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Supporting Methods 
General 
No unexpected or unusually high safety hazards were encountered during the course of this 
work. 
 
All reagents and kits were purchased from commercial vendors. The initial EGFP and mRuby3 
template plasmids, as well as the pDonr253 and pDest527 vectors, were obtained from the 
Protein Expression Laboratory of the Frederick National Laboratory for Cancer Research. The 
initial pPAL7-IFNα vector and the HL116 cells were obtained from Dr. Mark Walter. Experiments 
utilizing kits or the transformation of vectors into competent cells were performed following the 
protocols from their respective manufacturers, which are noted below for each. HEPES buffered 
saline (HBS) was used for all hydrogel experiments with 1X HBS = 25 mM HEPES, 150 mM NaCl, 
pH 7.4. LC buffers consisted of 20 mM NH4HCO3 (Std C) and 20 mM NH4HCO3 in 80% acetonitrile 
(Std D). Calculated protein molecular weights and isoelectric points were determined using  
EXPASY ProtParam. NuPAGE 4-12% Bis-Tris gels and SeeBlue Plus2 prestained standard (both 
Invitrogen) were used for protein analysis.  
   
Peptide Synthesis and Purification 
AcVES3 was synthesized on ProTide resin (0.56 mmol/g) using a CEM Liberty Blue microwave-
assisted peptide synthesizer (Figure S2). Fmoc deprotection was performed using 20% piperidine 
in DMF at 90 °C for 1 min. The first 11 couplings were performed using 5 eq of amino 
acid/DIC/Oxyma in DMF at 90 °C  for 4 min. For the valine residue immediately following the D-
proline, room temperature triple coupling was performed using 5 eq of amino acid/HCTU/DIEA 
in DMF (30 min for each coupling). The subsequent glutamic acid and valine residues were double 
coupled using room temperature HCTU/DIEA conditions. The last 6 residues were added using 
the DIC/Oxyma conditions. After capping the N-terminus with 10% acetic anhydride in DMF, the 
peptide was cleaved from resin using 95% TFA, 2.5 % TIPS, and 2.5% H2O for 3 hr. The resin was 
then filtered and the collected filtrate was concentrated by a stream of argon. Following ether 
precipitation, the crude solid was dried under vacuum overnight, then resuspended in Milli-Q 
water, frozen and lyophilized. AcVES3 was purified by prep-HPLC. The crude peptide was 
dissolved at 3 mg/mL in Std C by rocking at RT for over an hour, with intermittent vortexing for 
30 s at a time. Per run, 5 mL of syringe filtered sample was injected into a Waters 600 system, 
equipped with a Waters 2489 UV Detector and a Phenomenex PolymerX RP-1 column (250 x 21.2 
mm, 10 µm, heated to 40 °C). A gradient of 1% Std D per min was used for 25 min, followed by 
0.5 % Std D per min for 150 min. The UV trace at 220 nm was monitored and fractions containing 
the major peptide peak were combined and lyophilized. Purity was assessed by LCMS (Shimadzu 
LCMS 2020) and analytical HPLC (Agilent 1200 series, PolymerX RP-1 column, 250 x 4.6 mm, 10 
µm) using gradients of 1% Std D per min. Purified AcVES3 was dissolved at 1 mg/mL in Std C and 
converted to the sodium salt by adding 1 eq NaOH per glutamate residue (5 eq NaOH per 1 eq 
peptide) using a 0.1 M NaOH stock. The solution was then frozen and lyophilized to afford a white 
powder. An analogous procedure was used in the synthesis/purification of D-AcVES3 (note: the 
HCTU/DIEA triple or double coupling steps mentioned above were done for the three residues 
following the L-proline in D-AcVES3).  
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Plasmid Generation for ID-Containing Proteins 
Generation of EGFP/mRuby3 analogs: Primers (IDT) encoding genes of interest, including N-
terminal cleavage sites for His-tag removal (FXa or TEV), underwent overlap-extension PCR using 
the Qiagen Fast Cycling PCR kit with either an EGFP or mRuby3 containing plasmid as the 
template. PCR products were purified using the QIAquick PCR purification kit, then subjected to 
Gateway BP cloning (Invitrogen) using the pDonr253 donor vector, transformed into DH5α 
subcloning efficiency cells (Invitrogen), and plated on LB agar plates containing 50 µg/mL 
spectinomycin. The plates were grown overnight at 37 °C. Single colonies were picked and grown 
overnight in 10 mL LB media with 50 µg/mL spectinomycin at 37 °C, 250 RPM. Minipreps (Qiagen) 
were performed to isolate amplified entry vectors. Once the sequences were validated (using 
Macrogen standard sequencing), the vectors were subjected to Gateway LR cloning (Invitrogen) 
using the pDest527 vector, transformed into DH5α subcloning efficiency cells, and plated on LB 
agar plates containing 100 µg/mL ampicillin. The plates were grown overnight at 37 °C. Single 
colonies were picked and grown overnight in 10 mL LB media with 100 µg/mL ampicillin at 37 °C, 
250 RPM. Minipreps were performed to isolate amplified expression vectors and the sequences 
were validated prior to expression. When not in use, vectors were stored at -20 C.  
 
Generation of IFNα5 analogs: Linearization of the pPAL7-IFNα5 gene was performed by PCR 
(Qiagen Fast Cycling PCR Kit), utilizing primers that introduced linker-ID5 overhang genes at the 
3’ end of IFNα5 and the 5’ end of the stop codon. The PCR product was then subjected to the HiFi 
DNA assembly protocol (NEB) with a double stranded gene encoding linker-ID5 to generate the 
expression vector. The crude vector was transformed into NEB5α cells and plated onto LB agar 
plates containing 100 µg/mL carbenicillin. The plates were grown overnight at 37 °C. Single 
colonies were picked and grown overnight in 10 mL LB media containing 100 µg/mL carbenicillin. 
Minipreps were performed to isolate amplified expression vector and the sequence was 
validated prior to expression. To create the ID3-containing vector, primers were used with the 
Quikchange Lightning kit (Agilent) to insert two stop codons within the ID region of IFNα5-ID5 
vector to create the truncated ID3. After DpnI treatment, the Quikchange reaction solution was 
transformed into XL10-Gold cells and plated onto LB agar plates containing 100 µg/mL 
carbenicillin. The plates were grown overnight at 37 °C. Single colonies were picked and grown 
overnight in 10 mL LB media containing 100 µg/mL carbenicillin. Minipreps were performed to 
isolate amplified expression vector and the sequence was validated prior to expression. When 
not in use, vectors were stored at -20 C.  
 
 
Expression and Purification of Proteins 
Expression of EGFP/mRuby3 analogs: Expression vectors were transformed into Rosetta 2 DE3 
pLyss competent cells (Millipore) and plated on LB Agar containing 100 µg/mL carbenicillin and 
34 µg/mL chloramphenicol. The plates were grown overnight at 37 °C. Single colonies were 
picked and grown overnight in 20 mL LB media (100 µg/mL carbenicillin, 34 µg/mL 
chloramphenicol) at 37 °C, 250 RPM. 5 mL of overnight culture was used to seed 500 mL of LB 
(100 µg/mL carbenicillin, 34 µg/mL chloramphenicol), and the culture was shaken at 37 °C, 250 
RPM. OD600 was monitored until reaching a value of 0.6-0.8, usually around 2-2.5 hr. At this 
point, the incubator temperature was reduced to 17 °C and the flasks were cooled for 15 min. To 
induce expression, IPTG was added to a final concentration of 0.5 mM and the flasks were shaken 
at 17 °C, 250 RPM for 20 h. Each flask was split into 2 x 250 mL centrifuge bottles and spun down 
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for 20 min at 7000 g and 4 °C. The supernatant was removed, and the pellets were stored at -80 
°C until purification.  
 
Purification of EGFP/mRuby3 analogs: Pellets (from ~250 mL culture) were resuspended in 20 
mL lysis buffer (50 mM sodium phosphate pH 8.0, 100 mM NaCl, 10 mM imidazole, 1x Bug Buster, 
and 1 EDTA-free protease inhibitor tablet), placed on ice, and subjected to sonication (25 % amp, 
1 s on, 1 s off, 1.5 min total on). The lysate was then centrifuged at 4 °C, 7000 g for 20 min and 
the supernatant was syringe filtered (0.45 um). Using a GE P-960 sample pump, the lysate was 
injected into a GE ATKA FPLC system equipped with a 5mL Talon resin column. Purification was 
carried out using a step gradient of 0/20/60/100 % B (Buffer A: 50 mM sodium phosphate pH 8.0, 
100 mM NaCl, 10 mM imidazole; Buffer B: 50 mM sodium phosphate pH 8.0, 100 mM NaCl, 100 
mM imidazole). Fractions were monitored for absorbance at 280/488 nm (EGFP) or 280/558 nm 
(mRuby3), typically eluting at 60 and/or 100% B. Purity was confirmed by SDS PAGE gel, with the 
pure fractions combined and subjected to several rounds of buffer exchanges into 50 mM sodium 
phosphate pH 8.0, 100 mM NaCl using Amicon Ultra-15 centrifugal filters (MWCO 10 kDa) to 
achieve sub-micromolar imidazole concentrations.  The concentrated protein was diluted to 1.5 
mL, and the concentration was determined by UV (EGFP: 𝜀 = 56,000 M-1 cm-1 at 488 nm; mRuby3: 
𝜀 = 128,000 M-1 cm-1 at 558 nm). Typical yields were 20-60 mg per L culture.  
 
Removal of NH6 domain for EGFP/mRuby3 analogs: For removal of the N-terminal His-6 tag 
encoded in the pDest527 expression vector, FXa or TEV proteases were employed. For the 
generation free EGFP or mRuby3, FXa cleavage was used. A typical experiment would use 5 mg 
(determined by UV) of NH6-FXa-EGFP/mRuby3 in 20 mL of cleavage buffer (20 mM Tris, pH 8.0, 
100 mM NaCl, 2 mM CaCl2) and 100 µg of FXa (protein:enzyme weight ratio of ~ 50:1). The 
reaction was monitored by SDS PAGE gel and was typically completed within 7 hr. The reaction 
solution was added to prewashed p-aminobenzamidine functionalized resin to bind FXa, allowed 
to rock at RT for 30 min, and then the resin was filtered using an empty polypropylene column. 
EGFP/mRuby3 was exchanged in to Milli-Q water using Amicon Ultra-15 filters (MWCO 10 kDa) 
and typically achieved near quantitative yields (~4.5 mg from 5 mg NH6 fusion). The unstructured 
nature of the IDs made them susceptible to non-specific cleavage by FXa, and a TEV cleavage site 
was installed to circumvent this. The protocol for cleavage by Halo-TEV protease (Promega) 
followed that of the manufacturer. A typical experiment would use 3 mg (determined by UV) of 
NH6-TEV-ID#-EGFP/mRuby3 in 3 mL buffer (50 mM phosphate, pH 8.0, 100 mM NaCl), 1 mM DTT, 
and 10 µL HaloTEV protease. The reaction would be monitored by SDS PAGE gel and was typically 
completed between 3-7 hr. The completed reaction solution was added to prewashed HaloLink 
resin for binding HaloTEV. After slowly rocking at RT for 30 min, the resin was filtered using an 
empty polypropylene column. The ID analogs were exchanged into buffer (50 mM phosphate, pH 
8.0, 100 mM NaCl) using Amicon Ultra-15 filters to reduce DTT concentration to sub-micromolar 
levels and to remove the low molecular weight cleavage byproduct. Greater than 90% yields were 
typically achieved (~2.5 mg). Prior to all gel experiments, the proteins were dialyzed into 2X HBS 
buffer (50 mM HEPES, 300 mM NaCl, pH 7.4) using Amicon Ultra filters.  
 
Expression of IFNα5 analogs: The expression of IFNα5 and its ID analogs followed a similar 
protocol as reported previously for type-I IFNα subtypes.1 Briefly, the vector encoding IFNα5 was 
transformed into BL21 Codon Plus DE3 RP cells (Agilent) and plated onto LB Agar containing 100 
µg/mL carbenicillin. The plates were grown overnight at 37 °C. Colonies were picked and 
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inoculated into 2 x 1 mL of LB with 1.0% glucose and 100 µg/mL carbenicillin. The cells were 
incubated at 37 °C and 250 RPM until turbid (2-3 hours). The cells were spun down, the 
supernatant removed, and the cells were resuspended into 2 x 1 mL of complete Studier ZYP-
5052 media (taken from 1 L bottle, Teknova). The cells were transferred to the same 1 L bottle of 
Studier media and split into of 2 x 2.8 L flasks (~ 500 mL in each), then incubated at 37 °C and 250 
RPM. OD600 was monitored until reaching ~0.6, after which the flasks were shaken at 20 °C and 
285 RPM for 20 hours. The culture was split into 2 x 500 mL centrifuge bottles and spun down for 
30 min at 7000 g and 4 °C. The supernatant was removed and the pellets were stored at -80 °C 
until purification. For the ID analogs, the proteins were transformed into BL21 Codon Plus DE3 
RP cells and grown on LB Agar plates overnight as above. However, proteins were not expressed 
in the soluble fraction during autoinduction. Therefore, single colonies were picked from the agar 
plates and inoculated 10 mL of LB (100 µg/mL carbenicillin). The cultures were grown overnight 
at 37 °C, 250 RPM. For each ID protein, 5 mL of overnight culture was used to seed 500 mL of LB 
(100 µg/mL carbenicillin), and the culture was shaken at 37 °C, 250 RPM. OD600 was monitored 
until reaching a value of ~0.6, usually around 2-2.5 hr. IPTG was added to 1 mM and the cultures 
were continued to shake at 37 °C, 250 RPM for 5 hours, then spun down in 2 x 250 mL bottles for 
30 min at 7000 g and 4 °C.  
 
Purification of IFNα5 analogs: 1 x 500 mL pellet of IFNα was suspended in 40 mL lysis buffer (100 
mM Tris-acetate pH 8.0, 100 mM sodium acetate,  1 mM EDTA). The sample was placed on ice 
and sonicated (25% amp, 1 s on, 1 s off, 2.5 min total on). The lysate was then centrifuged at 4 
°C, 10,000 g for 30 min and the supernatant was syringe filtered (0.45 um). Using a GE P-960 
sample pump, the lysate was injected into a GE ATKA FPLC system equipped with a X16 column 
manually packed with 5 mL of Profinity eXact resin (Bio-Rad). The resin was washed with 15 CV 
of wash buffer (same as lysis buffer). 2 CV of elution buffer (100 mM Tris-acetate pH 8.0, 100 mM 
sodium acetate,  10 mM sodium azide) was passed over the resin, then the pump was stopped 
and the resin was allowed to incubate with the elution buffer for 30 min, after which an additional 
10 CV was added. Fractions were checked by SDS-PAGE, combined, concentrated via Amicon 
Ultra filter, diluted into buffer containing 100 mM Tris-acetate and 20 mM NaCl, and loaded onto 
the FPLC equipped with a HiTrap Q HP 5 mL cartridge (equilibrated with 100 mM Tris-acetate and 
20 mM NaCl). A gradient of 0-100% B (100 mM Tris acetate, 500 mM NaCl) over 20 CV was used. 
Fractions were checked by SDS-PAGE, combined, concentrated via Amicon Ultra filter, and then 
manually injected into the FPLC equipped with a HiPrep 26/60 Sephacryl S-200 HR size exclusion 
column equilibrated with 2X HBS. Fractions were checked by SDS-PAGE, combined, and 
concentrated using Amicon Ultra filters. Yield was ~ 3 mg per L culture.  
 
For both ID analogs, 1 x 250 mL pellet was resuspended in 20 mL lysis buffer (for 50 mL buffer, 
100 mM Tris-acetate pH 8.0, 100 mM sodium acetate, 0.5x bug buster, and 1 protease inhibitor 
tablet). The sample was placed on ice and sonicated (25% amp, 1 s on, 1 s off, 2.5 min total on). 
The lysate was then centrifuged at 4 °C, 10,000 g for 30 min and the supernatant was removed. 
The insoluble pellet was washed by resuspending in 20 mL 100 mM Tris-acetate pH 8.0, 100 mM 
sodium acetate (no bug buster), spun down, and buffer removed. 10 mL of the Tris-acetate buffer 
was added to the pellet and the cells were resuspended. The sample was sonicated on ice (25% 
amp, 1 s on, 1  s off, 1.0 min total on). Then 50 units of benzonase nuclease was added to the 
sample and rocked at RT for 1 hr. The sample was then spun down, the supernatant removed, 
resuspended in 20 mL Milli-Q water, spun down, water removed, and then resuspended in 10 mL 
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denaturing buffer (6 M guanidine HCl, 100 mM Tris-acetate, pH 8.0, 5 mM DTT). The sample was 
rocked at RT for 30 min, with intermittent vortexing, and then spun down. The denaturing 
solution was then added quickly to pre-chilled refolding buffer (490 mL, 100 mM Tris-HCl, pH 8.0, 
50 mM NaCl, 2 mM reduced glutathione, 0.2 mM oxidized glutathione, 0.1 M arginine) and stirred 
at 4 °C overnight (~ 16 hr). The refolded protein was concentrated to ~ 25 mL using a Millipore 
Labscale TFF system equipped with a 10k MWCO Biomax Pellicon cassette. For IFNα-ID3, the 
protein was then dialyzed using 3.5k MWCO SnakeSkin dialysis tubing and 2 x 4L 20 mM Tris-
acetate, pH 8.0, 100 mM urea (one exchange for 4 hour, the other overnight). The  sample was 
spun down, syringe filtered (0.45 um), and incubated with 2 mL of pre-washed Profinity eXact 
resin by rocking at RT for 45 min. This was then loaded into an empty 20 mL polypropylene gravity 
column and washed with 10 CV of 100 mM Tris-acetate, pH 8.0, 100 mM sodium acetate. The 
sample was eluted using 10 CV of 2X HBS elution buffer (50 mM HEPES, 300 mM NaCl, pH 7.4, 10 
mM sodium azide), with each CV incubated for 10 min at RT before the next addition of elution 
buffer. Pure fractions of IFNα-ID3 were combined, dialyzed into 2 x 4L of 2X HBS, then 
concentrated by Amicon Ultra filters. For IFNα-ID5, after TFF concentration the protein was 
dialyzed into 2 x 4L of 1X HBS (3 hr and overnight). The sample was syringe filtered and incubated 
with 0.8 mL Talon resin for 30 min, transferred to an empty 10 mL gravity column, then washed 
with 10 CV of 1X HBS containing 5 mM imidazole. The protein was eluted using 1X HBS 
supplemented with 200 mM imidazole. Pure fractions were combined  and dialyzed into 2 x 4L 
25 mM HEPES, pH 7.4, 50 mM sodium acetate. The protein was then incubated with 1.4 mL eXact 
resin, loaded onto an empty 20 mL gravity column, washed with 10 CV of 25 mM HEPES, 50 mM 
sodium acetate, then eluted over 7 CV of 2X HBS supplemented with 10 mM sodium azide (with 
each CV of elution buffer incubated for 10 min). The pure protein fractions were combined and 
dialyzed into 2 x 1L of 2X HBS, then concentrated by Amicon Ultra filters. Yield was 8-10 mg per 
L culture.  
 
UV and Fluorescence Measurements 
Protein stock concentrations in 2X HBS were determined by UV (EGFP: 𝜀 = 56,000 M-1 cm-1 at 488 
nm; mRuby3: 𝜀 = 128,000 M-1 cm-1 at 558 nm; IFNα5: 𝜀 = 18,700 M-1 cm-1 at 280 nm) using an 
Agilent 8453 UV-Vis spectrometer with a 1 cm cell and diluted to the designated 2X protein 
concentrations prior to mixing with peptide for gelation. For EGFP and mRuby analogs, 
fluorescence spectra were obtained using a Photon Technology International 
SpectroFluorometer and a 3 x 3 mm cell at sample concentrations of 30 nM. All ID-proteins 
exhibited similar absorbance and fluorescence properties as unmodified proteins.  
 
In Vitro Gel Release Experiments 
EGFP and mRuby3 release: AcVES3 was dissolved in cold Milli-Q water at 1.0 wt%. The peptide 
solution was vortexed for 30 s, chilled on ice for 10 min, and this process was repeated 2 more 
times to ensure complete dissolution of the peptide. 50 µL of peptide solution was added to a 
pre-chilled glass vial, followed by the addition of 50 µL pre-chilled protein (60 µM in 2X HBS) – 3 
vials were prepared for each protein. The vial was capped and the hydrogel was set for 1 hr at 37 
°C, with a final gel composition of 0.5 wt% AcVES3 and 30 µM protein in 1X HBS (25 mM HEPES, 
150 mM NaCl, pH 7.4). After setting for 1 hr, 1 mL of 1X HBS was added to the top of the gel and 
the samples were incubated at 37 °C. At specified time points, the supernatant was removed and 
replaced with 1 mL fresh 1X HBS. The UV spectrum for each supernatant was taken to determine 
protein concentration, which was used to quantify the number of moles released per time point. 
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The cumulatively released protein amount was compared to the initial protein loading in the gel 
(# mol cumulatively released protein/3.0 x 10-9 mol loaded protein). Based on the UV spectra for 
each time point, the protein containing supernatant was diluted to 30 nM for fluorescence 
measurements and the spectra were normalized to that of the corresponding protein before 
hydrogel encapsulation. For co-encapsulation and subsequent release of EGFP and ID5-mRuby3, 
the final concentration of each protein loaded into the gel was 15 µM (total protein content was 
30 µM, the same as for individual protein release experiments). A demonstration of the mixing 
and gelation process is shown in Video S1. 
 
IFNα5 release: AcVES3 was prepared at 2.0 wt% in cold Milli-Q, as described above. The peptide 
solution was vortexed for 30 s, chilled on ice for 10 min, and this process was repeated 2 more 
times to ensure complete dissolution of the peptide. 50 µL of peptide solution was added to a 
pre-chilled glass vial, followed by the addition of 50 µL pre-chilled protein (150 µM in 2X HBS) – 
3 vials were prepared for each protein. The vial was capped and the hydrogel was set for 1 hr at 
37 °C, with a final gel composition of 1.0 wt% AcVES3 and 75 µM protein in 1X HBS (25 mM HEPES, 
150 mM NaCl, pH 7.4). After setting for 1 hr, 1 mL of 1X HBS was added to the top of the gel and 
the samples were incubated at 37 °C. At specified time points, the supernatant was removed and 
replaced with 1 mL fresh 1X HBS. 
 
HL116 Cell Activity Assays 
The HL116 luciferase assays followed a similar protocol as reported previously for type-I IFNα 
subtypes.1 Briefly, HL116 cells were cultured in DMEM-glutamax media containing 10% FBS and 
incubated at 37 °C with 5% CO2 and humidity control. The cells were trypsonized and then diluted 
to 4 x 105 cells/mL. 100 µL of diluted cells was pipetted into wells of a white 96 well plate (4 x 104 
cells per well), then grown overnight. The next day, serial dilutions of IFNα5 analogs were 
prepared in pre-heated DMEM-glutamax (1 – 1000 pM). The culture media was removed from 
the cells and replaced with 100 µL of the appropriate protein concentration (in triplicate), then 
incubated for 5 hrs. The plates were then removed from the incubator and allowed to equilibrate 
to room temperature ( ~15 min). 100 µL of Steady-Glo Luciferase assay reagent (Promega) was 
added to the cells, gently rocked, and incubated for 5 min at room temperature. The 
luminescence was read by a Biotek Neo2 plate reader.  
 
For the HL116 activity assays using gel-released protein, 0.5 wt% peptide gels containing either 
5 µM IFNα5-ID5 or no protein in 1X HBS were prepared in transwell inserts. The inserts were 
placed into a clear, non-treated 24 well plate and set for 1 hr at 37 °C (3 gels were prepared for 
each condition). After setting the gel, 0.5 mL of DMEM-glutamax was added to the top of the gels 
and 0.5mL was added to the bottom of the wells. The gels were incubated with media for 1 day 
(37 °C with 5% CO2 and humidity control). In separate white plates, cells were plated as described 
above and grown overnight. The next day, the media was removed from the cells and 2 x 100 µL 
aliquots from each gel condition was added (N = 6) to the white plates with cells. Untreated cells 
(negative control) or media containing 500 pM IFNα5 (positive control) were also added to the 
white plates with cells (N = 3). The plates were incubated for 5 hrs and then equilibrated to room 
temperature. 100 µL of Steady-Glo Luciferase assay reagent was added to the cells, gently rocked, 
incubated for 5 min at room temperature, and then the luminescence was read. 
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Oscillatory Rheology 
Rheological assessment was conducted on a Texas Instruments AR-G2 rheometer using a 25 mm 
stainless steel parallel geometry. A representative set of ID-EGFP proteins was used to determine 
whether the interaction domain affected the material properties of AcVES3 hydrogels. 0.5 wt% 
gels were prepared as described in the previous sections for gel release, with 150 µL of chilled 
AcVES3 solution mixed with 150 µL pre-chilled 2X HBS solution (containing 60 µM protein, 200 
µM protein, 340 µM protein, or just buffer). This solution (0.5 wt% AcVES3 with 0/30/100/170 
µM protein) was immediately applied to the center of the plate and the upper geometry was 
lowered to a gap height of 0.5 mm. The temperature was increased from 5 °C to 37 °C over 100 
s at a constant angular frequency of 6 rad s-1 and 0.2% strain. The storage and loss moduli were 
monitored for 60 min at a constant angular frequency of 6 rad s-1 and 0.2% strain at 37 °C. After 
the time sweep, dynamic frequency sweeps (0.1-100 rad s-1 at constant 0.2% strain) and strain 
sweeps (0.1-1000% strain at constant 6 rad s-1) were performed to ensure that time sweep data 
were collected in the linear viscoelastic regime. Shear-thinning experiments were carried out in 
duplicate. Fresh samples were applied to the plate, the geometry was lowered, and the 
temperature was increased from 5 °C to 37 °C. The moduli were monitored for 60 min (6 rad s-1, 
0.2% strain, 37 °C), followed by the application of 1000% strain for 30 s to shear the gel, after 
which the strain was reduced to 0.2% and the gel was allowed to recover for 60 min (6 rad s-1, 
0.2% strain).  
 
Circular Dichroism 
CD spectra of AcVES3 peptides were collected on an Aviv Model 420 Spectrometer. 0.5 wt% 
peptide gels were prepared as described previously by mixing together 100 µL 1 wt% peptide in 
water with 100 µL 2x HBS, and adding 175 µL to a 0.1 mm cuvette. The sample was then placed 
into the instrument holder pre-heated to 37 °C and allowed to gel for 1 hr. Wavelength scans 
were then carried out at 37 °C between 260 and 200 nm at 1 nm intervals, with an averaging time 
of 3 sec at each wavelength. A background spectrum of 1x HBS was subtracted from the sample 
spectra and the mean residue ellipticity [θ] was calculated from the equation [θ] = (θobs/10lcr,) 
where θobs is the measure ellipticity in millidegrees, l is the length of the cell in centimeters (0.01 
cm), c is the molar concentration (0.0022 M), and r is the number of peptide bonds (21). CD was 
also conducted on the 0.5 wt% solution of the soluble peptide in water. 
 
CD spectra of IFNα5 proteins were collected on a Jasco J-1500 Spectrometer. Proteins were 
diluted to 5 µM in 0.5x HBS and wavelength scans were carried out at 25 °C between 260 and 
200 nm at 1 nm intervals, with an averaging time of 2 sec at each wavelength and 5 experiments 
each. A background spectrum of 0.5x HBS was subtracted from the sample spectra and the mean 
residue ellipticity was calculated as described above (l = 0.1 cm; c = 0.000005 M; r = 168 for IFNα5, 
185 for IFNα5-ID3, and 189 for IFNα5-ID5). 
 
Transmission Electron Microscopy 
TEM images were collected on an FEI T12 microscope at 80 kV. 50 µL of 0.5 wt% AcVES3 gels 
were prepared as described previously and set overnight at 37 °C. Gels were made for empty 
AcVES3, AcVES3 + 50 µM ID5-EGFP, and D-AcVES3. The next day, 2 µL of gel was removed and 
diluted into 78 µL water (40x dilution), with gentle aspiration and stirring with the pipet tip. 4 µL 
of this solution was then applied to a glow discharged, carbon-filmed, 400 mesh copper grid 
(Electron Microscopy Sciences). After 1 min the excess solution was blotted, then the sample was 
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washed twice with 4 µL water, and stained four times with 4 µL 1.0% uranyl acetate solution. 
After the fourth application, the stain was applied for 1 min before blotting. Multiple locations 
on the grid were imaged, which were analyzed using the software Image J (NIH) to determine 
fiber width. 
 
 
In Vivo Gel Release Experiments 
Hydrogels were prepared in an identical manner as described for the in vitro experiments (0.5 
wt% AcVES3, 30 µM mRuby3/ID5-mRuby3 in 1X HBS), except that after mixing the peptide and 
protein components the solution was immediately drawn into a 1 mL syringe and the gel was set 
at 37 °C for 1 hr. Each syringe contained multiple 100 µL doses. Animal studies were performed 
according to the Frederick National Laboratory for Cancer Research Animal Care and Use 
Committee guidelines. Fluorescence imaging was performed on non-tumor bearing 6-8-week-old 
female athymic nude mice (Charles River Laboratories, Frederick, MD).  100 µL of protein loaded 
hydrogel was administered by subcutaneous injection into either the left or right flank for each 
mouse and imaged at various time-points post injection. Mice body temperature were kept 
constant during the procedure with a heated pad located under the anesthesia induction 
chamber, imaging table, and post procedure recovery cage all maintained at 37 °C.  Anesthesia 
was initially set at 3% isoflurane with filtered (0.2 µm) air at 1 liter/minute flow rate for 3-4 
minutes and then modified for imaging to 2% with O2 as a carrier with a flow rate 1 liter/minute. 
Mice were fluorescence imaged using the IVIS SPECTRUM (PerkinElmer Inc., Waltham, MA) at 
the specified time-points in the prone position.  Static 2D images were acquired with the 
following parameters: excitation filter 570±15 nm, emission filter 620±10 nm, f/stop 2, medium 
binning (8X8) and auto exposure (typically 1-60 seconds).  Acquisition and analysis were 
performed with vendor specific software Living Image (version 4.3.1) (PerkinElmer Inc, Waltham, 
MA). Circular regions of interest (ROI) were drawn on the injection site to evaluate the presence 
of fluorescent protein within the hydrogel over time by monitoring the change in total radiance 
efficiency (photons/second/cm2/steradian/mW). The three groups of mice contained the 
following - Group 1: 3 mice, all injections used L-AcVES3 hydrogels, left flank gel contained 
mRuby3, right flank gel contained ID5-mRuby3; Group 2: 3 mice, all injections used D-AcVES3 
hydrogels, left flank gel contained mRuby3, right flank gel contained ID5-mRuby3; Group 3: 5 
mice, all injections used ID5-mRuby3, left flank used L-AcVES3 hydrogel, right flank used D-
AcVES3 hydrogel. At the end of the study, animals were euthanized by CO2 asphyxiation.  
 
Histological Analysis of Injection Site Tissue 
Immediately following euthanasia, group 3 mice were processed for histology.   Approximately 2 
cm2 sections of skin and the underlying subcutis and peritoneal wall were harvested from the 
injection sites on the left and right dorsal flanks. The tissues were fixed in 10% neutral buffered 
formalin for 24 hours, following which they were trimmed and submitted to Histoserv in 70% 
ethanol for routine processing. A minimum of five sections per injection site were embedded in 
paraffin, sectioned at 5 µm, and stained with hematoxylin and eosin. All sections were evaluated 
by a board-certified veterinary pathologist using an Olympus BX40 microscope. Figure 8C/D in 
main text is a representative example showing the correlation between a detected fluorescent 
signal for ID5-EGFP-loaded gels and the presence of gel remaining in the tissue for mouse 2 of 
group 3 (Figure 8B, and 2nd from left in Supporting Figure S16C). 
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Modelling the AcVES3 fiber/ID interaction 
After building initial models of the AcVES3 fiber and the interaction domains (IDs), all molecular 
dynamics (MD) simulations were performed using a GPU accelerated version of the program 
Amber162 and the conditions summarized in supporting Table S1. 
 
An initial model of the AcVES3 fiber was built based on the experimental structure for assembled 
MAX1 (PDB: 2N1E).3 Possible arrangements Syn/Syn, Syn/Anti, Anti/Anti, Anti/Syn were 
generated by repositioning the AcVES3 peptides in the appropriate orientations. Geometry 
optimization was performed by simulated annealing of the four models. The energy differences 
among the four forms suggests the Syn/Anti arrangement is favored (1.3 kcal/mol over the 
second most stable geometry Anti/Syn), which is in agreement with the observed orientation in 
the MAX1 structure. An idealized extended model of the fiber was generated by propagating the 
Syn/Anti dimer using translation and pitch angles from MAX1, which were then energy optimized 
for the AcVES3 sequence using the program X-plor-NIH (Figure S13).4 All AcVES3 fiber and fiber/ID 
models were relaxed in a solvent box containing Na+ as the charge neutralizing ion and NaCl (150 
mM). Modeling conditions are summarized in Table S1. Relaxation of the initial models was 
performed by applying a soft restraint to the Cα atoms (0.2 kcal/mol-A2) in Amber16, which keeps 
the fiber elongated during the simulations.  
 
Initial ID models (ID1 to ID6) were built using VMD5 Molefacture plugin. ID conformations were 
generated using molecular dynamics in a simulated continuum solvent model (1 microsecond 
total simulation time per ID.) The conformations obtained during the MD simulations were 
clustered (RMSD) from samples extracted every 5 ns considering the Ca atoms only. The 
geometries with the lowest energy from each cluster were relaxed in an explicit solvent box. The 
relaxed conformations with the lowest energies were docked against the fiber model using the 
program ZDOCK.6 The IDs contain a linker sequence that would be attached to a protein of 
interest (sequence GGSGSGGSGS), and is referred to here as the ID-linker. Docking was 
performed without including the ID-linker, which allowed for a more thorough exploration of the 
ID – fiber interaction poses. Poses that may occlude the ID-linker were subsequently excluded. 
ZRANK6  was used as a first criterion to select the more favorable poses, and it was determined 
that all IDs bound to the fiber in an extended conformation. Selected poses were further refined 
using short (up to 25ns) MD trajectories followed by energy minimization. The binding energies 
of the ID-fiber interactions was then explored using the Linear Interaction Energy (LIE) method,7 
with each LIE reported in Figure 6A of the main text. A more detailed explanation of the LIE 
parameters can be found below in the next section. From the LIE data, it was observed that 
ID1/ID2 are poor binders and ID3-6 are strong binders. When the IDs were forced to engage the 
fibers in compact states, the LIEs were also determined to be weak. For example, six compact 
forms of ID6 were used, with the average energy of all compact forms being ~36 kcal/mol less 
favorable than the extended conformations of ID6. To further explore the preferred binding of 
an extended form of ID6, the relative energetics of compact/extended conformations in solution 
(unbound to the fiber) was determined using ΔGcompact = - kT log (fc / fe), with fc the fraction of 
compact forms and fe the fraction of elongated forms observed. Two independent 25ns MD 
trajectories starting from each conformation were used to obtain fc and fe, resulting in ΔGcompact 
= -2.4 kcal/mol, which is not sufficient to compensate for the compact form’s substantially lower 
binding energy. The favoring of the extended form can be rationalized because it reduces Arg-
Arg side chain repulsion and maximizes the potential for making non-competing Arg-Glu 
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interactions (i.e. Arg side-chain interacting with Glu side chains not interacting with other Arg 
side chains.). All subsequent simulations were performed using the more favorable ID elongated 
poses as the initial conformations. 
 
After the initial docking, additional experiments were conducted in which the repulsion forces 
between a negatively charged protein and the negatively charged fiber were mimicked. Here, a 
simple model was used to simulate a smooth "extraction" of the ID from its attached 
conformation. Proteins have a characteristic translational diffusibility ~ 1 (cm2s-1)x106,8 which is 
much slower than the processes simulated here. Thus the “pull” of a protein against the ID was 
simulated by stretching the ID-linker while retaining the ID bound portion in place, then relaxing 
the entire system using a soft 2 kcal/mol restraint applied to the C termini of the ID-linker (where 
the ID would be attached to the protein). The relaxation of the ID-linker geometry produces a 
very gentle pull that is sufficient to dislodge ID1 from the fiber, while minimally affecting the 
binding of ID6, further confirming the differences between the short and long IDs. Video S2 shows 
the side-by-side “pull” experiments for ID1 and ID6. The analysis of the diffusibility of the ID on 
the fiber during the “pull” experiments may further differentiate the ID-family members. The 
diffusion coefficient (D) is related to the mean displacement (<r>) over a period of time (t) by 
<r>=sqrt(2nD*t) for a system of dimensionality (n). The measured displacement was computed 
from the average center point of the Arg guanidinium groups in the ID. This approach for 
measuring the displacement removes the noise due to ID internal displacements. The change in 
the center of mass for the IDs can also assess mobility. Here, the center position between the 
terminal guanidino functionalities for each ID was monitored over time as it moves along the 
fiber from its initial docked position.  
 
 
Binding Energies using the LIE method 
Several methods of estimating interaction energies were considered,9-11 but ultimately chose the 
LIE approach for a simple, qualitative description of the interaction. LIE methods are good at 
predicting binding energy when properly calibrated.7, 12 LIE methods use a semi-empirical 
expression to describe the binding interaction: 
 
ΔGbind = αΔEvdW + βΔGelec +ɣ ΔA + δ  
 
α, β, γ and δ are adjustable constants. ΔEvdW is the Van der Waals interaction energy between 
the fiber and an ID peptide. Van der Waals solvent-solvent contributions are ignored, leading to 
a great reduction in the energy noise level. ΔGelec is the difference in electrostatic energy 
between the bound and unbound forms. The electrostatics term was calculated using a GB 
correction as described by Hawkins and coworkers.13 ΔA is the molecular surface change when 
the complex is formed and δ is a constant whose value can be calibrated. All energies are 
calculated along the MD path. The differences are simply calculated by separating the fiber and 
the peptide and calculating the energies of the complex and the separated fiber and peptide. This 
approach is known as a "single-path" approach and an estimation of the validity of this 
approximation is presented below. 

The values of the adjustable parameters α, β and γ were obtained from the literature. 12, 14-18 
Published parameters were assessed against experimental binding energies for polypeptides 
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containing Arg, Lys, and Orn (ornithine) vs. Glu and Asp.19 This analysis was carried out using 
molecular dynamic simulations of the peptides in an explicit solvent using a treatment similar to 
that used for AcVES3 - ID systems. The best results were obtained with α = 0.2; β = 0.26; γ = -2; δ 
= -1.3. These parameters produce the following interaction energies (in kcal/mol and per 
monomer; experimental values in brackets): Poly-Lys / Poly-Asp 7.2 (6.8); Poly-Lys / Poly-Glu 7.5 
(7.3); Poly-Orn / Poly-Asp 6.0 (6.2); Poly-Orn / poly-Glu 6.2 (6.8); Poly-Arg / poly-Asp 11.2 (> 9.6); 
Poly-Arg / Poly-Glu 12.0 (> 9.6). 
 
The GB/LIE binding energies calculated for each ID / AcVES3 complex are summarized in main 
text Figure 2A. Calculated statistical errors were obtained by dividing each MD path into sets of 
5 ns each from where the uncertainty estimate for ΔG was then σ(ΔG) = SQRT(var(ΔG)/(N−1) ) 
with N the number of sets. All uncertainties were between 1.3 and 2.5 kcal/mol (ID6, ID3) 
suggesting that the length of the simulations provided sufficient sampling. Systematic cross-
validation tests were used to assess the reliability of these results. This test was performed by 
dividing the data into eight randomly equal subgroups, with one subgroup being omitted at the 
time. This resulted in a variability range for uncertainties in the range 0.8 to 1.5 kcal/mol (ID6, 
ID3). These two errors were combined to produce a maximum bound for the total error estimate. 
This approach will overestimate the actual error but provides assurance that the trends observed 
may be valid. 
 
Analyzing the MD Simulation Data to provide molecular level insight into ID-Fiber binding 
Visual examination of the MD trajectories suggests a great variability in the interaction between 
the Arg side chains and Glu side chains from very low mobility Args with their side chains 
anchored to the fiber for extended periods of simulated time, to highly mobile Arg side chains. 
Based on this observation, the Arg geometries were categorized into three groups: weak (type I, 
0 to -5 kcal/mol), intermediate (type II, -5.0 to -10 kcal/mol), and strong (type III, -10 to -15 
kcal/mol) binding. To assign a type, the trajectories were divided into sections of 5 ns and the LIE 
for each Arg residues was computed. The 5ns trajectory section is necessary to compute a 
minimal LIE statistical model. For determining the positional preferences of a second type III 
binding interaction that occurs simultaneously with another, a sliding window (5ns) was run and 
each type of Arg interaction was computed within the frame for each Arg position. The pairs of 
type III interactions were counted, along with their relative positions, and the data was 
normalized across all IDs.  
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Figure S1. Sequences and SDS-PAGE gels for fluorescent proteins used in this study. pDest527-
based vectors result in proteins expressed with an N-terminal peptide sequence containing a His-
6 metal affinity chromatography handle. The FXa cleavage site (IEGR) was incorporated into NH6 
for generating native EGFP and mRuby3. For ID-containing proteins, the TEV protease cleavage 
site (ENLYFQG) was incorporated into the vectors between the pDest527 His-6 containing 
sequence and the designed sequence for interacting with the hydrogel network. Cleavage by TEV 
protease result in a residual N-terminal Gly residue. 
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Figure S2. Synthesis of AcVES3 by solid phase peptide synthesis.   
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Figure S3. Analytical HPLC for AcVES3 and D-AcVES3, with tabulated mass spec data. 
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Figure S4. Structural analysis of AcVES3. A) CD of 0.5 wt% AcVES3 in either water (soluble, 
unfolded) or in buffer (folded, hydrogel state). B) Representative TEM images for L-AcVES3, L-
AcVES3 + ID5-EGFP, and D-AcVES3, with 100 nm scale bar. C) Width dimensions of the AcVES3 
fibers shown in (B) (N = 50), binned at +/- 0.25 nm of centered value. Most fibers are ~ 3 nm 
wide, which is consistent with the length of a folded hairpin.  
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Figure S5. Rheology of empty and protein loaded hydrogels. Storage modulus (G’) in filled-in 
circles, loss modulus (G”) in red open squares. For all experiments, hydrogel consisted of 0.5 wt% 
peptide. Protein concentration was 30 µM (~ 1 mg/mL), except in the instance where 100 µM (~3 
mg/mL) or 170 µM (~ 5 mg/mL) ID5-EGFP was used to demonstrate that higher ID-protein 
concentrations can be accommodated for shear-thin delivery. Shear-thinning dynamic time 
sweep (DTS) were performed at a constant angular frequency of 6 rad s-1 and 0.2% strain for 60 
min, followed by 1000% strain for 30 sec, and a 60 min recovery period. Dynamic frequency 
sweep (DFS) were performed at a constant 0.2% strain. Dynamic strain sweep (DSS) were 
performed at a constant angular frequency of 6 rad s-1. Before each DTS experiment, there was 
a temperature ramp from 5 – 37 °C. In addition to the overall storage modulus being similar for 
empty and ID-containing gels after 1 hour, the early kinetics of gelation were also very similar. 
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Figure S6. Effect of high salt content on the release of ID5-EGFP. After 1 day, the higher salt 
condition has more than 5x the release as the standard salt condition, suggesting that charge 
screening can alter the interaction between the ID and peptide gel and lead to faster release. 
 
 
 

 
Figure S7. Normalized absorbance and fluorescence spectra for EGFP analogs. Absorbance 
normalized at 488 nm; fluorescence normalized at 507 nm.  
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Figure S8. Images of EGFP loaded hydrogels at selected time points. Proteins with longer IDs 
displayed colored gels for entire length of study, indicating the presence of active EGFP. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S9. Encapsulating EGFP into positively charged hydrogels formed from cationic self-
assembling peptides. MAX8: VKVKVKVKVDPLPTKVEVKVKV; HLT2: VLTKVKTKVDPLPTKVEVKVLV. 
The strong electrostatic interactions between negatively charged EGFP and two different cationic 
hydrogels resulted in cloudy, precipitated materials where the gel fell apart easily upon the 
addition of buffer. Protein released from these materials had a significant loss in fluorescence 
activity, indicating that denaturation had occurred.  
 

 
Figure S10. Image of co-encapsulated EGFP and ID5-mRuby3 in AcVES3 hydrogel. After 1 day, the 
supernatant exhibits a strong green fluorescence using a handheld UV lamp, while the gel retains 
a strong red fluorescence after 28 days. These qualitative visual results support the quantified 
data in main text Figure 4B. 
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Figure S11. Sequences and SDS-PAGE gels for IFNα5 and its ID analogs. Here, the ID is appended 
to the C-terminus of the protein. IDs were cloned into the pPAL7 vector already containing IFNα5. 
The precursor proteins are expressed with an N-terminal domain that binds to the analog of 
subtilisin protease bound to the Profinity eXact resin and can be washed to remove protein 
impurities. The proteins are then eluted/cleaved in buffer containing 10 mM NaN3. Longer IDs, 
which may be favorable for slow release protein formulations, contain enough histidine residues 
to purify by metal affinity without the need for an additional poly-histidine domain. We 
demonstrate this proof-of-concept by purifying the precursor of IFNα5-ID5 with Talon resin prior 
to subjection to the eXact resin.  
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Figure S12. CD spectra of IFNα5 analogs. All proteins exhibit robust helical conformations. The 
unstructured nature of the IDs (ID3: 17 residues; ID5: 21 residues), however, causes the helical 
signature of the mean residue ellipticity to be slightly less intense due to the increased 
contribution of random coil to the overall spectra.  
 
 
 

 
Figure S13. Model of the AcVES3 fiber used for MD simulations. The assembly of the peptide 
results in the display of two hydrophilic faces within a given fiber, both of which contain strips of 
negative charge that traverse the fibril.  
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Figure S14. Assessing the preferred binding geometry of ID6. During initial MD simulations and 
docking, all IDs preferred to bind with the AcVES3 fiber in an extended conformation. We then 
conducted additional simulations/docking where ID6 was forced into a compact state. A) The 
calculated interaction energy for the compact form of ID6 was substantially less favorable than 
the extended form. B) Visual representations of the docked poses of ID6 in the extended and 
compact states. 
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Figure S15. In vitro analysis of mRuby3 and ID5-mRuby3 release from AcVES3 hydrogels. A) 
Release from L-AcVES3 or D-AcVES3 were identical, indicating that the interaction between the 
cationic ID and the anionic peptide fibers is not inherently dependent on stereochemistry, but 
rather the general arrangement of charge on the surface of the fiber and within the ID. B) 
Normalized fluorescence spectra of mRuby3 analogs (592 nm), which shows that the protein 
remains active once released from the hydrogel. C) Images of protein loaded hydrogels at 
selected time points, demonstrating that the ID5-mRuby3-loaded gels retain fluorescence 
activity over the course of the in vitro study. On the right side of (C), 1) mRuby3 in L-AcVES3; 2) 
ID5-mRuby3 in L-AcVES3; 3) mRuby3 in D-AcVES3; 4) ID5-mRuby3 in D-AcVES3. 
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Figure S16. In vivo fluorescent images for mRuby3/ID5-mRuby3 release from AcVES3 hydrogels 
at selected time points. For both L-AcVES3 (A) and D-AcVES3 (B) hydrogels, mRuby3 was rapidly 
released within a day, while ID5-mRuby3 injection sites had a robust  fluorescent signal indicating 
the retainment of protein. C) Prolonged release experiments comparing side-by-side release of 
ID5-mRuby3 from either L- or D-AcVES3 hydrogels. D-AcVES3 generally retained the protein for 
a longer period, with most mice having detectable levels after a month. D) Syringes with residual 
protein/gel were imaged at the same intervals and retained strong fluorescence throughout the 
study, with no significant photobleaching. Syringe 1: mRuby3 + L-AcVES3; Syringe 2: ID5-mRuby3 
+ L-AcVES3; Syringe 3: mRuby3 + D-AcVES3; Syringe 4: ID5-mRuby3 + D-AcVES3. 
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Table S1. Parameters used in molecular dynamics simulations. Molecular modeling codes used: 
Amber16, Xplor-NIH, GAMYR v3.0, FRMD, VMD, ZDOCK, ZRANK. Molecular dynamics 
simulations performed using GPU accelerated Amber16.2 
 
Force Field: ff14SB 
Water model: SPC 
Periodic Box Cushion: 15 A (free IDs); 18 A (fibers/complexes) 
Approximate # of water molecules: ~15,000 (free IDs); ~35,000 (fibers) 
Salt (NaCl) concentration: 150 mM 
Integration step: 0.002 ps 
Restraints: 2.0 kcal/mol-A2 
Production simulation time per model: > 200 ns per model 
Equilibration time: 5 ns 
Trajectory update frequency: 20 ps 
Temperature: 298.15 K 
Barostat (isotropic, Berendsen) relaxation time: 0.5 ps 
Thermostat Langevin collision frequency: 2.0/ps 
Shake on bonds with H  
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