Supporting Information

Induction of Antiphytopathogenic Metabolite and Squalene Production and Phytotoxin Elimination by Adjustment of the Mode of Fermentation in Cocultures of Phytopathogenic *Nigrospora oryzae* and *Irpex lacteus*

Ya-Mei Wu,[#] Qing-Yan Zhou, [#] Xue-Qiong Yang, Yu-Jie Luo, Jing-Jing Qian, Shi-Xi Liu, Ya-Bin Yang, ^{*} and Zhong-Tao Ding^{*}

Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2st Cuihu North Road, Kunming 650091, China.

Table of contents

Figure S1. HRESIMS spectrum of compound 1	3
Figure S2. ¹ H NMR spectrum of compound 1 in MeOD (600MHz)	3
Figure S3. ¹³ C NMR spectrum of compound 1 in MeOD (150MHz)	4
Figure S4, COSY spectrum of compound 1 in MeOD (600 MHz)	4
Figure S5. HSOC spectrum of compound 1 in MeOD (600 MHz)	5
Figure S6, HMBC spectrum of compound 1 in MeOD (600 MHz)	5
Figure S7 NOESY spectrum of compound 1 in MeOD (600 MHz)	6
Figure S& HRESIMS spectrum of compound 2	Ğ
Figure S9 ¹ H MR spectrum of compound 2 in MeOD (500MHz)	ž
Figure S10 13 C NMR spectrum of compound 2 in MeOD (125MHz)	7
Figure S11 COSY spectrum of compound 2 in MOD (500 MHz)	, 8
Figure S12 HSOC spectrum of compound 2 in MeOD (500 MHz)	8
Figure S12, HMBC spectrum of compound 2 in McOD (500 MHz)	ŏ
Figure S14 NOESY spectrum of compound 2 in MeOD (500 MHz)	ó
Figure S15 HRESIMS spectrum of compound 3	10
Figure S16. ¹ H NMR spectrum of compound 3 in MeOD (500MHz)	10
Figure S17 ¹³ C MMR spectrum of compound 3 in MeOD (125MHz)	11
Figure 517. Conversion of compound 3 in MCOD (500 MHz)	11
Figure 510, HSOC spectrum of compound 3 in MCOD (500 MHz)	12
Figure S10, HMRC spectrum of compound 3 in MeOD (500 MHz)	12
Figure S21. NOES spectrum of compound 3 in MCOD (500 MHz)	13
Figure 521. ROEST Spectrum of compound 5 in MOD (500 Milz)	13
Figure 522. IN MR spectrum of compound 4 in MeOD (600MHz)	14
Figure 524 ¹³ C NMP spectrum of compound 4 in McOD (150 MHz)	14
Figure 524. C Nink spectrum of compound 4 in MeOD (600 MHz)	15
Figure 526 (SOC) spectrum of compound 4 in McOD (600 MHZ)	15
Figure 527 HMC spectrum of compound 4 in McOD (600 MHz)	16
Figure 527. IN the spectrum of compound 4 in MeOD (600 MHz)	16
Figure 520 HRESIMS reaction of compound 4 in MCOD (600 MHZ)	17
Figure 527. TRESHOTS Spectrum of compound 5 in MeOD (400MHz)	17
Figure S31 ¹³ C NMR spectrum of compound 5 in McOD (100MHz)	18
Figure S32 COSt spectrum of compound 5 in MeOD (600 MHz)	18
Figure S23, USOF spectrum of compound 5 in MeOD (600 MHz)	10
Figure S34 HMRC spectrum of compound 5 in MeOD (600 MHz)	19
Figure 534. Hyper spectrum of compound 5 in MCO((600 MHz)	20
Figure S36. Experimental electronic circular dichoism (ECD) (black) and calculated ECD spectra of (10R 11S 14S 15R)-1a (10S	$11R^{20}$
14R $15S-1b$ (10R $11R$ $14S$ $15S-1c$ and (10S $11S$ $14R$ $15R$)-1d	20
Figure S37 CD spectrum of compound 2	21
Table S1 Energies of the dominative conformers of isomers 1a-1d	21
Figure S38. Optimized structure of isomer 1a	22
Table S2 Standard orientation of isomer 1a	22
Figure S39. Ontimized structure of isomer 1b	25
Table S3 Standard orientation of isomer 1b	25
Figure S40. Optimized structure of isomer 1c	28
Table S4 Standard orientation of isomer 1c	28
Figure S41. Optimized structure of isomer 1d	31
Table S5 Standard orientation of isomer 1d	31
Figure S42. CD spectrum of compound 3	34
Figure S43. Experimental and some of calculated ECD spectra of compound 3	34
Table S6 Energies of dominative conformers of isomers 3a-3h	35
Figure S44. Experimental electronic circular dichroism (ECD) of 5	36
Figure S45. LC-HRMS finger-prints by ion extraction of co-culture, Irpex lacteus, and Nigrospora oryzae fermentation products	and
metabolites (3-8).	38
Figure S46. The in vivo antifungal activities of 6, and 8 against leaves of <i>Cerasus cerasoides</i> infected by <i>Nigrospora oryzae</i> .	39
Figure S47. The phytotoxicity of nigbeauvin A against leaves of host <i>Dendrobium officinale</i> (blank $((1))$, sample $1((2))$ sample 2	((3))
from left to the r	ight)
39	
Figure S48. 1H NMR spectrum of compound 6 in CDCl ₃ (400MHz)	40
Figure S49. ¹⁹ C NMR spectrum of compound 6 in CDCl ₃ (150MHz)	40
Figure S50. H NMR spectrum of compound 7 in MeOD (600MHz)	41
Figure S51. VC NMR spectrum of compound 7 in MeOD (150MHz)	41
Figure S52. ¹ H NMR spectrum of compound 8 in MeOD (500MHz)	42
Figure S53, 13C NMK spectrum of compound 8 in MeOD (125MHz)	42
Figure S54. LU-HKMS finger-prints of co-culture, Irpex lacteus, and Nigrospora oryzae fermentation products	43

Figure S1. HRESIMS spectrum of compound 1

Figure S2. ¹H NMR spectrum of compound **1** in MeOD (600MHz)

Figure S3. ¹³C NMR spectrum of compound 1 in MeOD (150MHz)

Figure S4. COSY spectrum of compound 1 in MeOD (600 MHz)

Figure S5. HSQC spectrum of compound 1 in CDCl₃ (500 MHz)

Figure S6. HMBC spectrum of compound 1 in CDCl₃ (500 MHz)

Figure S7. NOESY spectrum of compound 1 in CDCl₃ (500 MHz)

Figure S8. HRESIMS spectrum of compound 2

Figure S9. ¹H NMR spectrum of compound **2** in MeOD (500MHz)

Figure S10. ¹³C NMR spectrum of compound **2** in MeOD (125MHz)

Figure S11.COSY spectrum of compound 2 in MeOD (500 MHz)

Figure S12. HSQC spectrum of compound 2 in MeOD (500 MHz)

Figure S13. HMBC spectrum of compound 2 in CDCl₃ (500 MHz)

Figure S14. NOESY spectrum of compound 2 in MeOD (500 MHz)

Figure S15. HRESIMS spectrum of compound 3

Figure S16. ¹H NMR spectrum of compound **3** in MeOD (500MHz)

Figure S17. ¹³C NMR spectrum of compound **3** in MeOD (125MHz)

Figure S18. COSY spectrum of compound **3** in MeOD (500 MHz)

Figure S19. HSQC spectrum of compound **3** in MeOD (500 MHz)

Figure S20. HMBC spectrum of compound 3 in MeOD (500 MHz)

Figure S21. NOESY spectrum of compound **3** in MeOD (500 MHz)

Figure S22. HRESIMS spectrum of compound 4

Figure S23. ¹H NMR spectrum of compound **4** in MeOD (600MHz)

Figure S24. ¹³C NMR spectrum of compound 4 in MeOD (150 MHz)

Figure S25. COSY spectrum of compound 4 in MeOD (600 MHz)

Figure S26. HSQC spectrum of compound 4 in MeOD (600 MHz)

Figure S27. HMBC spectrum of compound 4 in MeOD (600 MHz)

Figure S28. ROESY spectrum of compound 4 in MeOD (600 MHz)

Figure S29. HRESIMS spectrum of compound 5

Figure S30. ¹H NMR spectrum of compound **5** in MeOD (600MHz)

Figure S31. ¹³C NMR spectrum of compound **5** in MeOD (150MHz)

Figure S32. COSY spectrum of compound 5 in MeOD (600 MHz)

Figure S33. HSQC spectrum of compound 5 in MeOD (600 MHz)

Figure S34. HMBC spectrum of compound 5 in MeOD (600 MHz)

Figure S35. ROESY spectrum of compound 5 in MeOD (600 MHz)

Figure S36. Experimental electronic circular dichroism (ECD) (black) and calculated ECD spectra of (10R, 11S, 14S, 15R)-1a, (10S, 11R, 14R, 15S)-1b, (10R, 11R, 14S, 15S)-1c, and (10S, 11S, 14R, 15R)-1d.

Figure S37. CD spectrum of compound 2

T	B3LYP/6-31G(d)			
Isomer	Energy(A.U.)	Energy(kcal/mol)		
1a	-1629.41453348	-1022473.27522339		
1b	-1629.41453348	-1022473.27522339		
1c	-1629.41683744	-1022474.72098042		
1d	-1629.41683741	-1022474.72961600		

Table S1 Energies of the dominative conformers of isomers 1a-1d.

Figure S38. Optimized structure of isomer 1a

Center	Atomic	Atomic	Coordinates(Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-11.8795	0.6976	0.0768
2	6	0	-11.3310	1.9664	-0.5811
3	6	0	-11.5502	3.1897	0.3224
4	6	0	-9.8516	1.8096	-1.0012
5	6	0	-8.8253	1.5812	0.1176
6	8	0	-12.1215	2.1184	-1.7764
7	6	0	-7.3919	1.4169	-0.4317
8	6	0	-6.3433	1.1571	0.6346
9	6	0	-6.0347	2.3305	1.5357
10	6	0	-5.7669	-0.0533	0.7217
11	6	0	-4.7316	-0.5234	1.7121
12	6	0	-3.3416	-0.8424	1.1050
13	6	0	-3.2124	-2.1735	0.3229
14	6	0	-3.4192	-3.3977	1.2189
15	6	0	-1.8450	-2.2554	-0.4131
16	6	0	0.7126	-2.3617	-0.3317
17	6	0	1.9671	-2.2877	0.5490
18	8	0	-1.8810	-1.2083	-1.4031
19	6	0	3.3211	-2.5649	-0.1583

Table S2 Standard orientation of isomer 1a

20	8	0	2.1038	-0.9761	1.1278
21	6	0	3.5512	-1.5734	-1.3318
22	6	0	3.4134	-4.0206	-0.6228
23	8	0	4.3357	-2.4318	0.8402
24	6	0	5.0357	-1.3739	-1.7255
25	6	0	5.7162	-0.2574	-0.9737
26	6	0	6.8074	-0.3121	-0.1936
27	6	0	7.5516	-1.5919	0.1217
28	6	0	7.3743	0.9537	0.4177
29	6	0	8.7728	1.3286	-0.1164
30	6	0	9.3214	2.6070	0.5326
31	6	0	10.7200	3.0839	0.0782
32	6	0	11.8124	2.0659	0.4161
33	6	0	10.7508	3.4447	-1.4149
34	8	0	11.0676	4.2498	0.8503
35	6	0	-0.5876	-2.1364	0.4563
36	8	0	-4.2152	-2.2772	-0.6957
37	1	0	-12.9538	0.8085	0.2563
38	1	0	-11.3880	0.4971	1.0338
39	1	0	-11.7325	-0.1661	-0.5803
40	1	0	-11.0372	3.0889	1.2851
41	1	0	-12.6200	3.3212	0.5148
42	1	0	-11.1765	4.1029	-0.1601
43	1	0	-9.5644	2.7142	-1.5622
44	1	0	-9.8044	0.9787	-1.7177
45	1	0	-8.8543	2.4185	0.8261
46	1	0	-9.0829	0.6801	0.6886
47	1	0	-11.7888	2.9028	-2.2420
48	1	0	-7.3864	0.5916	-1.1548
49	1	0	-7.1283	2.3269	-0.9944
50	1	0	-6.9144	2.6322	2.1199
51	1	0	-5.7438	3.2066	0.9392
52	1	0	-5.2263	2.1286	2.2421
53	1	0	-6.0611	-0.8071	-0.0056
54	1	0	-4.5833	0.2280	2.4951
55	1	0	-5.1141	-1.4148	2.2290
56	1	0	-3.0465	-0.0192	0.4435
57	1	0	-2.6102	-0.8605	1.9245
58	1	0	-4.4553	-3.4313	1.5671
59	1	0	-2.7644	-3.3805	2.0960

60	1	0	-3.2327	-4.3189	0.6564
61	1	0	-1.8378	-3.2296	-0.9263
62	1	0	0.6731	-3.3457	-0.8186
63	1	0	0.7959	-1.6048	-1.1210
64	1	0	1.8858	-3.0303	1.3577
65	1	0	-1.2747	-1.4459	-2.1191
66	1	0	1.5081	-0.9159	1.8881
67	1	0	3.1238	-0.5988	-1.0663
68	1	0	2.9861	-1.9335	-2.2014
69	1	0	3.2570	-4.7003	0.2217
70	1	0	4.4109	-4.2190	-1.0271
71	1	0	2.6799	-4.2488	-1.4021
72	1	0	4.2133	-1.5450	1.2214
73	1	0	5.5873	-2.3129	-1.6243
74	1	0	5.0651	-1.1187	-2.7955
75	1	0	5.2548	0.7221	-1.1226
76	1	0	6.8916	-2.4610	0.0848
77	1	0	7.9825	-1.5481	1.1300
78	1	0	8.3879	-1.7612	-0.5707
79	1	0	7.4433	0.8330	1.5106
80	1	0	6.6878	1.7916	0.2384
81	1	0	9.4641	0.4961	0.0644
82	1	0	8.7079	1.4496	-1.2056
83	1	0	8.6103	3.4288	0.3479
84	1	0	9.3616	2.4772	1.6225
85	1	0	11.6873	1.1400	-0.1538
86	1	0	11.7922	1.8257	1.4845
87	1	0	12.7956	2.4863	0.1813
88	1	0	10.5718	2.5730	-2.0537
89	1	0	11.7268	3.8676	-1.6743
90	1	0	9.9821	4.1930	-1.6509
91	1	0	10.3864	4.9204	0.6794
92	1	0	-0.6461	-2.8698	1.2725
93	1	0	-0.5684	-1.1378	0.9073
94	1	0	-3.9368	-1.6472	-1.3846

Figure S39. Optimized structure of isomer 1b

Center	Atomic	Atomic	Coordinates(Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	11.8795	0.6976	0.0768
2	6	0	11.3310	1.9664	-0.5811
3	6	0	11.5502	3.1897	0.3224
4	6	0	9.8516	1.8096	-1.0012
5	6	0	8.8253	1.5812	0.1176
6	8	0	12.1215	2.1184	-1.7764
7	6	0	7.3919	1.4169	-0.4317
8	6	0	6.3433	1.1571	0.6346
9	6	0	6.0347	2.3305	1.5357
10	6	0	5.7669	-0.0533	0.7217
11	6	0	4.7316	-0.5234	1.7121
12	6	0	3.3416	-0.8424	1.1050
13	6	0	3.2124	-2.1735	0.3229
14	6	0	3.4192	-3.3977	1.2189
15	6	0	1.8450	-2.2554	-0.4131
16	6	0	-0.7126	-2.3617	-0.3317
17	6	0	-1.9671	-2.2877	0.5490
18	8	0	1.8810	-1.2083	-1.4031
19	6	0	-3.3211	-2.5649	-0.1583
20	8	0	-2.1038	-0.9761	1.1278

Table S3 Standard orientation of isomer 1b

21	6	0	-3.5512	-1.5734	-1.3318
22	6	0	-3.4134	-4.0206	-0.6228
23	8	0	-4.3357	-2.4318	0.8402
24	6	0	-5.0357	-1.3739	-1.7255
25	6	0	-5.7162	-0.2574	-0.9737
26	6	0	-6.8074	-0.3121	-0.1936
27	6	0	-7.5516	-1.5919	0.1217
28	6	0	-7.3743	0.9537	0.4177
29	6	0	-8.7728	1.3286	-0.1164
30	6	0	-9.3214	2.6070	0.5326
31	6	0	-10.7200	3.0839	0.0782
32	6	0	-11.8124	2.0659	0.4161
33	6	0	-10.7508	3.4447	-1.4149
34	8	0	-11.0676	4.2498	0.8503
35	6	0	0.5876	-2.1364	0.4563
36	8	0	4.2152	-2.2772	-0.6957
37	1	0	12.9538	0.8085	0.2563
38	1	0	11.3880	0.4971	1.0338
39	1	0	11.7325	-0.1661	-0.5803
40	1	0	11.0372	3.0889	1.2851
41	1	0	12.6200	3.3212	0.5148
42	1	0	11.1765	4.1029	-0.1601
43	1	0	9.5644	2.7142	-1.5622
44	1	0	9.8044	0.9787	-1.7177
45	1	0	8.8543	2.4185	0.8261
46	1	0	9.0829	0.6801	0.6886
47	1	0	11.7888	2.9028	-2.2420
48	1	0	7.3864	0.5916	-1.1548
49	1	0	7.1283	2.3269	-0.9944
50	1	0	6.9144	2.6322	2.1199
51	1	0	5.7438	3.2066	0.9392
52	1	0	5.2263	2.1286	2.2421
53	1	0	6.0611	-0.8071	-0.0056
54	1	0	4.5833	0.2280	2.4951
55	1	0	5.1141	-1.4148	2.2290
56	1	0	3.0465	-0.0192	0.4435
57	1	0	2.6102	-0.8605	1.9245
58	1	0	4.4553	-3.4313	1.5671
59	1	0	2.7644	-3.3805	2.0960
60	1	0	3.2327	-4.3189	0.6564

61	1	0	1.8378	-3.2296	-0.9263
62	1	0	-0.6731	-3.3457	-0.8186
63	1	0	-0.7959	-1.6048	-1.1210
64	1	0	-1.8858	-3.0303	1.3577
65	1	0	1.2747	-1.4459	-2.1191
66	1	0	-1.5081	-0.9159	1.8881
67	1	0	-3.1238	-0.5988	-1.0663
68	1	0	-2.9861	-1.9335	-2.2014
69	1	0	-3.2570	-4.7003	0.2217
70	1	0	-4.4109	-4.2190	-1.0271
71	1	0	-2.6799	-4.2488	-1.4021
72	1	0	-4.2133	-1.5450	1.2214
73	1	0	-5.5873	-2.3129	-1.6243
74	1	0	-5.0651	-1.1187	-2.7955
75	1	0	-5.2548	0.7221	-1.1226
76	1	0	-6.8916	-2.4610	0.0848
77	1	0	-7.9825	-1.5481	1.1300
78	1	0	-8.3879	-1.7612	-0.5707
79	1	0	-7.4433	0.8330	1.5106
80	1	0	-6.6878	1.7916	0.2384
81	1	0	-9.4641	0.4961	0.0644
82	1	0	-8.7079	1.4496	-1.2056
83	1	0	-8.6103	3.4288	0.3479
84	1	0	-9.3616	2.4772	1.6225
85	1	0	-11.6873	1.1400	-0.1538
86	1	0	-11.7922	1.8257	1.4845
87	1	0	-12.7956	2.4863	0.1813
88	1	0	-10.5718	2.5730	-2.0537
89	1	0	-11.7268	3.8676	-1.6743
90	1	0	-9.9821	4.1930	-1.6509
91	1	0	-10.3864	4.9204	0.6794
92	1	0	0.6461	-2.8698	1.2725
93	1	0	0.5684	-1.1378	0.9073
94	1	0	3.9368	-1.6472	-1.3846

Figure S40. Optimized structure of isomer 1c

Center	Atomic	Atomic	Coordinates(Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	11.5315	2.5593	0.0627
2	6	0	12.1008	1.1385	0.0324
3	6	0	12.5803	0.7708	-1.3804
4	6	0	11.1026	0.1018	0.5973
5	6	0	9.7840	-0.0892	-0.1656
6	8	0	13.2376	1.1913	0.9157
7	6	0	8.8592	-1.1171	0.5208
8	6	0	7.5387	-1.3413	-0.1928
9	6	0	7.6280	-2.1034	-1.4943
10	6	0	6.3994	-0.8735	0.3421
11	6	0	4.9904	-0.9814	-0.1808
12	6	0	4.0836	-1.7570	0.7979
13	6	0	2.5953	-1.9256	0.4007
14	6	0	2.4565	-2.6897	-0.9181
15	6	0	1.8589	-0.5580	0.3684
16	6	0	-0.3867	0.6604	0.0620
17	6	0	-1.8590	0.5581	-0.3680
18	8	0	1.9758	-0.0573	1.7096
19	6	0	-2.5953	1.9257	-0.4003

Table S4 Standard orientation of isomer 1c

20	8	0	-1.9758	0.0573	-1.7092
21	6	0	-4.0836	1.7570	-0.7976
22	6	0	-2.4567	2.6898	0.9185
23	8	0	-1.9625	2.7470	-1.3923
24	6	0	-4.9905	0.9815	0.1809
25	6	0	-6.3994	0.8734	-0.3421
26	6	0	-7.5388	1.3414	0.1925
27	6	0	-7.6282	2.1038	1.4939
28	6	0	-8.8592	1.1171	-0.5212
29	6	0	-9.7839	0.0892	0.1653
30	6	0	-11.1025	-0.1020	-0.5977
31	6	0	-12.1007	-1.1387	-0.0327
32	6	0	-11.5313	-2.5594	-0.0630
33	6	0	-12.5802	-0.7709	1.3800
34	8	0	-13.2374	-1.1916	-0.9161
35	6	0	0.3866	-0.6603	-0.0615
36	8	0	1.9625	-2.7469	1.3928
37	1	0	10.6774	2.6639	-0.6135
38	1	0	11.2095	2.8184	1.0770
39	1	0	12.3030	3.2741	-0.2413
40	1	0	11.7663	0.8000	-2.1131
41	1	0	13.3576	1.4716	-1.7018
42	1	0	13.0067	-0.2413	-1.3966
43	1	0	11.6209	-0.8695	0.6505
44	1	0	10.8884	0.3903	1.6351
45	1	0	9.9923	-0.4098	-1.1941
46	1	0	9.2469	0.8650	-0.2390
47	1	0	13.6237	0.3007	0.9405
48	1	0	8.6669	-0.7835	1.5485
49	1	0	9.3989	-2.0739	0.6006
50	1	0	8.2378	-1.5663	-2.2329
51	1	0	8.1161	-3.0752	-1.3368
52	1	0	6.6532	-2.2916	-1.9501
53	1	0	6.4775	-0.3533	1.2995
54	1	0	4.9726	-1.4545	-1.1677
55	1	0	4.5921	0.0351	-0.3182
56	1	0	4.1184	-1.2655	1.7771
57	1	0	4.4863	-2.7675	0.9362
58	1	0	3.0752	-3.5927	-0.8875
59	1	0	1.4213	-3.0035	-1.0752

60	1	0	2.7738	-2.0847	-1.7742
61	1	0	2.3844	0.1175	-0.3245
62	1	0	0.0904	1.4441	-0.5399
63	1	0	-0.3730	0.9902	1.1086
64	1	0	-2.3845	-0.1175	0.3248
65	1	0	1.6088	0.8381	1.7347
66	1	0	-1.6089	-0.8381	-1.7343
67	1	0	-4.4863	2.7675	-0.9359
68	1	0	-4.1183	1.2656	-1.7768
69	1	0	-1.4215	3.0035	1.0757
70	1	0	-3.0754	3.5927	0.8879
71	1	0	-2.7741	2.0847	1.7746
72	1	0	-1.9276	2.2014	-2.1973
73	1	0	-4.9729	1.4545	1.1678
74	1	0	-4.5922	-0.0351	0.3185
75	1	0	-6.4774	0.3531	-1.2993
76	1	0	-6.6534	2.2921	1.9497
77	1	0	-8.1163	3.0756	1.3362
78	1	0	-8.2381	1.5669	2.2325
79	1	0	-9.3990	2.0739	-0.6010
80	1	0	-8.6668	0.7834	-1.5488
81	1	0	-9.9924	0.4099	1.1937
82	1	0	-9.2469	-0.8650	0.2389
83	1	0	-10.8882	-0.3906	-1.6354
84	1	0	-11.6209	0.8693	-0.6511
85	1	0	-10.6772	-2.6639	0.6133
86	1	0	-12.3027	-3.2743	0.2411
87	1	0	-11.2093	-2.8186	-1.0772
88	1	0	-11.7663	-0.8000	2.1127
89	1	0	-13.0067	0.2412	1.3962
90	1	0	-13.3575	-1.4717	1.7014
91	1	0	-13.6235	-0.3010	-0.9410
92	1	0	0.3729	-0.9902	-1.1081
93	1	0	-0.0904	-1.4441	0.5404
94	1	0	1.9276	-2.2012	2.1978

Figure S41. Optimized structure of isomer 1d

Center	Atomic	Atomic	Coordinates(Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	6	0	-11.5313	2.5592	0.0622
2	6	0	-12.1007	1.1385	0.0316
3	6	0	-12.5799	0.7709	-1.3813
4	6	0	-11.1026	0.1017	0.5966
5	6	0	-9.7839	-0.0893	-0.1662
6	8	0	-13.2377	1.1912	0.9147
7	6	0	-8.8592	-1.1172	0.5204
8	6	0	-7.5386	-1.3414	-0.1930
9	6	0	-7.6277	-2.1036	-1.4945
10	6	0	-6.3993	-0.8737	0.3420
11	6	0	-4.9903	-0.9817	-0.1806
12	6	0	-4.0835	-1.7569	0.7985
13	6	0	-2.5952	-1.9255	0.4016
14	6	0	-2.4562	-2.6901	-0.9170
15	6	0	-1.8589	-0.5579	0.3689
16	6	0	0.3867	0.6605	0.0627
17	6	0	1.8590	0.5582	-0.3674
18	8	0	-1.9759	-0.0568	1.7100
19	6	0	2.5953	1.9258	-0.3997
20	8	0	1.9757	0.0576	-1.7086

Table S5 Standard orientation of isomer 1d

21	6	0	4.0835	1.7573	-0.7971
22	6	0	2.4568	2.6898	0.9193
23	8	0	1.9623	2.7473	-1.3915
24	6	0	4.9906	0.9815	0.1812
25	6	0	6.3994	0.8736	-0.3420
26	6	0	7.5388	1.3416	0.1926
27	6	0	7.6282	2.1040	1.4939
28	6	0	8.8591	1.1174	-0.5213
29	6	0	9.7838	0.0892	0.1649
30	6	0	11.1023	-0.1020	-0.5982
31	6	0	12.1004	-1.1390	-0.0336
32	6	0	11.5307	-2.5596	-0.0642
33	6	0	12.5801	-0.7717	1.3792
34	8	0	13.2371	-1.1919	-0.9170
35	6	0	-0.3866	-0.6602	-0.0608
36	8	0	-1.9625	-2.7465	1.3940
37	1	0	-10.6771	2.6639	-0.6139
38	1	0	-11.2095	2.8182	1.0765
39	1	0	-12.3028	3.2740	-0.2418
40	1	0	-11.7657	0.8001	-2.1138
41	1	0	-13.3571	1.4717	-1.7028
42	1	0	-13.0063	-0.2412	-1.3977
43	1	0	-11.6210	-0.8697	0.6496
44	1	0	-10.8886	0.3901	1.6344
45	1	0	-9.9920	-0.4099	-1.1947
46	1	0	-9.2468	0.8649	-0.2394
47	1	0	-13.6238	0.3006	0.9392
48	1	0	-8.6671	-0.7836	1.5481
49	1	0	-9.3989	-2.0740	0.6001
50	1	0	-8.2376	-1.5667	-2.2331
51	1	0	-8.1157	-3.0755	-1.3371
52	1	0	-6.6528	-2.2916	-1.9503
53	1	0	-6.4776	-0.3535	1.2994
54	1	0	-4.9723	-1.4551	-1.1673
55	1	0	-4.5921	0.0348	-0.3183
56	1	0	-4.1185	-1.2651	1.7775
57	1	0	-4.4862	-2.7673	0.9370
58	1	0	-3.0748	-3.5931	-0.8861
59	1	0	-1.4209	-3.0038	-1.0738
60	1	0	-2.7734	-2.0854	-1.7733

61	1	0	-2.3844	0.1174	-0.3242
62	1	0	-0.0904	1.4442	-0.5393
63	1	0	0.3731	0.9904	1.1092
64	1	0	2.3846	-0.1174	0.3253
65	1	0	-1.6090	0.8386	1.7349
66	1	0	1.6090	-0.8379	-1.7338
67	1	0	4.4862	2.7678	-0.9353
68	1	0	4.1182	1.2660	-1.7764
69	1	0	1.4216	3.0036	1.0766
70	1	0	3.0755	3.5927	0.8888
71	1	0	2.7741	2.0845	1.7753
72	1	0	1.9275	2.2018	-2.1966
73	1	0	4.9730	1.4544	1.1682
74	1	0	4.5922	-0.0350	0.3186
75	1	0	6.4773	0.3532	-1.2992
76	1	0	6.6536	2.2920	1.9500
77	1	0	8.1160	3.0760	1.3360
78	1	0	8.2386	1.5674	2.2323
79	1	0	9.3990	2.0741	-0.6009
80	1	0	8.6667	0.7839	-1.5489
81	1	0	9.9923	0.4096	1.1934
82	1	0	9.2466	-0.8650	0.2382
83	1	0	10.8880	-0.3902	-1.6360
84	1	0	11.6208	0.8693	-0.6513
85	1	0	10.6767	-2.6642	0.6122
86	1	0	12.3021	-3.2747	0.2396
87	1	0	11.2086	-2.8185	-1.0784
88	1	0	11.7662	-0.8007	2.1119
89	1	0	13.0068	0.2403	1.3956
90	1	0	13.3573	-1.4727	1.7004
91	1	0	13.6232	-0.3013	-0.9418
92	1	0	-0.3727	-0.9903	-1.1074
93	1	0	0.0905	-1.4439	0.5413
94	1	0	-1.9277	-2.2005	2.1988

Figure S42. CD spectrum of compound 3

Figure S43. Experimental and some of calculated ECD spectra of compound 3

Compound	Structure	B3LYP/6-31G(d)		
		Energy(A.U.)	Energy(kcal/mol)	
3a		-884.47801445	-555018.26816071	
3b		-884.47631297	-555017.20046602	
Зс		-884.46017827	-555007.07579010	
3d		-884.46532927	-555010.30809102	
3e		-884.46532933	-555010.30812867	

Table S6 Energies of dominative conformers of isomers 3a-3h

3f		-884.46017808	-555007.07567087
3g		-884.47801447	-555018.26817326
3h	● ³ 62 3 3 3 5 736 893 83 ● 4939 3 3 30 ² 63 3	-884.47631294	-555017.20044719

Figure S44. Experimental electronic circular dichroism (ECD) of 5

Figure S45. LC-HRMS finger-prints by ion extraction of co-culture, *Irpex lacteus*, and *Nigrospora oryzae* fermentation products and metabolites (**3-8**).

Figure S46. The in vivo antifungal activities of **6**, and **8** against leaves of *Cerasus cerasoides* infected by *Nigrospora oryzae*.

Figure S47. The phytotoxicity of nigbeauvin A against leaves of host *Dendrobium officinale* (blank (①), sample 1(②) sample 2(③) from left to the right).

Figure S48. ¹H NMR spectrum of compound **6** in CDCl₃ (400MHz)

Figure S49. ¹³C NMR spectrum of compound **6** in CDCl₃ (150MHz)

Figure S50. ¹H NMR spectrum of compound 7 in MeOD (600MHz)

Figure S51. ¹³C NMR spectrum of compound 7 in MeOD (150MHz)

Figure S52. ¹H NMR spectrum of compound **8** in MeOD (500MHz)

Figure S53. ¹³C NMR spectrum of compound 8 in MeOD (125MHz)

Figure S54. LC-HRMS finger-prints of co-culture, *Irpex lacteus*, and *Nigrospora oryzae* fermentation products