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Figure S1 shows the deviation form linear velocity profile of linear and nonlinear (S-

shaped) flows generated by different simulation methods: (1) moving boundary walls in Slit-

confined MPCD solvent (MPCD SLIT); (2) applying Lees-Edwards boundary conditions in

bulk Dissipative Particle Dynamics system (DPD LEBC). It is clear that the linear flow in

both cases breaks down at high shear rates.
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Figure S1: The transition from linear to nonlinear (S-shaped) flow in (a) MPCD SLIT and
(b) DPD LEBC methods. The deviation form linear velocity profile of different flow types
is characterized via λ =

∑n
i=1[(vi,x − γ̇ri,y)2 + v2

i,y + v2
i,z]/(3n), where n denotes the number

of all particles in simulation box.
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To quantity the unusual phenomena observed in the simulations, we first calculate the

alignment angle, the cross-correlation function, and the end-to-end vector correlation func-

tion. These quantities reveal directly the novel dynamic behaviors of polymers at large shear

rates.
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Figure S2: Dependence of tan(2θ) on the Weissenberg number Wi for linear (a) and ring
(b) polymers. The results with hydrodynamic interactions (HI) and without hydrodynamic
interactions (NHI) are shown by the solid and hollow symbols, respectively. The solid blue
line indicates the asymptotic dependence of Winkler’s theory, tan(2θ) ∼ Wi−1/3.1

Figure S2 shows the dependence of the alignment angle θ on the Weissenberg number

Wi for linear and ring polymers. On the region of low shear rates, the results both with and

without hydrodynamic interactions (HI and NHI) collapse approximately onto the solid blue

line, in agreement with the asymptotic behaviour of Winkler’s theory, tan(2θ) ∼ Wi−1/3.1

This is consistent with previous studies focusing on semidilute solutions.2–6 In the weak shear

regime, polymer chains stretch and recoil continuously, leading to huge conformational fluc-

tuations. With further increasing of the shear rates, the NHI results are still in agreement

with the theoretical prediction. However, depending on the shear rate and polymer topol-
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ogy, the HI results deviate noticeably downward or upward from the theoretical prediction.

Such deviation implies that the polymer prefers to adopt a random orientation during the

tumbling motion at strong shear flows. Note that the ring polymer exhibits stronger devia-

tion compared with the linear chains, indicating more complicated orientational behaviors.

However, at extremely high shear rates, the results of both linear and ring polymers fall back

to the theoretical line again, indicating a similar dynamic behavior at lower shear rate.
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Figure S3: Cross-correlation functions for linear and ring polymers under different shear
rates.

The physical origin of the tumbling motion is the successive extension and contraction

of the polymer chain over time, which is induced by the coexistence of the extensional and

rotational components of the simple shear flow. Traditionally, the cross-correlation Cxy(t)

between the chain extension along the flow and gradient directions was considered as an

appropriate measurement of the characteristic tumbling time. As shown in Figure S3(a) and
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(d), the cross-correlation function exhibits a deep minimum (less than 0) at time t+ and a

sharp peak (greater than 0) at time t−, leading to a characteristic time for the tumbling

motion, τCTB = 2(t+ − t−).5 This behavior is observed for linear and ring polymers at small

shear rates. However, at high shear rates, the negative region of the cross-correlation function

Cxy(t) disappears, accompanied by multiple oscillational peaks (as shown in Figure S3(b),

(c), (e), and (f)). Thus Cxy(t) fails to characterize the tumbling time clearly because a

specific value of t+ does not exist at all, indicating a different dynamic behavior for both

linear and ring polymers under strong shear flows.
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Figure S4: End-to-end vector autocorrelation functions for linear (a) and ring (b) polymers
at different shear rates.

Another important function that quantifies the polymer dynamics is the normalized end-

to-end vector autocorrelation function defined by C(t) = 〈Ree(t) ·Ree(0)〉/〈R2
ee〉. Here, Ree

is the vector that connects the first and the last monomers for a linear polymer. For a

ring polymer, Ree refers to the “diameter vector” that connects monomer pair separated by

N/2 monomers, i.e., the vector between monomer pair (1, N/2 + 1). As shown in Figure
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S4, for polymers at equilibrium, the autocorrelation function C(t) decays exponentially.

At small shear rates, the time dependence of C(t) is nonmonotonic and negative regions

appear. Both linear and ring polymers exhibit oscillating relaxation dynamics, confirming the

existence of continuous tumbling motion. When the shear rate increases further, the polymer

relaxation is dominated by the exponential relaxation again, and the negative regions no

longer exist, indicating the suppression of uniform tumbling motion. Therefore, compared

with the polymer dynamics in weak shear flow, large shear rates lead to a much richer variety

of response behaviors for both linear and ring polymers.
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Figure S5: The corresponding relationship between the polymer size and the strength of
nonlinear flow.

Figure S5 shows the corresponding relationship between the polymer size and the strength

of nonlinear flow, which indicates that the nonmonotonic increase of polymer size at high

shear rates is caused by the transition from linear to nonlinear (S-shaped) flow. For linear

and ring polymers in a bigger simulation box (72σ×26σ×26σ, about 15.0Rg-ring×5.4Rg-ring×

5.4Rg-ring), the nonmonotonic dependence is detected at lower shear rate, and the Regime 4

of ring polymers disappears.

Figure S6 shows the probability distribution functions of the instantaneous radius of
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Figure S6: Probability distribution functions of the instantaneous radius of gyration Rg

(PDFs-Rg) for linear (a) and ring (b) polymers at given Weissenberg numbers.

gyration Rg (PDFs-Rg) for linear and ring polymers at given Weissenberg numbers Wi.

For GL and HL cases, the shapes of the PDFs-Rg are similar and approximately symmetric,

indicating that the linear polymers undergo uniform tumbling motions. A subtle difference is

that the polymer in the HL case favors stretching conformations, leading to a larger extension

than that in the GL case. As seen from the movies, the ring polymers in the CR, DR, and

HR cases undergo uniform tank-treading motions, which are supported by the single peak of

the PDFs-Rg. Clearly, PDF-Rg for the GR case exhibits double peaks, corresponding to the

breakdown of uniform tank-treading motion and the shrinkage of the polymer size.

Figure S7 illustrates different relatively stable stretched conformations for linear and ring

polymers with the inclusion of HI at different shear rates, given by the monomer density

distributions in the shear-gradient plane (a, b, c, and d) and the corresponding distribution

in the shear-vorticity plane (e, f, g, and h). At large shear rate, both linear and ring polymers

exhibit a cis-S-shaped conformation (shear-gradient plane: a and d). Due to the unique tank-
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Figure S7: The monomer density distributions of stretched conformations for linear and ring
polymers at large shear rates with the inclusion of HI.
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Figure S8: The angular autocorrelation functions for ring polymers at given shear rates.

treading motion, the ring polymer exhibits another relatively stable stretched state with an

oval conformation at moderate shear rates (shear-gradient plane: b and c).

As shown in the BR case in Figure S8, a second peak of the angular autocorrelation

function appears at half of the characteristic time for tank-treading motion. In the ER case,

the ring polymer collapses to a coil-like conformation, supported by the remarkable decrease

of the average polymer size. Moreover, it can be seen from the polymer trajectories in SI-

movie 11 that the polymer chain exhibits a rapid rotation without significantly changing its

collapsed shape. In other words, the tank-treading motion has been largely suppressed by

the shear flow in the ER case, because the extended conformations no longer exist. However,

the angular autocorrelation function for the ER case in Figure S8 indicates a uniform tank-

treading motion rather than the suppressed behavior, leading to an inappropriate prediction

in the large shear regime.

Movies

Trajectories of linear and ring polymers at different Weissenberg numbers in their respective

mass center coordinates. Two half parts of the polymer beads are labeled with different

colors for visualization. All movies generated by VMD7 are as follows:

SI-movie 1: Linear chain at equilibrium (AL case).
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SI-movie 2: Linear chain under shear flow at Wi = 1162 (BL case).

SI-movie 3: Linear chain under shear flow at Wi = 1356 (EL case).

SI-movie 4: Linear chain under shear flow at Wi = 1743 (FL case).

SI-movie 5: Linear chain under shear flow at Wi = 2034 (GL case).

SI-movie 6: Linear chain under shear flow at Wi = 2227 (HL case).

SI-movie 7: Ring chain at equilibrium (AR case).

SI-movie 8: Ring chain under shear flow at Wi = 1043 (BR case).

SI-movie 9: Ring chain under shear flow at Wi = 1434 (CR case).

SI-movie 10: Ring chain under shear flow at Wi = 1630 (DR case).

SI-movie 11: Ring chain under shear flow at Wi = 2086 (ER case).

SI-movie 12: Ring chain under shear flow at Wi = 2412 (FR case).

SI-movie 13: Ring chain under shear flow at Wi = 2672 (GR case).

SI-movie 14: Ring chain under shear flow at Wi = 2998 (HR case).
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