccharide was mixed thoroughly with KBr powder and pressed 

into pellets for FT-IR measurement, using Vertex 80V (Brock Co., Germany) IR spectrometer. 

Absorption spectra were obtained with a wavenumber range of 4000 to 400cm-1.

2.2 Molecular weight

The molecular weight of the polysaccharide was determined by gel permeation 

chromatography with a refractive index detector. The chromatographic conditions were as 

follows, stationary phase: TSK gel G4000 gel column; column temperature: 40°C; mobile phase: 

re-distilled water; flow rate: 0.6 mL/min; injection volume: 20 μL. With a standard curve 

established using D-glucose, the molecular weight of okra polysaccharide was calculated.

2.3 Monosaccharide composition

The monosaccharide components in okra polysaccharides were determined by ion 

chromatography (Dionex ICS-3000 Ion Chromatography with a pulsed amperometric detector, 

ANASTAR chromatography workstation). Conditions were as follows, sugar guard column: 

Carbopac PA10 (2 × 50 mm); analytical column: Carbopac PA10 (2 × 250 mm); column 

temperature: 30°C; injection volume: 20 μL; mobile phase: 20 mmol/L NaOH; flow rate: 

0.2mL/min. 5.0 mg of polysaccharide sample was added into a hydrolysis tube, with 5 mL of 2 

mol/L trifluoroacetic acid. The tube was filled with nitrogen for hydrolysis under 120oC, then 



S5

cooled down to room temperature. After filtering with a 0.45 m microporous membrane, the 

sample solution was quantitatively diluted for future determination.

2.4 Uronic acid content

The hydrolysate of okra polysaccharide could react with carbazole reagent under strong acid 

environment. Therefore, the content of uronic acid was determined by carbazole-sulfate method. 

9.9 mg of dried galacturonic acid was weighed and dissolved in distilled water to reach the 

concentration of 99 μg/mL, as the stock solution. 0.478g sodium tetraborate was dissolved in 

100mL concentrated sulfuric acid with the assistance of ultrasound, thus sodium tetraborate - 

sulfuric acid solution was obtained. The carbazole solution was prepared by 10mg carbazole 

dissolving into 10mL anhydrous ethanol at the same time.

After 0.2, 0.3, 0.4, 0.5 mL of the stock solution was drawn into separate test tubes, the volume 

of each solution was brought to 1.0 mL with distilled water. In ice water bath, 6 mL sodium 

tetraborate solution was added into each of the test tubes and mixed using a vortex mixer 

blender. After being heated in a boiling water bath for 5 min, these tubes were taken out 

immediately and cooled down to room temperature. 0.1% carbazole solution was added into each 

solution, followed by shaking and boiling for 5 min, and cooling down to room temperature. A 

calibration curve was constructed using absorbance values of the treated galacturonic acid 

standards at 530 nm, measured on the UV-2450 spectrometer. The okra polysaccharide sample 

solution (1mg/mL) was treated through the same steps as described above, then the absorbance 

of the treated sample was measured. This absorbance value was used to obtain the uronic content 
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in the sample, based on the calibration curve. 

2.5 Measurement of zeta potential

The polysaccharide of okra was prepared into a series of aqueous solutions with 

concentrations of 1, 5, 10, 25, 50, 75 and 100 mg/L. The zeta potential value of each solution 

was measured by a Malvern laser particle size analyzer (Zetasizer Nano-ZS, Malvern Co.).

3. Result and discussion

3.1 Single-factor experimental analysis

3.1.1 Effect of extraction time 

As shown in Fig. S1 (a), with the increase of extraction time, the yield increased rapidly and 

the maximum value appeared at 30min, but the yield decreased gradually after exceeding 30min. 

Increasing extraction time was beneficial to the dissolution of soluble polysaccharides in okra 

and the extraction rate of polysaccharides increased, but too long extraction time could cause 

enhanced hydrolysis of polysaccharide, leading to decrease of the yield of polysaccharides.2 The 

durations of sonication were controlled between 20 and 40min based on the results presented in 

Figure 1(a).

3.1.2 Effect of liquid-solid ratio

Figure S1 (b) shows the effect of liquid-solid ratio (mL/g) on the yield of polysaccharide 

extracted from okra. The yield reached maxima when the ratio was 60:1, beyond which the yield 

start to decline slightly.

Considering that larger volume of extraction liquid will lead to greater difficulty of subsequent 
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concentration and alcohol precipitation processes, and hence higher cost, we kept the liquid-solid 

ratios within 50:1 ~ 70:1 (mL/g).

3.1.3 Effect of extraction temperature

As shown in Figure S1(c), with the increase of extraction temperature, the extraction rate 

increased and peaked at 60oC and decreased after that. The explanation is that at low 

temperature, the polysaccharide in cell wall was not completely dissolved, as the temperature 

increased, the viscosity of the solvent reduced and the mobility of molecules increased, 

accelerating the dissolution of polysaccharides from the cell wall.3 However, if the temperature 

was too high, the polysaccharides underwent partial degradation,4 leading to deepened color of 

the sample. Considering all these effects, ultrasonic temperature should be controlled within 50 ℃ 

~ 70 ℃.
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Figure S1 Yield of polysaccharide under different (a) extraction time, (b) liquid-solid ratios, and 

(c) extraction temperature

3.2 Response surface method (RSM) and data analysis

3.2.1 Range and level of factors

Based on preliminary experiment results, the range of independent variables and their levels 

were presented in Table S1. 

Table S1 Uncoded and coded levels of independent variables used in RSM design

Factor levelIndependent variables
-1 0 1

A. Extraction time 20 30 40
B. Liquid-solid ratio 50 60 70

C. Extraction temperature 50 60 70

3.2.2 Box-Bonhken design 

The response of interest was the extraction yield of polysaccharides. The results of 17 runs 

using Box-Bonhken design were presented in Table S2, in a random order.

Table S2 Experimental data for response surface analysis
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Run A/min B/(mL/g) C/oC Yield/%
1 -1 -1 0 11.99
2 1 -1 0 15.62
3 -1 1 0 15.91
4 1 1 0 17.67
5 -1 0 -1 17.60
6 1 0 -1 17.86
7 -1 0 1 17.42
8 1 0 1 20.79
9 0 -1 -1 13.95
10 0 1 -1 17.07
11 0 -1 1 16.69
12 0 1 1 17.56
13 0 0 0 22.12
14 0 0 0 21.77
15 0 0 0 22.06
16 0 0 0 22.31
17 0 0 0 21.94

3.2.3 Analysis of variance 

Table S3 shows the results of variance analysis, including its adequacy, variance and fitness. The 

response function (Y) was the extraction yield of polysaccharide (%). This value was related to 

test variables by a second-order polynomial equation as follows:

Y= 22.04+1.13A+1.25B+0.75C-0.47AB+0.78AC-0.56BC-2.32A2-4.42B2-1.30C2      (1)

Table S3 Summary of variance analysis

Source Sum of square Degree of 
freedom

Mean 
square

F-value P-value

Model 153.34 9 17.04 111.48 <0.0001
A 10.13 1 10.13 66.25 <0.0001
B 12.45 1 12.45 81.46 <0.0001
C 4.47 1 4.47 29.25 0.001

AB 0.87 1 0.87 5.72 0.0481
AC 2.42 1 2.42 15.82 0.0053
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BC 1.27 1 1.27 8.28 0.0237
A2 22.69 1 22.69 148.44 <0.0001
B2 82.31 1 82.31 538.52 <0.0001
C2 7.13 1 7.13 46.65 0.0002

Residual 1.07 7 0.15
Lack of 

fit
0.91 3 0.30 7.44 0.0410

Pure 
error

0.16 4 0.041

Total 154.41 16
Note: *p<0.05; **p<0.01 and ***p<0.001

  The regression coefficient values of the equation were listed in Table S3. The P- value was 

used as a tool to check the significance of each coefficient, which in turn may indicate the pattern 

of the interactions between the variables. The smaller the value of P, the more significant the 

corresponding coefficient.5 

  According to analysis of variance of the quadratic regression model, the P-value of the model 

was smaller than 0.0001, which indicated this regression equation model was extremely 

significant and this method is quite reliable to optimize the extraction process. The R2 value of 

the equation was 0.9842>0.9, revealing that the predicted value of the equation had a good 

correlation with the measured value, and the experimental error was very small. Therefore, the 

regression equation can be used to analyze and predict the test results. In addition, AC, AB and 

BC all had significant effects on the yield of polysaccharides, indicating that all these three 

factors had certain influence on the yield and their interactions were significant.

  The magnitude of the absolute value of the coefficient of the primary term in the regression 

equation indicated the degree of influence of each factor on the response value.6 According to 

this information, the order of the three factors affecting the yield of polysaccharide was: 
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Liquid-solid ratio > Extraction time > Extraction temperature.

3.2.4 Interactions analysis

The response surface and the contour plots, representing the regression equation (1), was 

obtained using Design-Expert 8.0.6 software. Based on this, thus we could analyze the influence 

and interactions of those three factors. The steepness of the slope of the response surface shows 

how the response values changes with the change of the factors. The color on the contour plot 

reflects impacts of the factors on the yield. The shape of ellipse means the interaction between 

factors is obvious, while circular shape means the opposite.7 

   In Figure S2, it is clear that the steep shape of each response surface indicated the obvious 

interaction of combined influence from those factors. And the density of axial contour revealed 

the extent of influence from each factor. With the information shown in Figure S2, we could 

conclude that the influence of liquid-solid ratio was the greatest, followed by extraction time 

extraction temperature has the least influence on the yield.

Figure S2 (a) Response surface plot and contour plot of extraction time and liquid-solid ratio 

and their impacts on yield 
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Figure S2 (b) Response surface plot and contour plot of extraction time and temperature and 

their impacts on yield

Figure S2 (c) Response surface plot and contour plot of extraction temperature, liquid-solid 

ratio and their impacts on yield

3.2.5 Prediction and verification of optimal conditions

According to the data processed by Design-Expert 8.0.6, the predicted optimal test variables 

providing an extraction yield of 22.35% were: extraction time: 31.42min, liquid-solid ratio: 

51.25:1(mL/g), and extraction temperature: 62.74oC. These conditions were slightly modified for 

practical purpose, which include extraction time: 31min, liquid-solid ratio: 51:1 (mL/g), and 

extraction temperature: 63oC. Under such conditions, three practical parallel tests were 

subsequently carried out, and the actual average extraction yield obtained was only 0.54% lower 

from the theoretical value, showing strong agreement with the predicted value. This finding 
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indicated that the regression model was accurate and feasible to optimize the extraction process 

of polysaccharide from okra.

3.3 Physicochemical analysis

3.3.1 FT-IR spectroscopy

FT-IR spectra of polysaccharide from okra in the range of 4000-400cm-1 are shown in Figure 

S3. Absorption bands were obvious at approximately 3400 cm-1, 2938 cm-1 and 1000-1200cm-1, 

which are common to all polysaccharides.7 The intense broad adsorption peak around 3400 cm-1 

can be attributed to O-H stretching vibration caused by hydrogen bonding in and between the 

molecules of saccharides. The less prominent band at 2938 cm-1 suggests C-H asymmetric 

vibration of saccharides.8 Both absorptions bands are characteristic of polysaccharide.9 The 

characteristic peak at 1740 cm-1 can be assigned to C=O stretching vibration of carbonyl ester.10 

The signal at 1638 cm-1 is related to C=O asymmetric stretching vibration of carboxylic group. 

The absorption peaks appeared between 1300-1000 cm-1 are caused by C-O stretching vibrations 

on the sugar ring.
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Figure S3 FT-IR spectroscopy of polysaccharide from okra

3.3.2 Gel permeation chromatography

As shown in Figure S4, the distribution of molecular weight of okra polysaccharide was 

relatively wide. Based on the retention time of of okra polysaccharide sample and the standard 

curve of D-glucose (lgMw=-0.08988t+8.15719, R2=0.9992), we calculated the average molecular 

weight of okra polysaccharide, which was 68010 kDa.
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Figure S4 GPC chromatogram of polysaccharide

3.3.3 Monosaccharide composition

The composition of OPS samples was determined using ion chromatography, by comparing 

the relevant peaks to those of a standard made of three monosaccharides (rhamnose; galactose; 

glucose). The peaks of the three monosaccharides were shown in Figure S5.  The molar ratio of 

three monosaccharides in okra polysaccharide was rhamnose: galactose: glucose=1:0.56:0.13. 

Further analysis of other components indicated by other peaks in the IC chromatogram was not 

performed in this work.
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Figure S5 Ion chromatography of okra polysaccharide

3.3.4 Uronic acid content

Figure S6 was the standard curve of galacturonic acid. Its linear regression fitting equation is 

Y=0.01519X+0.08402 (R2=0.9976). Based on this equation, the uronic acid content in okra 

polysaccharide was found to be 10.71%

Figure S6 Standard curve of Galacturonic acid
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