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SUPPORTING SECTION 1: METHODS

Exploration of the energy landscapes.

Discrete path sampling1,2 was used to construct and analyze the kinetic transition network-

s3–5 for hybridization of DNA duplexes. A discrete path is an ordered sequence of pairs

of minima, and the transition states connecting them, between two states of interest. A

kinetic transition network is a coarse-grained representation of an energy landscape that

is built up using geometry optimization methods to locate the local minima and interven-

ing transition states of a potential energy surface. First, low energy minima, including the

global minimum, are determined by basin-hopping global optimization6–9 using the GMIN

program.10 Initial discrete paths between selected pairs of endpoints are determined using

the doubly-nudged11 elastic band12,13 (DNEB) method to find transition state candidates,

and then hybrid eigenvector-following12,14,15 to converge high-energy images of the band to

transition states. The two minima connected by each transition state are determined by a

modified version of the limited-memory BFGS local minimization algorithm.16 These cal-

culations were carried out using the OPTIM program17 interfaced with AMBER9.18 The

root mean square gradient convergence criterion for stationary point optimization was set to

10−6 kcal mol−1Å
−1

.

The initial discrete path between a pair of distant endpoints is unlikely to be kineti-

cally relevant, and frequently has high energy barriers, and unnecessary detours. Hence,

initial discrete paths between endpoints of interest are used as the starting point to grow the

stationary point database and determine kinetically relevant pathways. Here, the SHORT-

CUT19,20 and UNTRAP20 schemes within the PATHSAMPLE driver program21 for OPTIM

were used to further sample the potential energy landscapes. The SHORTCUT scheme se-

lects pairs of minima along the current fastest path, and aims to determine refined discrete

paths with fewer steps and lower energy barriers. The UNTRAP scheme is used to elimi-

nate artificial kinetic traps in the kinetic transition networks, which arise due to incomplete
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sampling. Connections are attempted between pairs of low energy minima for which the

energy difference is small, but which are separated by high energy barriers. Sampling to

locate alternative pathways and explore new regions of the energy landscape is continued

until observable quantities, such as phenomenological rate constants, have converged.

The starting coordinates of the selected sequences were for the B-form and were generated

using the program nab from AMBER.18 The DNA duplexes were modelled using the all-

atom AMBER99/bsc0 force field,22 employing the χOL4 torsional corrections.23 Water was

modelled by a generalized Born implicit solvent model24,25 and the salt concentration was

maintained at 1.0 M using the Debye-Hückel approximation.26

Our focus in the present work is to discover details of mechanisms that may correspond

to long timescales in the range of tens of microseconds to seconds and even longer.27 We have

therefore chosen to use an implicit solvent model to facilitate sampling these rare events.

Although such continuum models introduce a further approximation, there is evidence that

the energetics can be reproduced with sufficient accuracy to produce useful predictions.27,28

For example, Tsui et al. employed the generalized Born (GB) model to simulate the A-

and B-forms of a duplex DNA d(CCAACGTTGG)2 and the corresponding duplex RNA

r(CCAACGUUGG)2, demonstrating good agreement with simulations using explicit water

in terms of both structure and energetics.29 In particular, the energy differences between

the A and B form duplexes derived from GB trajectories for both DNA and RNA closely

matched those obtained using explicit water simulations.29 Recent systematic evaluations

of DNA force fields with implicit solvation have also produced reasonable agreement with

explicit solvation and experimental data for both structural and dynamical properties.30,31

Within the present framework, an implicit solvent model is particularly useful because

the additional degrees of freedom associated with explicit solvent molecules and counterions

would complicate the landscape, making it harder to identify the key transition pathways.32

Comparison with explicit solvent results in previous work has demonstrated that implicit

solvent landscape can capture the mechanism and kinetics underlying conformational changes
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of biomolecules.33,34 Using the all-atom AMBER99/bsc022 + χOL4 torsional corrections23

with a GB implicit solvent model, Chakraborty et al. characterised the folding mechanisms

and kinetics of RNA tetraloop hairpins, and the calculated rate constants for folding of both

UUCG and GCAA hairpins were in excellent agreement with the values reported for hairpins

of similar size in temperature jump experiments.35 In a recent work, we have demonstrated

that the latest AMBER force fields in conjunction with the GB model can also reproduce the

experimental free energy difference, as well interconversion rates for a RNA conformational

switch, where the major and minor conformations only differ in the stacking orientation of

the central adenines.32 Similarly, we also investigated the transitions between Watson-Crick

(WC) and Hoogsteen (HG) base pairing in DNA using an implicit solvent model, revealing

multiple pathways.36 Our analysis indicates that the transition state ensemble corresponds to

base flipped-out states, in agreement with the experimental work of Nikolova et al.37 Based

on all this evidence, we believe that implicit solvent landscapes can capture the essential

features of the underlying landscape, and provide key mechanic insight into the kinetics of

conformational transitions.

Based on our previous experience, we anticipate that the topography of the free energy

landscape and its emergent properties (transition mechanism, thermodynamics, and kinetics)

would remain qualitatively similar if explicit ions or solvent molecules are included, although

some reorganization of minima within the major free energy basins is expected. The kinetic

transition networks described here can provide starting points for such studies. We note that

unbiased all-atom simulations of DNA hybridization using explicit solvent (even for the short

oligonucleotides considered here) would be extremely challenging, if not computationally

intractable, due to the long time scales involved. Enhanced sampling of the kind employed by

Zacharias and coworkers,38 or similar, could be useful in addressing this sampling bottleneck,

but these approaches also have their own limitations, be it the loss of kinetic information

due to biasing along reaction coordinates or exchanges in temperature/Hamiltonian space, or

difficulties/inaccuracies associated with partitioning of the phase space into a few metastable
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states (Markov-State Model based frameworks39). These limitations could potentially lead to

a misleading picture of thermodynamics and kinetics even when a more detailed description

of the DNA and the surrounding solvent is invoked. Our results, which do not require such

approximations, provide a powerful alternative approach, with a different set of assumptions.

The ultimate validation must be comparison with experimental observables.

Analysis and visualization of the energy landscapes.

Given a database of stationary points on the potential energy landscape, a self-consistent

regrouping scheme40,41 was used to recursively group together minima, separated by free

energy barriers below a chosen threshold, at a given temperature. Within the harmonic

superposition approximation (HSA),42 the partition function is a sum of individual contri-

butions from local minima, each of which is represented by a locally harmonic vibrational

density of states. The minimum-to-minimum rate constants are likewise assumed to be given

by harmonic transition state theory.43–45 The free energies of groups of minima and transi-

tion states are then estimated by appropriate sums over partition functions of the individual

stationary points.

Assigning appropriate edge weights to a kinetic transition network,1,46 the ‘fastest’ dis-

crete path, i.e. that which makes the largest contribution to the steady-state rate constant,

can be determined by Dijkstra’s algorithm.47 A path deviation algorithm48–50 was used to

determine the complete set of distinct paths in the network, where each discrete path is

distinguished on the basis of having a unique rate-limiting step, and to characterise the

transition state ensemble. The representative pathways are chosen by manually examining

the pathway between the conformational ensembles corresponding to the dissociated and

fully-hybridized states. A longer path with a distinct potential energy profile is recognized

as a representative pathway. The new graph transformation (NGT) method51 allows calcu-

lation of phenomenological rate constants.

Disconnectivity graphs52–56 are used to visualize potential and free energy landscapes, in
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a manner that preserves their full dimensionality. In a disconnectivity graph, the vertical

axis corresponds to energy. Local minima are represented by the leaves of the graph, which

terminate at their energies. The connected minima are classified into disjoint sets, or ‘su-

perbasins’,52 at regular threshold increments, by inducing a cut in the graph if groups of

minima are separated by a barrier that exceeds the threshold. The disconnectivity graphs

are coloured according to the total number of hydrogen-bonds between complementary D-

NA strands. The VMD program57 was used to visualize the structures for representative

stationary points.

Estimating free energies and interconversion rates.

The vibrational partition functions associated with the minima and the transition states in

the network were estimated using a harmonic approximation.58,59

Zi(T ) =
nie
−Vi/kT

(hνi/kT )κ
. (1)

The local free energy, Fi(T ) of each minimum can be written as:

Fi(T ) = −kT lnZi(T ), (2)

The equilibrium occupation probability of each minimum peqi (T ) is:

peqi (T ) =
Zi(T )

Z(T )
. (3)

Z(T ) is the full canonical partition function, which can be written as a sum of all the

contributions from the different catchment basins.

Z(T ) =
N∑
i

Zi(T ). (4)

6



In Eq. (1) , Vi denotes the potential energy of minimum i, ni is the number of distinct

permutational isomers of i, νi denotes the geometric mean normal mode frequency associated

with minimum i, and κ = 3N − 6 is the number of vibrational degrees of freedom, where N

is the number of atoms.

The partition functions and the free energies for the transition states are defined in an

analogous way, except that the normal mode frequency corresponding to the unique negative

Hessian eigenvalue (imaginary normal mode frequency) is excluded.

The minimum-to-minimum rate constants are estimated using harmonic transition state

theory (TST).

k†i (T ) =
kT

h

Z†(T )

Zi(T )
e−β∆V . (5)

In Eq. (5), Z†(T ) denotes the partition function of the transition state; Zi(T ) is the partition

function of minimum i; ∆V is the potential energy difference between the transition state

and minimum i. The total rate constant kji(T ) for an elementary transition from minimum i

to minimum j is obtained by summing the k†i (T ) values for all transition states that connect

the two minima.

Within the steady-state approximation for intervening minima, the rate constants, kSSAB

and kSSBA between reactant (A) and product (B) states, can be expressed as weighted sums

over all discrete paths in the network, assuming that the dynamics between adjacent minima

or lumped states40 is Markovian:1

kSSAB =
1

peqB

∑
a←b

kai1ki1i2ki2i3 ...kinbp
eq
b∑

j1
kj1i1

∑
j2
kj2i2

∑
j3
kj3i3 ...

∑
jn
kjnin

. (6)

In terms of transition probabilities, Pγα between directly connected minima γ and α, Eq. (6)

can be rewritten as:1

kSSAB =
1

peqB

∑
a←b

Pai1Pi1i2Pi2i3 ...Pinbp
eq
b τ
−1
b . (7)

The individual sums in the denominators of Eq. (6) consist of the unimolecular rate con-
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stants for all direct transitions from minimum jk to ik. The discrete path that makes the

largest contribution to the steady-state rate constant is termed the ‘fastest path’, and can be

extracted from the network using Dijkstra’s shortest path algorithm with appropriate edge

weights60 − lnPαβ, providing access to the product of transition probabilities in Eq. (7). To

characterize additional paths in order of their contribution to kSS we employ the recursive

enumeration algorithm61 within the same framework,41 and these pathways were examined

to deduce mechanistic details of the adenine conformational switch. The steady-state ap-

proximation for the intervening minima can be relaxed to yield rate constants kAB and kBA

that correspond to the mean first passage times between reactants and products.51 To extract

these values we employ a graph transformation technique (NGT)51,62 where minima in the

intervening region are progressively removed, and the transition probabilities as well as the

waiting times are renormalised to conserve the average mean first passage time (MFPT).51,63

We compute the rate constants in conjunction with a recursive free energy regrouping

scheme,40 which lumps together structures separated by free energy barriers below a certain

threshold into a single macrostate. This approach is similar in spirit to the kinetic clustering

schemes employed in methods based upon explicit dynamics.64,65 In the regrouping, the

original reactant and product states are expanded into ensembles of conformations assumed

to be in local equilibrium, and hence the global dynamics can be directly compared to

the observation time scale of experiments.66 After regrouping, the equilibrium occupation

probability and the free energy associated with group J are

peqJ (T ) =
∑
j∈J

peqj (T ), (8)

FJ = −kT ln
∑
j∈J

Zj(T ). (9)

where minimum j is a member of group J . The free energy of the group of transition states
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linking J and K is:40

F †KJ = −kT ln
∑
k←j

Z†kj(T ) ≡ −kT lnZ†KJ(T ), (10)

To analyze global dynamics corresponding to regrouped databases, the rate constants cor-

responding to transitions between different free energy groups are required, which can then

be used in the appropriate expressions for rate constants and committor probabilities.51 The

intergroup rate constant from J to K is:40

kKJ =
∑
k←j

peqj (T )

peqJ (T )
kkj(T ) =

∑
k←j

Zj(T )

ZJ(T )

kT

h

Z†kj(T )

Zj(T )
,

=
kT

h

Z†KJ(T )

ZJ(T )
=
kT

h
e−[F †

KJ (T )−FJ (T )]/kT .

(11)
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SUPPORTING SECTION 2: FIGURES

Figure S1: Potential energy disconnectivity graph for d(GGGGGG). The branches are
coloured according to the total number of hydrogen-bonds between the two DNA strands.
Some representative local minima from the different conformational ensembles are shown.
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Figure S2: Potential energy disconnectivity graph for d(GCGCGC). The branches are
coloured according to the total number of hydrogen-bonds between the two DNA strands.
Some representative local minima from the different conformational ensembles are shown.
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Figure S3: Some representative structures located in the low free energy region of the land-
scapes for (A) d(GGGGG) and (B) d(GCGCGC). Note that all the structures are the same
as those in Figs 1 and 2 of the main text.
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Figure S4: Top: Distribution of the normal mode frequencies (Λ) for minima constituting the
free energy groups corresponding to the canonical duplex, dissociated strands, misaligned
structure G3, and compact structure G1 for d(GGGGGG). The regrouping calculation-
s were performed using the recursive regrouping scheme,40,41 with a barrier threshold of
3.5 kcal mol−1. Bottom: Distribution of Λ values for minima constituting the free energy
groups corresponding to the canonical duplex, dissociated strands, misaligned structure W5,
and compact structure W1 for d(GCGCGC). The regrouping calculations were performed
using the recursive regrouping scheme,40,41 with a barrier threshold of 4.5 kcal mol−1. Within
the harmonic approximation, vibrational entropy is −kBΛ67–69 and more flexible structures
are therefore expected to have lower Λ values. Note that the Λ values for slipped confor-
mations G3 are lower than the those of the dissociated structures for d(GGGGGG). This
is because the nucleobases of the two single-stranded oligonucleotides for the dissociated
strands of d(GGGGGG) stack with each other, and even form hydrogen-bonds with their
neighbours, producing compact-like structures rather than fully extended single-stranded
oligonucleotides. The ‘dissociated’ structures do not refer to separated strands here. All the
conformations are the same as those in Figures 1 and 2 of the main text.
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Figure S5: Top: The potential energy as a function of the integrated path length (s) for the
fastest zippering pathway between the conformational ensembles corresponding to dissoci-
ated and fully-hybridized states for d(GGGGGG). Bottom: The fastest slithering pathway
between the ensemble of structures slipped by four bases and the fully-hybridized state for
d(GGGGGG). Each step along the pathway is one stationary point. Selected structures are
illustrated along the path, as indicated by the red dots.

14



Figure S6: Top: The potential energy as a function of the integrated path length (s) for the
fastest zippering pathway between the conformational ensembles corresponding to melted
and fully-hybridized states for d(GCGCGC). Bottom: The fastest slithering pathway be-
tween the ensemble of structures slipped by four bases and the fully-hybridized state for
d(GCGCGC). Each step along the pathway represents one stationary point. Selected struc-
tures are illustrated along the path, as indicated by the red dots.
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Figure S7: The sum of edge weights as a function of distinct paths on the network for
the hybridization of d(GGGGGG), determined by the path deviation algorithm.48,49 Each
distinct path is distinguished on the basis of having a unique rate-limiting step. The distinct
paths are indexed from one, starting from the fastest. For both zippering (top) and slithering
(bottom) mechanisms, three representative pathways belonging to families with distinct
potential energy profiles shown in Figures S8 and S9 are indicated using filled circles in red
on the profiles.
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Figure S8: Potential energy profiles of three representative pathways for the hybridization of
d(GGGGGG) by a zippering mechanism, determined by the path deviation algorithm48,49 to
find kinetically distinguishable pathway ensembles. The first path (top) shown is the fastest,
and the second (middle) and third (bottom) paths are the 20th and 70th fastest distinct
paths, respectively, which are highlighted in Figure S7. Snapshots of some representative
local minima that are encountered at different stages of the hybridization process are shown.
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Figure S9: Potential energy profiles of three representative pathways for the hybridization
of d(GGGGGG) by a slithering mechanism, determined by the path deviation algorithm to
find kinetically distinguishable pathway ensembles. The first path (top) shown is the fastest,
and the second (middle) and third (bottom) paths are the 800th and 1070th fastest distinct
paths, respectively, which are highlighted in Figure S7. Snapshots of some representative
local minima that are encountered at different stages of the hybridization process are shown.
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Figure S10: The sum of edge weights as a function of distinct paths on the network for
the hybridization of d(GCGCGC), determined by the path deviation algorithm.48,49 Each
distinct path is distinguished on the basis of having a unique rate-limiting step. The distinct
paths are indexed from one, starting from the fastest. For both zippering (top) and slithering
(bottom) mechanisms, three representative pathways belonging to families with distinct
potential energy profiles shown in Figures S11 and S12 are highlighted using filled circles in
red on the profiles.
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Figure S11: Potential energy profiles of three representative pathways for the hybridization of
d(GCGCGC) by a zippering mechanism, determined by the path deviation algorithm48,49 to
find kinetically distinguishable pathway ensembles. The first path (top) shown is the fastest,
and the second (middle) and third (bottom) paths are the 250th and 700th fastest distinct
paths, respectively, which are highlighted in Figure S10. Snapshots of some representative
local minima that are encountered at different stages of the hybridization process are shown.
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Figure S12: Potential energy profiles of three representative pathways for the hybridization of
d(GCGCGC) by a slithering mechanism, determined by the path deviation algorithm48,49 to
find kinetically distinguishable pathway ensembles. The first path (top) shown is the fastest,
and the second (middle) and third (bottom) paths are the 200th and 1000th fastest distinct
paths, respectively, which are highlighted in Figure S10. Snapshots of some representative
local minima that are encountered at different stages of the hybridization process are shown.
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Figure S13: Variations of the rate constants (k, s−1) corresponding to the zippering (forward
and backward transition, top) and the slithering (forward and backward transition, bottom)
pathways with reciprocal temperature ranging from 250 K to 350 K for d(GGGGGG), de-
picted using open circles. The best fits to the Arrhenius equation, k(T) = Aexp(−Ea/kBT)
are depicted as solid lines in red. Significant deviations from Arrhenius behaviour are evident
in each case.
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Figure S14: Variations of the rate constants (k, s−1) corresponding to the zippering (forward
and backward transition, top) and the slithering (forward and backward transition, bottom)
pathways with reciprocal temperature ranging from 250 K to 350 K for d(GCGCGC), de-
picted using open circles. The best fits to the Arrhenius equation, k(T) = Aexp(−Ea/kBT)
are depicted as solid lines in red. Significant deviations from Arrhenius behaviour are evident
in the zippering pathway.
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Figure S15: Top: The fastest free energy zippering pathway between the conformational
ensembles corresponding to dissociated (A) and fully-hybridized (B) states for d(GGGGGG).
The points correspond to groups of minima and transition states, obtained by the recursive
regrouping scheme40,41 using a barrier threshold of 5.5 kcal mol−1. Bottom: The fastest
free energy slithering pathway between the ensemble of structures slipped by four bases
(A) and the fully-hybridized state (B) for d(GGGGGG), using a regrouping threshold of
3.5 kcal mol−1. In the calculations, the temperature was set to 270 K.
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Figure S16: Top: The fastest free energy zippering pathway between the conformational
ensembles corresponding to dissociated (A) and fully-hybridized (B) states for d(GGGGGG).
The points correspond to groups of minima and transition states, obtained by the recursive
regrouping scheme40,41 using a barrier threshold of 5.5 kcal mol−1. Bottom: The fastest
free energy slithering pathway between the ensemble of structures slipped by four bases
(A) and the fully-hybridized state (B) for d(GGGGGG), using a regrouping threshold of
3.5 kcal mol−1. In the calculations, the temperature was set to 350 K.
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Figure S17: Top: The fastest free energy zippering pathway between the conformational
ensembles corresponding to dissociated (A) and fully-hybridized (B) states for d(GCGCGC).
The points correspond to free energy groups of minima and transition states, obtained by
the recursive regrouping scheme40,41 using a barrier threshold of 4.5 kcal mol−1. Bottom:
The fastest free energy slithering pathway between the ensemble of structures slipped by four
bases (A) and the fully-hybridized state (B) for d(GCGCGC), using a regrouping threshold
was 6.0 kcal mol−1. In the calculations, the temperature was set to 270 K.
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Figure S18: Top: The fastest free energy zippering pathway between the conformational
ensembles corresponding to dissociated (A) and fully-hybridized (B) states for d(GCGCGC).
The points correspond to free energy groups of minima and transition states, obtained by
the recursive regrouping scheme40,41 using a barrier threshold of 4.5 kcal mol−1. Bottom:
The fastest free energy slithering pathway between the ensemble of structures slipped by four
bases (A) and the fully-hybridized state (B) for d(GCGCGC), using a regrouping threshold
was 6.0 kcal mol−1. In the calculations, the temperature was set to 350 K.
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SUPPORTING SECTION 3: TABLE

Table 1: Average values of base pair step parameters for standard B-DNA,70

for the G1 structure of d(GGGGGG), and for the W1 and W2 structures of
d(GCGCGC). For the G1, W1 and W2 structures, only the base paired segment
was used for the calculations of local base pair step parameters. The local base
pair parameters were calculated using 3DNA.71

Local base-pair
step parameter

B-DNA G1 W1 W2

Tilt (deg.) -0.10 ± 2.5 0.99 ± 2.04 -0.68 ± 5.58 -0.74 ± 5.29
Roll (deg.) 0.60 ± 5.2 9.26 ± 2.84 5.84 ± 5.42 6.90 ± 7.20
Twist (deg.) 36.00 ± 6.8 31.13 ± 2.18 36.14 ± 1.92 38.03 ± 12.99
Shift (Å) -0.02 ± 0.45 0.00 ± 0.49 -0.22 ± 0.79 0.11 ± 1.18
Slide (Å) 0.23 ± 0.87 -1.29 ± 0.12 -0.17 ± 0.14 -0.04 ± 0.71
Rise (Å) 3.32 ± 0.18 3.41 ± 0.04 3.28 ± 0.17 3.18 ± 0.20
Form B-DNA B-DNA B-DNA B-DNA
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(5) Röder, K.; Joseph, J. A.; Husic, B. E.; Wales, D. J. Energy Landscapes for Proteins:

From Single Funnels to Multifunctional Systems. Adv. Theory Simul. 2019, 2, 1800175.

(6) Li, Z.; Scheraga, H. A. Monte Carlo-Minimization Approach to the Multiple-minima

Problem in Protein Folding. Proc. Nat.l Acad. Sci. U S A 1987, 84, 6611–6615.

(7) Li, Z.; Scheraga, H. A. Structure and Free Energy of Complex Thermodynamic Systems.

J. Mol. Struct. 1988, 179, 333 – 352.

(8) Oakley, M. T.; Johnston, R. L.; Wales, D. J. Symmetrisation Schemes for Global Op-

timisation of Atomic Clusters. Phys. Chem. Chem. Phys. 2013, 15, 3965–3976.

(9) Strodel, B.; Lee, J. W. L.; Whittleston, C. S.; Wales, D. J. Transmembrane Structures

for Alzheimer’s Aβ1−42 Oligomers. J. Am. Chem. Soc. 2010, 132, 13300–13312.

(10) Wales, D. J. GMIN: A Program for Finding Global Minima and Calculating Thermo-

dynamic Properties. http://www-wales.ch.cam.ac.uk/GMIN, 2018.

(11) Trygubenko, S. A.; Wales, D. J. A Doubly Nudged Elastic Band Method for Finding

Transition States. J. Chem. Phys. 2004, 120, 2082–2094.

29



(12) Henkelman, G.; Jónsson, H. A Dimer Method for Finding Saddle Points on High Di-

mensional Potential Surfaces Using Only First Derivatives. J. Chem. Phys. 1999, 111,

7010–7022.

(13) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A Climbing Image Nudged Elastic Band

Method for Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys. 2000,

113, 9901–9904.

(14) Munro, L. J.; Wales, D. J. Defect migration in crystalline silicon. Phys. Rev. B 1999,

59, 3969–3980.

(15) Zeng, Y.; Xiao, P.; Henkelman, G. Unification of algorithms for minimum mode opti-

mization. J. Chem. Phys. 2014, 140, 044115.

(16) Liu, D. C.; Nocedal, J. On the Limited Memory BFGS Method for Large Scale Opti-

mization. Math. Program. 1989, 45, 503–528.

(17) Wales, D. J. OPTIM: A Program for Optimizing Geometries and Calculating Pathways.

http://www-wales.ch.cam.ac.uk/OPTIM, 2018.

(18) Case, D. A.; Darden, T. A.; Cheatham, T.; Simmerling, C. L.; Wang, J.; Duke, R. E.;

Luo, R.; Walker, R. C.; Zhang, W.; Merz, K. M. et al. AMBER 9. http://ambermd.

org/, 2006.

(19) Strodel, B.; Whittleston, C. S.; Wales, D. J. Thermodynamics and Kinetics of Aggre-

gation for the GNNQQNY Peptide. J. Am. Chem. Soc. 2007, 129, 16005–16014.

(20) Carr, J. M.; Wales, D. J. Global Optimization and Folding Pathways of Selected Alpha-

helical Proteins. J. Chem. Phys. 2005, 123, 234901.

(21) Wales, D. J. PATHSAMPLE: A Driver for OPTIM to Create Stationary Point Databas-

es Using Discrete Path Sampling and Perform Kinetic Analysis. http://www-wales.

ch.cam.ac.uk/PATHSAMPLE, 2018.

30
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(49) Noé, F.; Krachtus, D.; Smith, J. C.; Fischer, S. Transition Networks for the Compre-

hensive Characterization of Complex Conformational Change in Proteins. J. Chem.

Theory Comput. 2006, 2, 840–857.

(50) Sharpe, D. J.; Wales, D. J. Identifying Mechanistically Distinct Pathways in Kinetic

Transition Networks. J. Chem. Phys. 2019, 151, 124101.

(51) Wales, D. J. Calculating Rate Constants and Committor Probabilities for Transition

Networks by Graph Transformation. J. Chem. Phys. 2009, 130, 204111.

33



(52) Becker, O. M.; Karplus, M. The Topology of Multidimensional Potential Energy Sur-

faces: Theory and Application to Peptide Structure and Kinetics. J. Chem. Phys. 1997,

106, 1495–1517.

(53) Krivov, S. V.; Karplus, M. Hidden Complexity of Free Energy Surfaces for Peptide

(Protein) Folding. Proc. Natl. Acad. Sci. U S A 2004, 101, 14766–14770.

(54) Krivov, S. V.; Karplus, M. Free Energy Disconnectivity Graphs: Application to Peptide

Models. J. Chem. Phys. 2002, 117, 10894–10903.

(55) Evans, D. A.; Wales, D. J. Free Energy Landscapes of Model Peptides and Proteins. J.

Chem. Phys. 2003, 118, 3891–3897.

(56) Wales, D. J.; Miller, M. A.; Walsh, T. R. Archetypal Energy Landscapes. Nature 1998,

394, 758–760.

(57) Humphrey, W.; Dalke, A.; Schulten, K. VMD – Visual Molecular Dynamics. J. Mol.

Graph. 1996, 14, 33–38.

(58) Hoare, M. R.; McInnes, J. Statistical Mechanics and Morphology of Very Small Atomic

Clusters. Faraday Discuss. Chem. Soc. 1976, 61, 12–24.

(59) Hoare, M. Advances in Chemical Physics ; John Wiley & Sons: USA, 1979; Vol. 40; pp

49 – 129.

(60) Carr, J. M.; Trygubenko, S. A.; Wales, D. J. Finding Pathways Between Distant Local

Minima. J. Chem. Phys. 2005, 122, 234903.
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